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a b s t r a c t

In the paper was developed a hybrid method (analyticenumeric) for the electric field computation inside
a rectangular petrol tank. For this problem it will be assumed a static state and all the computations will be
developed in a Cartesian coordinate system. Two regions will be delimitated: first one is the free space and
second one is the liquid electro-statically charged (petrol) inside the tank.

For solving the Laplace equation in the first region, variable separation method will be applied and the
electric potential will be determined. In the second region the Poisson equation will be solved, assuming
a particular solution and then the electric potential will be obtained. To determine the constants from the
potential expressions the zero potential condition at the tank surface and the continuity conditions at the
separation surface was considered. Using mathematical manipulations (series development, numerical
approximations etc.) an ill conditioned matrix system (23 � 23) resulted. This systemwill be numerically
solved/discussed using a developedMathCad algorithm. The condition number of the coefficientsmatrix is
being computed and the regularization methods applied to the system will be discussed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction. Electrostatic charge in industrial processes

At the displacement of the liquid inside a metallic pipeline, the
thin layer of liquid in direct contact with the metal, that stays fixed
during the movement, is the absorbed layer and is separated
through the sliding surface. Usually, the sliding surface is inside the
diffusion layer and therefore the liquid that reaches the recipient
is electrically charged. The level of electrostatic charge of the
displacement liquid is function of the traveling speed, the roughness
of the interior surface of the pipeline, type of movement, electric
permittivity and conductivity [1e3].

If electrostatically charged liquid is sent to an earthed tank,
electrostatic charging of the tank to potentially dangerous values is
possible. Static electricity level of the tank is determined both by the
convection current due to electric charges driven by the liquid, but
also by the non-zero insulation resistance of the container with
earth [4].

Due to the fact that electrostatic charge phenomenon is
extremely complex an universally accepted relationship for the
computation of the electrostatic charge level could not be estab-
lished. Under these conditions, the relations derived are indicative;
the analysis of the real phenomenon is based only on experimental
data [5].
.

All rights reserved.
The transfusion of the flammable liquids with superior proper-
ties is followed by the apparition of an important quantity of electric
chargewhen loading and unloading the tanks. In certain conditions,
the electric charge amassedmay lead to dangerous loading values of
the pipeline, tank or other earthed metal objects.
2. The electric field inside a parallelepiped gas tank
considering a bidimensional variation

A rectangular shaped tank is at least as common inpractice as the
cylinder tank. The dimensions of the tank will replicate the ones
used in ports. Thus the cross section through such a tank will be
a rectangle with the length 2a ¼ 4 m and the height b ¼ 10 m, Fig. 1.
The depth of the parallelepiped has a size greater than 15 m that
allows considering a plane parallel problem. In Cartesian axis
system, tank size on z axis ismuch larger than the size on theOx axis
Fig. 2.

In the standards of use of these tanks is prohibited their filling
more than 95% of the height. Since the danger of explosion is
proportional to themaximumvalue of the electricfield in the air and
knowing that this value is proportional to the volume density of the
electric charge (which depends on many factors difficult to control)
it can be concluded that there may be problems even if the height
of petrol in the tank is less than that prescribed in the regulations.
These observations justify the need of an electric potential and
electric field study function of the gas layer height.
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Fig. 1. The cross section through the tank. axb e the dimensions of the rectangular
tank; h e the height of the liquid in the tank. 30 e the permittivity of the vacuum
(medium 1); 3e the permittivity of the gasoline (medium 2).
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2.1. Theoretical determination of the electric field and potential
in the tank

Two regions have been determined: 1 with air ( 3¼ 30) and 2
with electrostatic charged liquid (gas). In the first region although
exist liquid vapors, the zone is considered as vacuum (air) with
3¼ 30. The computations will be performed in the Cartesian coor-
dinate system:

In region1 the Laplace equationwas considered :
v2V
vx2

þv2V
vy2

¼ 0

(1)

Inregion2thePoisonequationwasconsidered:
v2V
vx2

þv2V
vy2

¼�rv

3

(2)

For solving Laplace equation in vacuum (region 1) variable
separation method is applied:

Vðx; yÞ ¼ PðxÞ QðyÞ (3)

It results :
1 v2PðxÞ

2 ¼ � 1 v2QðyÞ
2 ¼ k2 (4)
PðxÞ vx QðyÞ vy

the solution of Laplace equation is:

V ð1Þðx;yÞ ¼
XN
k¼1

ðMkchkxþNkshkxÞðRkcos kyþ Sksin kyÞ (5)
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Fig. 2. Potential variation at the separation surface on the symmetry axis.
For solving Poison equation in the gas area (region 2) a partic-
ular solution form will be found:

Vpðx; yÞ ¼ �rv
2 3
x2 þmx (6)

or

Vpðx; yÞ ¼ �rv
2 3
y2 þ qy (7)

Using Eq. (6), results:

V ð2Þðx; yÞ ¼
XN
k¼1

ðAkchkxþ BkshkxÞ ðCkcos kyþ Dksin kyÞ

� rv
2 3
x2 þmx ð8Þ

using Eq. (7) again the following form has been obtained:

Vð2Þðx;yÞ ¼
XN
k¼1

ðAkchkxþBkshkxÞ ðCkcoskyþDksinkyÞ

� rv
2 3
y2þqy

(9)

Constants determination is based on the following conditions:
a) Symmetry condition: V(x,y) ¼ V(�x,y), Eqs. (5), (8), (9) became:

V ð1Þðx; yÞ ¼
XN
k¼1

chkx ðTkcos kyþWksin kyÞ (10)

V ð2Þðx; yÞ ¼
XN
k¼1

chkx ðEkcos kyþ Fksin kyÞ � rv
2 3
x2 (11)

or

V ð2Þðx; yÞ ¼
XN
k¼1

chkx ðEkcos kyþ Fksin kyÞ � rv
2 3
y2 þ qy (12)

where Tk ¼ MkRk, Wk ¼ MkSk, Ek ¼ AkCk and Fk ¼ AkDk

b) Tank walls have null potential so the zero potential condition
on the basis from Eq. (12) has been used:

V ð2Þðx;0Þ ¼ 0 (13)

leading to the conclusion that the particular form of the Poisson
equation is best suited, relations (9) and (12) respectively:

V ð2Þðx;0Þ ¼
XN
k¼1

Ekchkx ¼ 00Ek ¼ 0 (14)

V ð2Þðx; yÞ ¼
XN
k¼1

Fkchkx sin ky� rv
2 3
y2 þ qy (15)

condition b) has been accomplished by Eq. (15).
c) From the continuity condition of the potential on the sepa-

ration surface V(1)(x, h) ¼ V(2)(x, h), with V(1) and V(2) necessary
exists for the same values of k we have:
XN
k¼1

chkx½Tkcos khþ ðWk � FkÞsin kh� ¼ �rv
2 3
h2 þ qh (16)

as chkx is variable function of x, it has been imposed:

½Tkcos khþ ðWk � FkÞsin kh� ¼ 0 and � rv
2 3
h2 þ qh ¼ 0 (17)

0Tk ¼ 0;Wk ¼ Fk; q ¼ rv
2 3
h (18)

Results that the relation (18) solve c) condition, that is equiva-
lent to the conservation of the electric field tangential component
on the separation surface. Results:
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V ð1Þðx; yÞ ¼
XN

Fkchkx sin ky (19)

k¼1

and

V ð2Þðx; yÞ ¼
XN
k¼1

Fkchkx sin ky � rv
2 3

y2 þ rv
2 3
hy (20)
2.2. System of hybrid equations (analyticenumeric)

After some numerical trials it was proved that is very convenient

to work in the following steps with zk ¼ Fk
chðkaÞ
105

:

d) Null potential condition on the tank lid results in:

V1ðx; bÞ ¼
XN
k¼1

105
chkx
chka

chkaFk
105

sin kb ¼ 0; x 3ð0; aÞ (21)

e) From the conservation condition of the normal component of
the electric field induction on the separation surface

30 3r
vV ð2Þðx; yÞ

vy

����
y¼h

¼ 30
vV ð1Þðx; yÞ

vy

����
y¼h

(22)

results :
PN

kFkchkxcoskh ¼ 3r
�
rvy�rvh

����� (23)

k¼1 3r�1 3 32

y¼h

where rv ¼ 10�5C=m3 was chosen taking into account some
experimental results [5], so the conditionwhichwill be numerically
used is:

XN
k¼1

k
chkaFk
105

chkx
chka

cos kh ¼ 1:8p
3r � 1

h (24)

f) Null potential condition on the vertical tank wall in the gas
region is

V2ða;yÞ ¼
XN
k¼1

Fk
chka
105

sinky�1:8p
3r

�
y2�yh

�
¼ 0; cy˛ð0;hÞ

(25)

and in the air region is

V1ða; yÞ ¼
XN
k¼1

Fk
chka
105

sin ky ¼ 0; cy˛ðh;bÞ (26)

For the (25) formula was taken into account that:

rv
2 3

�
y2 � yh

�
¼ 1:8p

3r

�
y2 � yh

�
(27)

After the unknown determinationzk ¼ Fk
chðkaÞ
105

, the formula of
the electric potential in air is:

V1ðx; yÞ ¼
XN
k¼1

Fk
chka
105

105

chka
chkx sin ky (28)

Numerically, it has been chosen:

m ¼ 40mþ 1 ¼ 5 points corresponding to Ox axis
t ¼ 80t ¼ 8 points corresponding to Oy axis (inside the gas)
p ¼ 60p� 1 ¼ 5 points in the tank air on top of the gas
2.3. Numeric calculus for the electric potential and electric field
in the tank. Mathcad implementation

Numerical data for Mathcad computations are: 3r ¼ 2, a ¼ 2,
b ¼ 10, h ¼ 8, m ¼ 4 (5 equations); t ¼ 8 (8 equations); p ¼ 6
(5 equations), n ¼ 2m þ p þ t þ 1 ¼ 23 equations [6].

The height of the gas in the tank has been set to 80% of the
maximumvalue. This value has been chosen based on the fact that is
the critical height, explosion danger at this height has not been
specified in the instructions. The construction manner of the
equations for the case of the n ¼ 23 equations considered is being
presented. The first m þ 1 ¼ 5 equations represent the potential
expression in 5 equidistant points located on the tank lid. The first
location is the symmetry axis and the last one is the lateral wall of
the tank.

j :¼ 1::n i :¼ 1::mþ 1

Ai;j :¼
105$ch

h
j$ði� 1Þ$ a

m

i
$sinðj$bÞ

chðj$aÞ
(29)

The next t ¼ 8 equations represent the null potential condition
on the lateral walls of the tank inside the gas layer.

i :¼ mþ 2::mþ t þ 1 Ai;j :¼ sin
�
j$ði�m� 1Þ$h

t

�
(30)

The p � 1 ¼ 5 equations represent the null potential on the
lateral wall of the tank in air.

i :¼ mþ tþ 2::mþ tþ p

Ai;j :¼ sin
�
j$
�
hþ

�
ði�m� 1Þ$b� h

p

��� (31)

The last m þ 1 ¼ 5 equations represent the conservation of the
normal component of electric flux density at the separation surface
between air and gas.

i :¼ mþ t þ pþ 1::mþ t þ pþmþ 1

Ai;j ¼
j ch

�
j$ði�m� t � p� 1Þ $a

m

�
$cosðj$hÞ

chðj$aÞ
(32)

Adding all the equations together the 23 equations system
results. The free term has been built according to the observations
made in the first paragraph of this paper.

i :¼ 1::mþ 1; Ti;1 :¼ 0

i :¼ mþ 2::mþ t þ 1

Ti;1 :¼
1:8$p$ði�m� 1Þ$h

t
$½ � hþ ði�m� 1Þ�

er
i :¼ mþ t þ 2::mþ t þ p Ti;1 :¼ 0

i :¼ mþ t þ pþ 1::mþ t þ pþmþ 1; Ti;1 :¼ 1:8$p$h
er� 1

(33)

The unknown column vector has 23 rows; on the k line the

unknown was noted with zk ¼ chka
105

Fk. For solving the system of

23 � 23 it was applied the method of regularization of degenerate
systems of equations (binomial coefficients method) [7,8].

Solving the determined system with 23 equations column
vector z ðz1 ¼ �1:393$104; z2 ¼ �1:553$105 etc:Þ For the
computation of the potential in air, where the point has x, y coor-
dinates, the numeric form deduced from the relation (28) has been
used:
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V ð1Þðx;yÞ ¼
X23

zk
chkx

105sin ky (34)

k¼1

chka

Then, this calculation has been repeated for a vertical line sit-
uated parallel to the first at a distance of a/m þ 1 ¼ a/5 ¼ 0.4 m.
At last, the field on the horizontal direction was calculated.

For example:

Eyð0;hÞ ¼
Vð0; hÞ � V

�
0; hþ b� h

p

�

b� h
p

¼ 1:688$106 � 3:906$105

1=3
¼ 38:924

KV
cm

(35)

Exð0;hÞ ¼
Vð0;hÞ�V

� a
mþ1

;h
�

a
mþ1

¼ 1:688$106�1:389$106

2=5

¼ 7:475
KV
cm

(36)

Eð0;hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exð0; hÞ2þEyð0;hÞ2

q
¼ 39:635KV=cm (37)

It is noticeable that for given data, this field produces for certain
an explosion, due to the fact that the maximum limit of dielectric
rigidity of the air (30 kV/cm) has been exceeded.

It was represented also the potential variation at the separation
surface on the symmetry axis in function of height of the liquid in
the tank.

3. Conclusions

In this paper the authors developed a hybrid method for the
electric field computation inside a rectangular tank partially filled
with gasoline. Regarding the case of cylindrical tank in which the
solution it could be found applying the standardmethod of variable
separation method and in the solution Bessel functions appear, in
our case (rectangular thank) this standard method could not be
applied and we used a hybrid method.
The theoretical determinations have shown that the electric
field is directly proportional to the volume density of the
electric charge. So, the first method limits the electric field
from the tank in order to prevent fuel particles electrified by
friction to enter the tank. To that effect a reliable connection
to earth of the metal pipe joints needs to be realized. Also,
a flow rate that does not favor the workload has to be chosen
accordingly.

It was selected two regions: first one is the free space and
second one is the liquid electro-statically charged inside the tank. It
was solved analytically the Laplace equation in the first region, and
Poisson equation in the second region, assuming a particular
solution. Using several mathematical manipulations (series devel-
opment, numerical approximations etc.) an ill conditioned matrix
system (23 � 23) resulted and was numerically solved using reg-
ularization methods.
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