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ABSTRACT

In the paper was developed a hybrid method (analytic—numeric) for the electric field computation inside
arectangular petrol tank. For this problem it will be assumed a static state and all the computations will be
developed in a Cartesian coordinate system. Two regions will be delimitated: first one is the free space and
second one is the liquid electro-statically charged (petrol) inside the tank.

For solving the Laplace equation in the first region, variable separation method will be applied and the
electric potential will be determined. In the second region the Poisson equation will be solved, assuming
a particular solution and then the electric potential will be obtained. To determine the constants from the
potential expressions the zero potential condition at the tank surface and the continuity conditions at the
separation surface was considered. Using mathematical manipulations (series development, numerical
approximations etc.) an ill conditioned matrix system (23 x 23) resulted. This system will be numerically
solved/discussed using a developed MathCad algorithm. The condition number of the coefficients matrix is

being computed and the regularization methods applied to the system will be discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction. Electrostatic charge in industrial processes

At the displacement of the liquid inside a metallic pipeline, the
thin layer of liquid in direct contact with the metal, that stays fixed
during the movement, is the absorbed layer and is separated
through the sliding surface. Usually, the sliding surface is inside the
diffusion layer and therefore the liquid that reaches the recipient
is electrically charged. The level of electrostatic charge of the
displacement liquid is function of the traveling speed, the roughness
of the interior surface of the pipeline, type of movement, electric
permittivity and conductivity [1-3].

If electrostatically charged liquid is sent to an earthed tank,
electrostatic charging of the tank to potentially dangerous values is
possible. Static electricity level of the tank is determined both by the
convection current due to electric charges driven by the liquid, but
also by the non-zero insulation resistance of the container with
earth [4].

Due to the fact that electrostatic charge phenomenon is
extremely complex an universally accepted relationship for the
computation of the electrostatic charge level could not be estab-
lished. Under these conditions, the relations derived are indicative;
the analysis of the real phenomenon is based only on experimental
data [5].
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The transfusion of the flammable liquids with superior proper-
ties is followed by the apparition of an important quantity of electric
charge when loading and unloading the tanks. In certain conditions,
the electric charge amassed may lead to dangerous loading values of
the pipeline, tank or other earthed metal objects.

2. The electric field inside a parallelepiped gas tank
considering a bidimensional variation

Arectangular shaped tank is at least as common in practice as the
cylinder tank. The dimensions of the tank will replicate the ones
used in ports. Thus the cross section through such a tank will be
arectangle with the length 2a = 4 m and the height b = 10 m, Fig. 1.
The depth of the parallelepiped has a size greater than 15 m that
allows considering a plane parallel problem. In Cartesian axis
system, tank size on z axis is much larger than the size on the Oy axis
Fig. 2.

In the standards of use of these tanks is prohibited their filling
more than 95% of the height. Since the danger of explosion is
proportional to the maximum value of the electric field in the air and
knowing that this value is proportional to the volume density of the
electric charge (which depends on many factors difficult to control)
it can be concluded that there may be problems even if the height
of petrol in the tank is less than that prescribed in the regulations.
These observations justify the need of an electric potential and
electric field study function of the gas layer height.
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Fig. 1. The cross section through the tank. axb — the dimensions of the rectangular
tank; h — the height of the liquid in the tank. &, — the permittivity of the vacuum
(medium 1); ¢ — the permittivity of the gasoline (medium 2).

2.1. Theoretical determination of the electric field and potential
in the tank

Two regions have been determined: 1 with air (¢ = ¢) and 2
with electrostatic charged liquid (gas). In the first region although
exist liquid vapors, the zone is considered as vacuum (air) with
¢ = ¢9. The computations will be performed in the Cartesian coor-
dinate system:
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For solving Laplace equation in vacuum (region 1) variable
separation method is applied:

V(x,y) = P(x) Q(y) (3)
Itresults: —\ o?Px) _ 1 QQ) = k? (4)
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Fig. 2. Potential variation at the separation surface on the symmetry axis.

For solving Poison equation in the gas area (region 2) a partic-
ular solution form will be found:

Py 2

Vp(X,y) = —52x° +mx (6)
or
o Py 2
Vp(X.y) = —5y° +qy 7

Using Eq. (6), results:
VP (x,y) = (Axchkx + Byshkx) (Cycos ky + Dysin ky)
k=1
_Puy2
5X + mx (8)

using Eq. (7) again the following form has been obtained:

V@ (x,y) = > (Archkx + Byshkx) (Cycos ky + Dysinky)
k=1 9)

%yz +qy

Constants determination is based on the following conditions:
a) Symmetry condition: V(x,y) = V(—x,y), Egs. (5), (8), (9) became:

©

VI(x,y) = Y chkx (Tycos ky + Wjsin ky) (10)
k=1
@y = inky) — Pux?
V@& (x,y) = ’; chkx (E,cos ky + Fjsin ky) 2% (11)
or

©

V@(x,y) = Y chkx (Excos ky + Fisin ky) — %yz +qy  (12)
k=1

where Ty = MRy, Wi = M Sk, Ex = AxC and F, = AxDy
b) Tank walls have null potential so the zero potential condition
on the basis from Eq. (12) has been used:

V@ (x,0) = 0 (13)

leading to the conclusion that the particular form of the Poisson
equation is best suited, relations (9) and (12) respectively:

V@ (x,0) = > Eychkx = 0=E; = 0 (14)
k=1
@) -5 o P2
V@ (x,y) ’;chhkx sin ky 2y’ +ay (15)

condition b) has been accomplished by Eq. (15).

c) From the continuity condition of the potential on the sepa-
ration surface V\(x, h) = V(x, h), with V1) and V%) necessary
exists for the same values of k we have:

" chkx[Tycos kh + (W, — Fy)sin kh] = —%hz +gh (16)
k=1
as chkx is variable function of x, it has been imposed:

[Tycos kh + (W, — Fy)sin kh] = O and — %hz +gh=0 (17)

=Ty = 0:Wy = Fiq = 5'h (18)

Results that the relation (18) solve c) condition, that is equiva-
lent to the conservation of the electric field tangential component
on the separation surface. Results:
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M (x,y) = > Fichkx sin ky (19)
k=1
and
@(x,y) = Y Fychkxsinky — p“ y2 +5 hy (20)

k=1

2.2. System of hybrid equations (analytic—numeric)

After some numerical trials it was proved that is very convenient
ch(ka)

105 °
d) Null potential condition on the tank lid results in:

to work in the following steps with z;, = F;,

Z 105 chkx chkaFk

chka 105 nkb = 0;

xe(0,a) (21)

e) From the conservation condition of the normal component of
the electric field induction on the separation surface

() (M
e XY VXY) (22)
ay y—h ay y=h
results: i kFichkxcoskh = — (&y —&E> (23)
P g—1\¢ €2 y—h

where p, = 10-3C/m> was chosen taking into account some
experimental results [5], so the condition which will be numerically
used is:

i“’: chkaFy chkx . _ 187
105 chka T -1

h (24)
k=1

f) Null potential condition on the vertical tank wall in the gas
region is

chka T/ 5
ZF,<—1 o Sinky (y —yh) —0; Vye(0,h)
(25)

and in the air region is

ZF,f]hé‘sasm ky — 0; Vye(h,b) (26)

For the (25) formula was taken into account that:

S (v —ym) =

After the unknown determinationz, = Fk

5% (2 - yh) (27)

hika) the formula of

105 °
the electric potential in air is:
chka 10°
T(x,y) = Z Fr—r 105 chika ——chkx sin ky (28)

Numerically, it has been chosen:

m = 4=m+ 1 = 5 points corresponding to Oy axis
t = 8=t = 8 points corresponding to Oy axis (inside the gas)
p = 6=p—1 = 5 points in the tank air on top of the gas

2.3. Numeric calculus for the electric potential and electric field
in the tank. Mathcad implementation

Numerical data for Mathcad computations are: & = 2, a = 2,
b =10, h = 8, m = 4 (5 equations); t = 8 (8 equations); p = 6
(5 equations), n = 2m + p + t + 1 = 23 equations [6].

The height of the gas in the tank has been set to 80% of the
maximum value. This value has been chosen based on the fact that is
the critical height, explosion danger at this height has not been
specified in the instructions. The construction manner of the
equations for the case of the n = 23 equations considered is being
presented. The first m + 1 = 5 equations represent the potential
expression in 5 equidistant points located on the tank lid. The first
location is the symmetry axis and the last one is the lateral wall of
the tank.

ji=1n i:=1.m+1
10°-chlj-(i - 1)-%} sin(j-b) (29)
Aiji= ch(j-a)

The next t = 8 equations represent the null potential condition
on the lateral walls of the tank inside the gas layer.

= mezmet 1 Ayss sinfiGom-1)-g] (30)

The p — 1 = 5 equations represent the null potential on the
lateral wall of the tank in air.

i:=m+t+2.m+t+p
Ajj: fsm{ |:h+|:(l— _prh}” (31)

The last m + 1 =5 equations represent the conservation of the
normal component of electric flux density at the separation surface
between air and gas.

ir=mit+iprlmitipim+1
jch<j-(i—m—t—p—1) > cos(j-h) (32)
Aij = ch(j-a)

Adding all the equations together the 23 equations system
results. The free term has been built according to the observations
made in the first paragraph of this paper.

i:=1.m+1; T;;:=0
ir=m+2.m+t+1

1.8-71-(i—m—1)~%[—h+(i—m—1)]

Tip:= o7 (33)

ir=m+t+2.m+t+p T1:=0

1.8-m-h

fi=mittprlmtttprm+l; Tyo=-—

The unknown column vector has 23 rows; on the k line the
chka

unknown was noted with z, = WF" For solving the system of

23 x 23 it was applied the method of regularization of degenerate
systems of equations (binomial coefficients method) [7,8].

Solving the determined system with 23 equations column
vector z (z; = —1.393-10%,z, = —1.553-10° etc.) For the
computation of the potential in air, where the point has x, y coor-
dinates, the numeric form deduced from the relation (28) has been
used:
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23
vD(x,y) = zzk%l 0°sin ky (34)
k=1

Then, this calculation has been repeated for a vertical line sit-
uated parallel to the first at a distance of a/m + 1 = a/5 = 0.4 m.
At last, the field on the horizontal direction was calculated.

For example:

V(0,h) — v(o, h+ %)

E}/(O7 h) = b—_h
p
1.688-105 — 3.906-10° KV
- 73 - 38924 (35)
a
EO.h) VOR-V(T5h) 1 688.105-1.389-108
A a - 2/5
m+1
_7475%Y (36)
cm
E(0,h) = /Ex(0, h)>+Ey(0,h)® = 39.635KV/cm (37)

It is noticeable that for given data, this field produces for certain
an explosion, due to the fact that the maximum limit of dielectric
rigidity of the air (30 kV/cm) has been exceeded.

It was represented also the potential variation at the separation
surface on the symmetry axis in function of height of the liquid in
the tank.

3. Conclusions

In this paper the authors developed a hybrid method for the
electric field computation inside a rectangular tank partially filled
with gasoline. Regarding the case of cylindrical tank in which the
solution it could be found applying the standard method of variable
separation method and in the solution Bessel functions appear, in
our case (rectangular thank) this standard method could not be
applied and we used a hybrid method.

The theoretical determinations have shown that the electric
field is directly proportional to the volume density of the
electric charge. So, the first method limits the electric field
from the tank in order to prevent fuel particles electrified by
friction to enter the tank. To that effect a reliable connection
to earth of the metal pipe joints needs to be realized. Also,
a flow rate that does not favor the workload has to be chosen
accordingly.

It was selected two regions: first one is the free space and
second one is the liquid electro-statically charged inside the tank. It
was solved analytically the Laplace equation in the first region, and
Poisson equation in the second region, assuming a particular
solution. Using several mathematical manipulations (series devel-
opment, numerical approximations etc.) an ill conditioned matrix
system (23 x 23) resulted and was numerically solved using reg-
ularization methods.
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