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The effective permittivity of dielectric mixtures is influenced by important factors as: 
the shape and geometrical size of inclusions, their orientation with respect to the 
applied electric field, their space distribution and concentration in the mixture. This 
paper analysis these influences. One of the methods that can be success fully used in 
order to compute this permittivity is the numerical modeling of the mixture, using the 
finite element method (FEM). This method also allows us to consider the above 
mentioned influence factors. The numerical results obtained are compared to those 
computed analytically and those determined experimentally. 

1. INTRODUCTION 

Many of today’s electrical insulators are mixtures of two or several materials. 
One can notice the increased use of composite materials with outstanding 
mechanical properties (a unique combination of low density but high mechanical 
resistance). Extensive studies were conducted regarding mechanical properties and 
manufacturing technologies for these materials, but less importance was given to 
their electrical properties. 

Nowadays, polymer based composites (cheaper and less polluting) replace 
traditional insulating materials (oil, paper, glass, ceramics, etc.) in insulation 
systems. Many researchers [1, 2, 3, 4, 9, 10] focused on finding new materials, 
more reliable for electrical stresses but less expensive. An important goal is to 
increase the voltage of electrical power lines, and therefore decreasing power loss, 
by using these new materials. 

The main advantage of composites consists of the possibility of designing 
them for special purposes. Since the classical approach of experimental trail 
requires time and money, making the improvement of the initial model quite 
difficult, the use of the computer in the design phase represents a true step forward 
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(because an accurate estimation and correction of the required properties is easy to 
achieve). 

Estimating the effective (real) permittivity εef of dielectric mixture, knowing 
the permittivities of the components and their concentration in the mixture, is very 
useful in designing non-homogenous dielectrics that need to have the 
characteristics required by a certain application. The computation of this 
permittivity becomes quite difficult if it’s also necessary to estimate how this 
parameter is influenced by various factors. 

The numerical modeling, based on the finite element method (FEM), is one of 
the methods that can be used in order to determine this permittivity, allowing us to 
also consider some of the influence factors mentioned in the literature [5, 6, 
12, 14]. 

This paper presents models of some binary mixtures made from a host media 
with relative permittivity ε1 and inclusions with relative permittivity ε2. These 
systems are described by the volume fraction of the inclusions, q (the ratio between 
the volume of the inclusions and the entire volume of the mixture). The inclusions 
are considered to be infinitely long cylinders or prisms with different shapes of the 
cross-section (ellipse, square, hexagon, etc.). Therefore, a 2D modeling of the 
material is quite suitable for numerical computation of the effective relative 
permittivity of binary mixtures. 

We performed a systematic study on the influence of concentration, shape, 
geometrical size, space distribution and orientation of the inclusions with respect to 
the direction of the applied electric field. This study is conducted first on simple 
models with a single inclusion of different shapes, at the same concentration, and 
then on models of statistics or matrix mixtures. 

For the experimental study of the glass/polymer mixture we poured 5 samples 
of each mixture of epoxy resin (ε1 = 4) and glass balls (ε2 = 6.52) with the same 
volume fraction of the glass inclusions. The samples, shaped as discs with 100 mm 
diameter and depths between 2 and 2.5 mm, were polished and silver was 
deposited on the surfaces to ensure a better electrical contact [5, 8] with the 
electrodes of the measurement capacitor. The permittivity measurements were 
performed with a low voltage Schering bridge of type TR 9701 with a precision of 
3.5% for a frequency of 100 Hz. 

The numerical results are compared with those computed analytically and 
those experimentally measured on glass / polymer probes. 

2. THEORETICAL BACKGROUND 

For the analytical computation of the effective permittivity of statistical or 
matrix mixtures, one can use formulas proposed by various researchers [6, 7, 8, 11, 
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12, 14]. The numerical computation can be performed using methods based on the 
finite element (FEM).  

 
2.1. ANALYTICAL RELATIONS FOR COMPUTING THE MIXTURE’S 

EFFECTIVE PERMITTIVITY 
 
In order to determine the effective permittivity of dielectric mixtures having 

highly different permittivities, a few calculus relationships are indicated because 
they yield values that are closer to those experimentally determined [1, 3, 5, 11]. 
We present here those that we have used for a comparative analysis with the 
numerical results. 

For statistical mixtures the following relationships were used: 
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In the formulas above, q, qi represent the volume fraction of the inclusions, 
respectively of the i component of the mixture, εef – the effective relative 
permittivity of the mixture, ε1, ε2 – the relative permittivity of the host media, 
respectively of the inclusions, and m is a shape parameter equal to 3 or 6 for 
spherical and ellipsoidal inclusions, respectively. 

 
2.2. NUMERICAL APPROACH 

 
The effective permittivity was computed for an electrostatic regime, using a 

FEM based software developed by the ANSOFT Corporation [5, 6, 7]. Considering 
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the geometrical properties of our model (described in the introduction) a 2D 
simulation of the composite is quite suitable. The key parameter, which should be 
obtained for calculation of the dielectric properties of a mixture, is the electric field 
distribution ( )yxE ,  within a domain. The equation solved by the software 
program for all electrostatic problems is known as Gauss’ law [5, 14]: 

 ( ) ( )yxyxEr ,),(0 ρ=εε⋅∇ , (7) 

where εr, ε0 represent the relative permittivity and the permittivity of vacuum and 
( )yx,ρ  represents the charge density. In our case, the free charge is located only on 

the plates of the capacitor that represents the computation domain. Therefore, 
considering there is no free charge inside the domain, the equation solved by the 
computer in this case is Laplace equation with both Newton and Dirichlet 
conditions (Fig. 1). 

The average permittivity of a composite can be computed using one of the 
following two methods [13]: 

a) The first method (M1) requires the calculation of the average electric field 
E~  and electric flux density D~  over the entire computational domain, with: 

 ∫
Ω

Ω
Ω

= d1~ EE  and ∫
Ω

Ω
Ω

= d1~ DD . (8) 

The effective permittivity is computed with the formula: 

             EDef
~/~

0ε=ε . (9) 

b) The second method (M2) requires the calculation of the electrostatic 
energy over the computational domain, and the permittivity is obtained from: 
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The two methods mentioned above led to the results that will be presented in 
the following section of the paper. 

3. GEOMETRICAL MODEL 

The boundary conditions assigned to the models are presented in Fig. 1 (the 
material was considered to form the dielectric of a plane capacitor, having a 
constant and uniform internal electric field). The computation domain was 
considered to be a square of 20 µm side. 
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For a systematic study of the influence of the shape and size of the inclusions 
on the effective permittivity εef  of a binary mixture, we first imagined simple 
models with a single polygonal inclusion, with a different number of sides (n = 3, 
4, … ∝), inside a host media (square) – (Fig. 2). For ellipsoid inclusions, we 
presented the influence of the orientation of the ellipse with respect to the applied 
electric field over the effective permittivity (β is the angle between the long semi-
axis of the ellipse and the direction of the field – Fig. 1).  

For the 2D modeling of matrix mixtures, ordered structures were considered, 
having the same matrix of the host material (16 x 16 elements in a square with 
20µm side) but with different shapes (cylindrical and ellipsoidal) of the inclusions. 
Fragments of the modeled structrures are given in Fig. 3. 

 
 

 
Fig. 1 – Boundary conditions assigned to the model. 

 
 
 

 

a                                      b                                       c                                       d  

Fig. 2 – Dielectric models with  polygonal inclusions, with a different number of sides: 
 a) n = 3;  b) n = 4;  c) n = 5;  d) n = ∞. 

The models considered for statistic structures with different volume fractions q of 
the cylindrical inclusions are represented in Fig. 4. For the same volume fraction of 
the inclusions, q = 0.098,  we considered square (Fig. 5) or triangular (Fig. 6) 
inclusions of different sizes and with a random space distribution. 
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a                                                  b 

Fig. 3 – Fragments of modeled matrix mixtures with different shapes of the inclusions: a – cylinders; 
b – ellipsoids. 

 

 
 

Fig. 4 – Fragment from modeled statistical structures with different values of the volume fraction  
of the inclusions. 

 

     

Fig. 5 – Fragment from modeled statistical structures with different values of the square’s side  
(that represents the inclusion), for the same volume fraction q = 0,098. 

 

Fig. 6 – Fragment from modeled statistical structures with triangular inclusions of different sizes,  
for the same volume fraction q = 0,098. 
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4. RESULTS AND DISCUSSIONS  

The results obtained by numerical modeling of simple structures, with a single 
polygonal inclusion (with a different number of sides and relative permittivity 
ε2 = 6.5) placed inside a square (host media) with permittivity ε1 = 4, for a volume 
fraction q = 0.2, are given in Table 1. 

Table 1 

Effective permittivity of mixtures with simple polygonal inclusions, q = 0.2 

No. of sides of the inclusion 3 4 6 10 20 70 99 ∞ 
 

M1 4.39884 4.39697 4.39457 4.39428 4.3943 4.39513 4.39510 4.39510 
M2 4.30995 4.30891 4.30603 4.30525 4.3048 4.30569 4.30567 4.30564 

 
 

One can see that the permittivity decreases by increasing the number of sides 
of the polygonal inclusion, and for a sufficiently large number of sides this one 
remains practically constant. The differences between the values of εef  for n = 3 
and n → ∞ for this volume fraction (q = 0.2) are small (0.937 % for M1 and 1.39 % 
for M2). Another ordered structure studied is the one with ellipse inclusions. 

The results regarding the influence of the direction of the applied electric 
field on the relative effective permittivity are presented graphically in Fig. 7, where 
eps1 represents the permittivity computed with  method M1, while eps2 is 
computed with M2. An ordered matrix mixture with ellipse inclusions was 
modeled, with a volume fraction of the inclusions of q = 0.3.We present the 
variation of the relative effective permittivity with respect to the orientation angle β 
(β represents the angle between the direction of the electric field vector and the 
longest semi-axis of the ellipse, a).  

In order to study the influence of the geometrical sizes of the inclusions on 
the effective permittivity, we first considered the simple models of Figs. 2 and 1, 
with cylindrical inclusions, respectively ellipsoidal ones, with ε2 = 6.5, of different 
sizes inside a host media with ε1 = 4, which is a square of variable side, computed 
with formula qrl /π=  for cylindrical inclusions, and /l ab q= π  for 
ellipsoidal ones. 

For statistical mixtures of the same volume fraction of the inclusions (q = 
0.098) and different shapes (circle, square or triangle) and dimensions, we 
considered permittivity ε2 = 60 inside a host media of permittivity ε1 = 2.2 (mixture 
polyester/rutilus). The numerical results are given in Table 2 and Table 3. 
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Fig. 7 – Relative effective permittivity of the mixture versus orientation angle of the ellipse inclusions 

(volume fraction is q = 0.3). 

Table 2 

The effective permittivity of simple models with inclusions of different dimensions, q = 0.2 

Radius/ long axis 
µm  1 4 10 100 4 5 6 10 40 

M1 4.3947 4.3949 4.3969 4.4041 4.0884 4.0884 4.0865 4.0962 4.1776 
M2 4.3047 4.3053 4.3091 4.3098 4.0644 4.0626 4.0593 4.0645 4.1139 
 Cylindrical inclusions Ellipsoidal inclusions with short axis of 3 µm 

Table 3 

Variation of the effective permittivity εef  of statistical mixtures as a function of inclusions size 

Circle’s radius or square’s side / triangle’s side [µm] Shape  
of 10-3 2⋅10-3 5⋅10-3 10-2 63 100 400 700 

inclusion Effective permittivity of mixtures with different shapes and dimensions of the 
inclusions 

circle - 4.033 4.065 - - - 4.43977 4.43929 
square 4.299 4.350 4.395 4.342 4.44907 4.45888 4.469896 4.51487 
triangle - 4.373 4.403 4.403 4.45180 4.452974 4.46269 4.49806 

 
One can observe that the effective permittivity increases along with the 

increase of circle’s radius or the long axis of the ellipse. This rise is much more 
significant for ellipsoidal inclusions: 2.13 % for a 25 times augmentation of the 
ellipse area, compared to only 0.21 % rise for a 100 times augmentation of the 
circle’s area. For statistical mixtures too, one care observe an increase of the 
permittivity for larger inclusions, differences that are due to inclusions (square or 
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triangle) orientation with respect to the direction of the electric field. Numerical 
results obtained for the effective permittivity of statistical and matrix mixtures of 
various volume fraction qi (with the permittivity of the host media ε1 = 4 and the 
inclusion ε2 = 6.52) are compared to those computed using existing analytical 
formulas and to those measured experimentally – Table 4. 

Table  4 

Effective permittivity for mixtures with cylindrical inclusions 

q Maxwell 
Wagner 

Lichte-
necker 
Rother 

Beer Odelev
-schi M1 M2 Exp. q 

Error 
Brugger-
man-M1

Sillars M1 M2 

0.039 4.0817 4.0763 4.0867 4.0819 4.0778 4.0624 4.073 0.1 -0.179 4.1859 4.1946 4.1510 
0.078 4.1646 4.1548 4.1745 4.1653 4.1555 4.1237 4.141 0.2 -0.154 4.0587 4.3977 4.3127 
0.117 4.2487 4.2347 4.2631 4.2502 4.2352 4.1885 4.182 0.3 -0.1297 4.3386 4.6114 4.4892 
0.156 4,3339 4.3162 4.3527 4.3366 4.3159 4.2544 4.217 0.4 -0.106 4.6257 4.8367 4.6836 
0.234 4.5079 4.4838 4.5347 4.5135 4.4846 4.3979 4,405 0.5 -0.083 4.9205 5.0752 4.9002 
0.312 4.6869 4.6580 4.7204 4.6961 4.6659 4.5545 4.581 0.7 -0.0435 55341 5.5999 5.4329 

Statististical mixtures Matrix mixtures 
 
Analyzing data in Table 4 one observes that for statistical mixtures the 

experimental values are closer to analytical data computed with Lichtenecker-Rother, and 
to the numerical ones computed with M1. For matrix mixtures, the best concordance is 
between Sillars analytical results and numerical values computed with M2. 

For statistic mixture, one can also see that the relative error between values 
computed with M1 and Lichtenecker-Rother formula decreases  as the volume 
fraction increases, up to q = 0.156. The relative error between the numerical 
methods M1 and M2, but also between M1 and experimental values are rising as 
the volume fraction increases, but the maximum error remains below 2.5 %. 

For matrix mixtures, the relative error between M1 and Silars increases with 
the volume fraction up to q = 0.2, but then decreases for higher values of q. 

For statistical mixtures, the values of the effective permittivity, computed 
numerically using FEM (with both methods M1 and M2), are quite close to those 
measured experimentally. The differences that one can notice are explained mainly 
by the numerical computation errors (due to the mesh of the computation domain 
or the number of steps taken for solving the system of equation). Some 
experimental hazards can also be considered, such as a poor accuracy of preparing 
the mixture samples (including clusters of impurities or air inclusions in the 
dielectric mixture, etc.). 

5. CONCLUSIONS 

One can conclude that in binary dielectric mixtures, the influence factors 
considered (shape, size and inclusions orientation in the electric field) do not 
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change significantly the values of the effective permittivity. Among the numerical 
computation methods, M1 gives results in good agreement with analytical ones. 
For statistical mixtures, the permittivities computed with Lichtenecker-Rother`s 
formula are close to those computed with the method M1 and those measured on 
glass/epoxy resin mixtures. For matrix mixtures, the values of the effective 
permittivity computed with Sillars formula agree with those computed by 
method M2. 

For statistic mixtures, the relative errors between numerical data (M1) and 
analytical values computed with Lichtenecker-Rother formula do not exceed 0.2 %. 
For matrix mixtures, the error between M1 and Silars is larger, reaching a 
maximum for q = 0.2 (7.708 %). 
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