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The paper presents an original contribution related to the implementation of a neural network artificial intelligence (AI) technique
through Matlab environment, on the study of induced AC voltage in the underground metallic pipeline, due to nearby high voltage grids.
The advantage yields in a simplified computation model compared to FEM, and implicitly a lower computational time. In comparison
with other neural network solutions identified in the literature, where the induced AC potential is directly evaluated, the authors of this
paper propose a new neural network solution to evaluate MVP on the studied domain, using a larger training database for a large panel
of different geometries.
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I. INTRODUCTION

C URRENTLY, to reduce construction costs of underground
metallic pipelines (designed to transport liquid or gaseous

substances like oil, water, gas, etc.) they are placed in the same
distribution corridor as power system transmission lines. Due to
electromagnetic interference between high voltage (HV) power
lines (PL) and these metallic pipelines (MP), induced AC po-
tentials will appear. This AC voltage may be dangerous on both
the operating personal and on the structural integrity of MP, last
due to corrosive effects of the induced current [1]

Usually the electromagnetic interference problems are
studied with the finite element method (FEM). In order for this
method to be applied on electromagnetic interference prob-
lems, it is known that it requires expensive computation time,
because a new mesh is required for each construction geometry
considered. Therefore, it may be of interest a scaling method
of the results from one configuration case to another, so as to
provide a lower computational time. [2], [3] Thus, an artificial
intelligence based method is presented with emphasize on the
input variables and on the architecture of the neural network.

II. ELECTROMAGNETIC INTERFERENCE PROBLEM

We proposed the evaluation of the magnetic vector potential
(MVP) on the surface of MP, where the geometry of the electro-
magnetic interference problem (HVPL and sky wires) is the one
presented in [1]. The calculated MVP will be used to determine
the induced AC potential in the metallic pipeline.

Fig. 1 shows the cross section of the HVPL-MP common dis-
tribution corridor. The problem refers to a buried metallic gas
pipeline which shares for 25 [km] the same distribution corridor
with a 145 kV/50 [Hz] frequency HVPL. The transmission line
consists in HAWK ACSR conductors and two 4 mm radius sky
wires.

End effects are neglected for the inductive interference calcu-
lations, therefore leading to a two dimensional problem.
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Fig. 1. Cross section of the system under investigation.

Fig. 2. Implementation and training of the proposed NN.

The HVPL-MP system is represented by a two dimensional
problem, which depends on the separation distance , soil resis-
tivity and coordinates of the point where the MVP has
to be determined. The previous assumption leads to a linear two-
dimensional electromagnetic diffusion problem, for the -direc-
tion components of MVP and the total current density vector.

Thus, taking into account the cross section of the studied
problem, the -direction component of the magnetic vector po-
tential and of the total current density are described by
the following equation system:

(1)

0018-9464/$26.00 © 2011 IEEE



MICU et al.: LAYER RECURRENT NEURAL NETWORK SOLUTION FOR AN ELECTROMAGNETIC INTERFERENCE PROBLEM 1411

where is the conductivity, is the angular frequency, is
the magnetic permeability of free space, is the relative per-
meability of the environment, is the source current density
in the -direction and is the imposed current on conductor of

cross section. MVP values in every node of the mesh, as well
as the unknown current density sources are calculated using the
matrix equation solution [1].

Assuming a homogeneous Dirichlet boundary condition for
the MVP, far away from the system that encloses all the flowing
currents, a square with 10 [km] side is set as the total solution
domain for the problem. A local error estimator, based on the
discontinuity of the instantaneous tangential components of the
magnetic field, has been chosen as in [4] for an iteratively adap-
tive mesh generation.

Bundled conductors are treated as a single conductor of ar-
bitrary shape, by assigning the same material proprieties to all
conductors in the bundle.

III. NEURAL NETWORK SOLUTION

In comparison with the neural network proposed in [2] and
[3], the authors of this paper approach a neural network to cal-
culate the MVP on the studied domain, using a larger training
database, in order to obtain more accurate results. The induced
voltage is not computed directly, but through MVP.

To gain solutions with a higher accuracy in a shorter training
time and with fewer training data, we proposed two different
layer recurrent NN, one to calculate the magnitude and the other
to calculate the phase of MVP. We chose a layer recurrent NN to
obtain a better correlation between the input data and the desired
output data through the training process, because these neural
networks have the propriety that all the neurons expect that the
ones from the output layer take as input value their own output.

These two NN have as input values the four basic parameters
which describe the presented 2D problem: the separation dis-
tance between HVPL and MP; the resistivity of the earth; ,

coordinates of the point where we wish to compute the MVP.
For each of the two neural networks, a two layers architecture

was implemented (an output and a hidden layer). For the hidden
layer, 20 neurons were used with a hyperbolic tangent transfer
function. For the output layer, we used a neuron with linear
transfer function. The number of the neurons on the hidden
layer and the used transfer function were determined experimen-
tally by implementing and testing different NN architectures.
The two proposed NN were implemented using the graphical
user interface (GUI) of the Neural Network toolbox in MatLab
software.

To train the two proposed NN, we used the solutions given
in Table I and obtained with FEM in [5] for different problem
geometries. The training time was around 20 to 30 seconds in
each case, on a T6400 Intel Core2 Duo processor PC, with a 64
bit operating system, and 4 GB RAM memory.

After training the two neural networks, we verified the pro-
vided solutions by comparing the results obtained through the
neural network method, with the ones provided in [5] by FEM
computation. The comparison was done for the training data set
and also for a different testing data set in Table II.

The results are presented in graphical form of the absolute de-
viation between the solutions given by the implemented neural
networks and those provided by FEM, in Figs. 3–6.

TABLE I
DATA BASE USED to Train THE NEURAL NETWORKS

TABLE II
DATA BASE USED to Test THE NEURAL NETWORKS

Fig. 3. Absolute deviation of magnitude for the training data.
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Fig. 4. Absolute deviation of phase for the training data.

Fig. 5. Absolute deviation of magnitude for the testing data.

Fig. 6. Absolute deviation of phase for the testing data.

From Figs. 3 and 4, one can observe that for the training data,
the yielded NN solution provides accurate numerical values, re-
flected in the absolute deviation, the difference from the FEM
results being insignificant.

For the testing data, the absolute deviation between the NN
and FEM results in a higher difference than the previous one, but
it is still small enough, so as to be neglected (deviation values
under 3.5e-05 [Wb/m] for the magnitude and under 4 degrees
for the phase).

IV. INDUCED VOLTAGES

To evaluate the induced voltage in the underground metallic
pipeline, we used an equivalent electrical circuit model with
concentrated elements, with the self and mutual inductances
being calculated by classical formulation.

The magnetic vector potential determined with the proposed
neural networks on the surface of the metallic structures, which
compose the studied problem, is used to evaluate the self and
mutual inductances between these metallic components through
relations (2) and (3) presented in detail in [1]. If a certain base
fault current is imposed on the faulted phase, for example

, with the pipeline current set equal to zero, the
mutual inductance on the pipeline will be:

(2)

TABLE III
SELF INDUCTANCES FOR A CASE WITH � � �� ��� AND � � ���� �	��

TABLE IV
SELF INDUCTANCES FOR A CASE WITH � � 
�� ��� AND � � ��� �	��

where is the MVP on the surface of the pipeline and is
the length of the pipeline.

In order to evaluate the self inductance of the pipeline, the
same methodology is followed, except that now we impose a
zero fault current and a base current on the pipeline, for
example :

(3)

Applying a permutation of the fault current on each of the
phases, by the exposed relations one can determine the mutual
inductances between the faulted phase conductor and the MP.
Assuming that the geometry of the system and the magnetic
properties of both the pipeline and the phase conductor remain
constant, the self and mutual inductances per unit length of all
sections are equal.

Table III shows the results obtained for the self inductances
per unit length of the studied system, with the metallic compo-
nents separated by a distance of 30 [m] (between HVPL and
MP), and an earth resistivity of 1000 .

For comparison, Table IV presents the results obtained for the
self inductances per unit length of the studied system of metallic
components for a 500 [m] distance between HVPL and MP, and
an 100 earth resistivity.

Having computed the impedances of the problem, a general-
ized equivalent circuit is constructed, as shown in Fig. 7.

Although it is not shown in this figure, the coupling between
all conductors is taken into consideration. In the circuit rep-
resentation, the ground wires are replaced with an equivalent
metallic return path. In order to account for the fact that the
pipeline coating is not perfect, (i.e. it has insulation defects), the
pipeline is modeled in sections utilizing a series of grounding-
leakage resistances. These resistances may also represent reg-
ular groundings used as a mitigation procedure, mainly ground
or polarization cells. The equivalent electrical circuit can be
solved based on standard methods from electrical circuit theory.

V. RESULTS

Solving the equivalent electrical circuit model attached to the
studied geometrical configurations for the self and mutual im-
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Fig. 7. Equivalent electrical circuit model for the investigated problem.

Fig. 8. Induced AC potential (� � �� ��� and � � ��� �	��).

Fig. 9. Induced AC potential (� � �� ��� and � � ���� �	��).

Fig. 10. Induced AC potential (� � 
�� ��� and � � ��� �	��).

pedances evaluated with MVP, which were determined on the
surface of the system metallic components using the proposed
neural network solution, the induced AC voltage can finally be
calculated.

Fig. 8 presents the induced AC voltage in the underground
metallic pipeline for a 30 [m] distance between HVPL and MP,
and an 100 earth resistivity.

One can observe that some high values for the induced
voltage are obtained at both ends of the pipeline, which was

expected due the fact that the pipeline is separated from the rest
of the pipeline grid by two isolating junctions placed at its ends.

In Fig. 9 and 10 we present the induced AC voltages in the
underground metallic pipeline for the two studied cases (

, ) and respectively ( ,
), in comparison with the results from Fig. 8.

From Figs. 9 and 10, one can observe that the separation dis-
tance between HVPL and ML has a greater influence on the in-
duced AC voltage in the underground metallic pipeline than the
earth resistivity.

VI. CONCLUSIONS

From the results exposed in Figs. 3–6, one can see that ab-
solute deviation of the solutions provided by the implemented
NN, as to those provided by FEM, is almost insignificant for the
training input data and somewhat higher, but still negligible for
the testing input data.

The evaluation of the MPV for different geometrical configu-
rations using neural networks proves to be a very effective tech-
nique, especially if we take into account the fact that the solu-
tions provided by neural networks are obtained instantaneously,
therefore reducing the computation time required by FEM.

Our contribution consists of implementing and effectively
testing neural network AI technique (using MatLab software) to
the study of the induced AC voltage in the underground metallic
pipeline for different constructive geometries of the proposed
problem.

In comparison with the neural network solution from [2] and
[3], where the induced AC potential is directly evaluated, the
authors of this paper propose a new neural network solution to
evaluate MVP on the studied domain, using a larger training
database for several different geometries.

The advantage consists in lower computational time, on a
simplified calculus structure, with only a few input data. The
intermediate results may also be used in other calculation. Af-
terwards, with a classical equivalent circuit, the final results may
be obtained and verified.
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