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This paper presents a new type of tubular electrical machine with a modular construction. The structure of the machine, concerning
its construction, is discussed in the first part of the paper. A semi-analytical method based on the magnetic equivalent circuit calculation
is used in order to obtain the flux densities in different parts of the iron core of the machine. A Gauss elimination procedure is applied
to the system of linear equations resulted from the magnetic equivalent circuit, in order to express the flux in the air gap. The problem
of optimization of the traction force is analyzed. The maximization of the function is handled with the Nonlinear Conjugate Gradient
method and verified with a Gauss Newton algorithm. An application of the presented theory shows the usefulness of this approach.
The results provided by the optimization method applied on a designed tubular machine illustrate its advantages. A numerical analysis
performed on both a designed and then optimized structure confirmed the results obtained in the optimization process.

Index Terms—Electromagnetic force, gradient method, magnetic circuit, numerical analysis, tubular linear machine.

I. INTRODUCTION

T HE demand for linear servo-controlled high-speed actu-
ation, with high precision and a high bandwidth, has in-

creased considerably in the past years [1]. One of the main ad-
vantages of the linear electromagnetic machines over their ro-
tary-to-linear counterparts is the absence of mechanical gears
and transmission systems, which offers higher performance and
improved reliability [1]. Hence, electrical machines with linear
movement have become more important in common applica-
tions such as healthcare [2], [3], transportation [4], [5], and var-
ious electrical drives [6].
Linear structures present two topologies: flat-type or tubular.

The most important shortcoming of the linear machines with a
single-sided flat-type structure is the existence of a significant
thrust force between the two armatures [7]. This disadvantage
is avoided due to the radial symmetry of the tubular machines
or the double-sided flat-type structures which determines the
compensation of all the thrust forces acting around the circum-
ference of the air gap. The double sided structures require so-
phisticated double linear guidance systems, which have to pre-
cisely assure the two constant air gaps and also to guide later-
ally the moving armature together with the stators. On the other
hand tubular linear motors need only much simpler linear ball
or sleeve bearings. Extended researches have been conducted
on flat-type or tubular linear structures with permanent mag-
nets (PM) [8]–[10]. Despite their very good performances (high
power and force densities, servo characteristics, efficiency) the
drawbacks of such machines, such as the complex manufac-
turing and high costs must also be considered [7]. Hence, dif-
ferent types of linear machines without permanent magnets (es-
pecially those with variable reluctance) can be seen as alterna-
tive solutions for different applications. In a former study on
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tubular linear reluctance motors, several advantages of tubular
variable reluctance machines have been demonstrated [9]. An
interesting application of such a machine driving a pump for
the circulatory heart assistance is reported in [2].
In this paper, a tubular machine with a modular construction

is proposed. The machine under study originated from the linear
transverse flux reluctance machine with a modular construction.
In [12] a flat-type linear transverse flux motor with PM was pre-
sented. A simpler structure, without PM, but with similar per-
formances, was analyzed in [13]. In [14] the general structure of
the tubular linear transverse flux reluctance machine has been
studied. An extended numerical analysis of the tubular motor
mentioned above was given in [15]. A comparison between
the flat type and tubular transverse flux reluctance machines,
showing their fault tolerant capacity and the similarities of the
two structures, was presented in [16]. In [17], the technologies
used for the construction of this tubular motor and the basic
concepts concerning the control of the motor were presented.
A prototype of the tubular machine was analyzed and experi-
mental tests were performed in [18]. This paper is focused on
the development of an optimized design of the studied tubular
machine. The optimization process is based on the maximiza-
tion of the traction force under the assumption that the volume
of the machine remains unchanged.
The modular tubular transverse flux reluctance machine

(MTTFRM) operates on the variable reluctance principle and
belongs to the transverse flux machine class. The machine is
without PM, only with electromagnetic excitation on the stator
and passive mover. Its modular construction is presented in
the following sections. A particular feature of both the stator
and the mover of the machine is the use of magnetic pieces
alternating with non-magnetic spacers.
A semi-analytical analysis, based on the magnetic equiva-

lent circuit, is the foundation of the optimization procedure ap-
plied for this machine. The force is computed similarly as is in
the case of other devices operating on the variable reluctance
principle [7]. The optimization procedure is performed in order
to obtain the maximum traction force. An optimal solution of
the objective function can be found using the direction of its
gradient. In order to distinguish between the minimum or the
maximum of a function, the matrix of second derivatives has to
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Fig. 1. The structure of the iron core of the proposed MTTFRM.

be investigated. Newton methods, as well as gradient methods
are the classical approach when dealing with this type of prob-
lems. Features like search directions and global convergence are
two main aspects of the optimization [19]. Conjugate gradient
methods include a large number of optimization algorithms with
strong local and global convergence properties [20], [21]. Two
geometric parameters of the machine that influence in different
ways the values of the force are considered as variables. The al-
gorithm is applied in order to maximize the force developed in
the machine when the exterior dimensions, the length and the
exterior diameter, are kept constant.
The results of the numerical analysis performed on a designed

and optimized variant are in good agreement with the values
obtained from the optimization procedure.

II. TRANSVERSE FLUX VARIABLE RELUCTANCE MACHINE

Despite being an old idea, the transverse flux topology was
used again at the beginning of the 1980’s. Most of the studies
focused on the rotary transverse flux machines as the attention
paid to the linear variants was much smaller [22].

A. Structure of the Machine

A tubular transverse flux reluctance machine with a modular
construction has been studied here. The iron core of the machine
is presented in Fig. 1 [14].
In order to have a continuous movement, the minimum

number of required stator phases is three [15]. A phase of
the stator of the MTTFRM consists of magnetic pieces,
defined as modules or teeth on the axial direction of movement,
separated by non-magnetic pieces, named spacers, Fig. 2. Each
module of the stator has the poles and slots similar to the
structure of the classic SRM stator, Fig. 3(a) [23]. The mover
is passive, and consists of simple cylindrical magnetic pieces,
forming the teeth of the mover, alternating with non-magnetic
spacers. The magnetic pieces of both the stator and the mover
can be made either from laminations or from soft magnetic
composites (SMC).
The sum of the axial length of a tooth ( on the stator, on

themover) and of a spacer ( on the stator and on themover)
is the tooth pitch , Fig. 2. The pole pitch of the stator and mover

Fig. 2. Longitudinal cross-section view of the proposed MTTFRM.

Fig. 3. (a) Transversal section view of the proposed MTTFRM; (b) detail of
half of the magnetic piece: (1)—circumferential line in the air gap, (2)—line in
radial direction.

must be the same. Furthermore, in [24] it was demonstrated that
for such variable reluctance linear machines the maximum force
is obtained when the axial lengths of the tooth of the stator and
mover are the same . Hence, in all future considerations
we will take into account this hypothesis.
In order to work properly as a motor, the modules of the stator

phases have to be shifted by . This shifting is secured
by non-magnetic spacers like the ones used between the stator
modules, but with adequate axial length, Fig. 2. The step size of
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the motor is given by the ratio of the tooth pitch and the number
of phases.
The windings from the stator are obtained by connecting the

coils of the module of the stator either in series or parallel. The
parallel connection has the advantage because one is obtaining
a fault tolerant structure. Concentrated coils around each pole of
the module are used for the construction of a module winding,
Fig. 3(a) [14].
When energizing a phase of the modules unaligned with the

corresponding mover magnetic pieces, Fig. 2—phases or ,
these tend to align with the stator modules. Thus, only the wind-
ings of a single phase have the power supplied during a period,
meaning that only the modules of this phase generate traction
force [14]. The total force is proportional to the number of mod-
ules of a phase and the number of poles of a module. From these
reasons the design procedure is focused on obtaining the geo-
metric and electric dimensions of a single module for an im-
posed traction force [25].
The advantages of this topology, in comparison with similar

tubular structures, with or without PM, are:
a) the modular structure gives the possibility of an easy as-
sembly of the component parts and allows to increase the
force by adding supplementary modules, limited by the
imposed length of the machine.

b) simpler structure of the machine and the low cost of its
production;

c) the use of spacers that allows reducing the mass;
One of the main shortcomings of the MTTFRM is, like in

the case of other transverse flux machines, the high value of the
leakage fluxes.

B. Analytical Analysis

The analytical computation has taken into account that the
developed force for any linear variable reluctance machine is
given by the variation of the magnetic energy in the air gap
versus the linear displacement, as expressed in (1) [25]. Con-
sidering the air-gap magnetic energy as in (2) and the air-gap
volume on the circumference for a phase, as in (3), the force
can be defined as (4):

(1)

(2)

(3)

(4)

where is the interior radius in the air gap, is the stator
pole angle, is the air-gap length, is the shaft radius, as in
Fig. 3(a), , represent the magnetic energy stored in the
air gap for the final and the initial conditions respectively;
is the final, respectively the initial axial coordinate, are
the values of the air-gap magnetic flux density in two consecu-
tive positions and is the magnetic permeability in the air gap.
This equation gives accurate results only for small differences
between and .

Fig. 4. The reluctance network of a module and the corresponding magnetic
part from the mover of the MTTFRM.

The magneto-motive force (mmf) is a function of the air
gap and the flux density in the air gap [23].

(5)

where is the value of the air-gap magnetic flux density in
the aligned position having the value imposed at the start of the
design procedure, and is the saturation factor [25]. Details
about this algorithm can be found in [15].
The results of the design algorithms were verified first semi-

analytically by using the magnetic equivalent circuit (MEC) of
a module of MTTFRM and the corresponding mover magnetic
piece [26]. The first step in obtaining the magnetic equivalent
circuit is to create the reluctance network corresponding to the
flux tubes flowing in directions perpendicular to the machine
axis, Fig. 4. This is based on the plausible assumption that al-
most all the fluxes flow in radial direction because the axial teeth
of both the stator and the mover are separated by non-magnetic
pieces. The only flux in axial direction is given by a part of the
leakage fluxes around the coils.
The value of is obtained in the design process with (5).

The reluctances: of the yoke , pole , air-gap and
mover are computed (6) using the geometric dimensions
(stator inner and outer radius, stator pole height, stator pole
angle, axial length of a tooth, shaft radius, air gap) that resulted
from the design procedure and the relative magnetic perme-
ability of the iron core material. The leakage reluctances
and are defined considering the paths in the air of the
leakage fluxes round the coils and between two neighboring
poles, respectively [23]. All the geometric dimensions are rep-
resented in Figs. 2 and 3. The dimensions that were used are
related to some other geometric dimensions such as: —the
insulation between the coil and the iron core, —distance
between two neighbored coils, —the medium thickness of
a coil, —the Rogowski coefficient. The most difficult task
is to express the reluctances of the mover and the leakages,
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Fig. 5. Magnetization curve of the material used for the construction of the
magnetic pieces.

mainly due to the necessity of making some approximations of
the length of the flux paths and the active magnetic surface.

(6)
The expression of the reluctance of the air gap depends on

the relative position of the two armatures. Hence, by solving the
equations of the magnetic equivalent circuit, different values of
the fluxes, and consequently of the force, shall be obtained for
each displacement step of the mover with respect to the stator.
The values of the relative magnetic permeability in different

parts of the magnetic circuit were computed based on the mag-
netization curve of the magnetic material used for the magnetic
pieces of the machine, given in Fig. 5.
Some of the semi-analytical analyses based onMEC take into

account the saturation in different parts of the circuit [27]. In
this case, based on a simplifying assumption presented below,
the flux densities in different parts of the iron core are computed
without neglecting the saturation level that arises.
By considering that variable reluctance machines usually

have a saturated iron core [28], one can apply this concept to
MTTFRM as well. In [14], [15] authors show that the variation

of flux density from the center to the exterior of the machine,
Fig. 3(c), proves that the poles are highly saturated, while the
yoke and the mover are unsaturated. The situation leads to
minor changes in different relative positions of the two arma-
tures. Hence, it can be said that the values of the flux densities
in different parts of the iron core of the machine are found
on linear parts of the magnetization curve of the magnetic
material. Therefore the magnetic permeability in the pole, yoke
and mover respectively can be considered constant; and hence
the corresponding reluctances can be easily computed.
Due to the necessity to take into consideration the influence

of each pole on its neighbors, the resulting magnetic equivalent
circuit is rather complex, Fig. 6.
In order to compute the flux density values in different parts

of the machine, one must solve the system of equations asso-
ciated with this magnetic equivalent circuit. These equations
were obtained by applying the Kirchhoff’s laws to the magnetic
equivalent circuit.
The variables in the linear system of equations defined above

are the fluxes: through the air-gap , through the poles ,
through yoke , through mover and the leakage ones
and .

(7)

The flux density in the air-gap , which is the ratio between
the flux through the air-gap and the air-gap surface, can be
expressed analytically, as a function of the mmf and of the
reluctances in the circuit. Generally, this can be developed as
the function of the mmf, geometric dimensions and magnetic
permeability in various parts of the machine. The expression
for was computed from (7) by means of a Gauss elimination
technique.
By computing the traction force with (4), where the fluxes

in two consecutive positions were obtained from (8), shown at
the bottom of the page, resulted in the general expression of the
medium value of the force over a certain interval. The precision
of the estimated force increases as the considered interval is
smaller.

C. Application

The main parameters of a designed MTTFRM are given in
Table I. Steel 111 XC was used for the construction of the iron
core.
The computed values of the flux densities in different parts

of the machine for the aligned position of the armatures using
MEC are given in Table II.
The maximum force computed by using (4) is 165.43 N. This

value can be maximized, considering the exterior dimensions

(8)
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Fig. 6. Magnetic equivalent circuit of a module and the corresponding magnetic part from the mover of the MTTFRM.

TABLE I
IMPOSED AND COMPUTED VALUES AT THE DESIGNED MTTFRM

constant and by applying the optimization procedures that will
be described in the next section.

D. Numerical Analysis

The performances of electromagnetic devices can be verified
by means of numeric computation (the finite element method
FEM). The commercial package Flux 3D is used.

TABLE II
VALUES OF THE FLUX DENSITY IN DIFFERENT PARTS OF THE MTTFRM

OBTAINED FROM ANALYTICAL ANALYSIS IN ALIGNED POSITION

The numerical analysis was focused on the flux density
distribution and the force developed in the machine. Although
2D analysis would be much simpler, requiring a less complex
model, less time and less computer resources, the structure of
the MTTFRM can be modeled only by using a 3D analysis
[22]. This is due to the flux paths that are perpendicular to
the direction of movement. The software gives the possibility
to construct a parameterized geometry of the model. In the
numerical analysis, performed in the ‘magneto-static’ module
of Flux 3D, a displacement step of 0.5 mm between the relative
positions of the two armatures was considered. These are the
same conditions like those considered in the semi-analytical
analysis where we have obtained different values of the force
for each relative position of the mover with respect to the stator.
Two major issues must be considered when creating the anal-

ysis model. As mentioned in previous sections and underlined
by formula (4), the force is proportional to the number of mod-
ules of a phase and the number of poles of a module. By taking
into consideration the radial symmetry of theMTTFRM, the nu-
merical model can be reduced to a single pole of a stator module,
the neighboring slots and the corresponding mover part, Fig. 7.
The total force was calculated as being equal to the product

between the value obtained in the simulation, the number of
poles of a module and the number of modules of a phase. For
this machine the multiplying factor is 12.
The mesh of the model, Fig. 8, had 107,464 nodes and

633,783 volume elements. The percentage of excellent quality
elements was 63.37%, while the percentage of poor quality
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Fig. 7. 3D model of the MTTFRM created for the numerical analysis (the coil
wound on the pole is not shown).

Fig. 8. Mesh of the 3D model of the analyzed MTTFRM.

Fig. 9. Flux density map in the pole of a module and the corresponding stator
yoke and mover part in the aligned position.

elements was 0.59%. These values assured fairly accurate
results.
The flux density map in the structure is presented in Fig. 9.

The plots confirm that the pole was saturated, while the yoke
and the mover had the flux density values significantly reduced.
The flux density in the air gap evidences a good accordance

with the semi-analytical analysis, Fig. 10. The variation was
obtained on line (1) presented in Fig. 3(b). The maximum flux
density in the aligned position was 1.27 T, which is in close
agreement to the imposed value.
The magnetic permeability had small variations in the pole,

yoke and mover respectively function of the displacement of the
mobile armature with respect to the stator, as mentioned in the
previous paragraphs of this section. This statement is supported
by variation of the flux density in the radial direction, from the
center to the exterior of the machine.

Fig. 10. Air-gap flux density variation in the aligned position.

Fig. 11. Flux density distribution in the machine in radial direction (from center
to exterior) for different shifting between the two armatures.

The variation of the flux density plotted on line (2) given in
Fig. 3(b), for various relative positions of the two armatures, is
presented in Fig. 11.
The maximum force obtained for the designed machine was

174.13 N. The difference between this value and the one ob-
tained by the semi-analytical analysis is 6%. The obtained vari-
ation of the force shall be presented in the next section in com-
parison with the one obtained on the optimized structure.
The maximum force density of the designed MTTFRM has

been obtained for the intermittent functioning service (S3), at a
relative time of operation of 40%. A maximum value of 2.3 10
N/m was obtained from the numerical analysis. In [18], the
motor operating in the continuous functioning service (S1) was
analyzed. The maximum force density resulted from the numer-
ical analysis was N/m , while the experimental tests
had led to a value of N/m . A relatively good agree-
ment between the numerical analysis and experimental results
has been found.
These results demonstrate the potential of this low-cost, easy

to build machine. From this point of view, the MTTFRM is
prefered to the tubular machine with linear interior permanent
magnets (TL-IPM), where the force density can be up to
N/m or to the tubular linear surface-mounted PM (TL-SPM)
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motors where values of N/m have been determined
[29].

III. OPTIMIZATION PROBLEM

The goal of the optimization procedure was to obtain a max-
imized value for the traction force under the assumption that all
the exterior geometric dimensions, as well as the stator inner
radius, were kept constant. The traction force is in fact an elec-
tromagnetic force. Due to this aspect, in this case, the use of the
term electromagnetic force was more appropriate.
The expression of the force evidenced that some of the geo-

metric parameters, like the axial length of a tooth (module),
greatly influence its value. The variation of the force for this
type of machine on half of the pole pitch is almost sinusoidal
[7], [28].
The problem of maximizing the value of the electromagnetic

force obtained with (4) was subjected to an optimization pro-
cedure. The expression for the force is nonlinear and therefore
adequate nonlinear methods were used in order to perform the
optimization of the machine with respect to its geometrical di-
mensions. The force formula (4) was rewritten in terms of the
optimization parameters (the axial length of a tooth and the shaft
radius) (9).

(9)

The fluxes through the air-gap in two consecutive positions,
and , were computed with (9). and were the

active surfaces of the air-gap in the considered positions.
In order to optimize the value of the developed force in

a preset interval, certain relative positions of the mover to
the stator must be considered. Consequently, we obtained an
overdetermined nonlinear system with three equations and
one unknown . The method of nonlinear least squares
is the classical approach when dealing with a parameterized
application [30].
A nonlinear overdetermined system of equations can be

written:

(10)

where . Solving a nonlinear system where multiple so-
lutions exist is complicated and has high computational com-
plexity [31].
The aim was to find the vector of the unknown parameters

such that the function fits best the given data, i.e., the objective
function is maximized. This occurs when the gradient of
is equal to zero.
The solution of the optimal parameters can be found by

solving the normal equations:

(11)

Fig. 12. Flowchart of the optimization process.

where is the Jacobian matrix, while is the transpose matrix
of and is the residual vector.
These equations can be solved using various matrix decom-

positions like the Cholesky decomposition, LU factorization or
the Newtonmethods [32]. The result is obtained iteratively, with
values refined by successive approximations:

(12)

Because most of those algorithms proceed by minimizing the
objective function, the maximization problem proposed in this
section, can easily be adapted by minimizing . The stan-
dard way of solving a nonlinear problem is by the iteration of
a linearized problem. In this case, the nonlinearity was handled
with two different optimization algorithms: the Newton-Gauss
and the Nonlinear Conjugate Gradient method (NCG) [33].
The Nonlinear Conjugate Gradient method is an optimization

technique that uses the gradient to find the minimum of a non-
linear function and has low memory requirements [34]. It has
been successfully applied for the optimization of fuel consump-
tion in engine industry [35]. A flowchart of the method was con-
ceived in order to present the basic steps, Fig. 12.
Using a sequence of conjugate directions, the optimal loca-

tion was found by successive approximations:

(14)

where is the vector of the optimization parameters, and the
steplength, , was refined at each iteration by applying an exact
line search technique, ( was chosen so that the function

is minimized). Setting the gradient of the function to
zero, the steplength was determined using the Newton-Raphson
method:

(15)

The iterative Newton-Raphson algorithm relies on the Taylor
approximation and requires the second derivative of
with respect to .
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Fig. 13. NCG implemented algorithm.

Setting the first descent direction as the negative of the gra-
dient and computing the first two iterations, the NCG algorithm
implemented in Mathcad 14.0 is given in Fig. 13.
With Gradwe denoted the gradient of the objective function

and parameter was computed according to the Polak-Ribiere
formula that often converges faster than the Fletcher-Reeves
[36]. was the error tolerance imposed for the NCG, [37].
The second derivative, encountered in formula, also known

as the Hessian matrix, can be nearly singular in some cases and
difficult to invert. In order to improve the conditioning number
and speed-up convergence, different methods of precondi-
tioning can be used [38]. Due to the fact that the present NCG
algorithm was fast convergent and that the second derivative
was non-singular in the preset interval, the preconditioning of
the Hessian matrix was not needed [20].
The validation of the results was done with the regularized

Newton-Gauss formula as described in [38]. The solution was
found by successive approximations of the iterative expression:

(16)

where is a regularization parameter greater than zero and is
the identity matrix.
If an extension of the interval needs to be considered then a

neural network analysis can be performed, starting from a set of
optimized values [39].

IV. OPTIMIZATION OF THE DESIGNED MTTFRM

A. Analytical Analysis

In order to obtain the maximum value of the electromagnetic
force, the axial length of the tooth is varied keeping the value
of the tooth pitch constant. The force is computed for six dif-
ferent relative positions of the mover with respect to the stator.
The starting point was with the teeth of a stator phase aligned
with the mover ones and the last point is considered to be their
misaligned position, Fig. 2, in lateral phases. The interval of
the axial length of a tooth is given by the geometrical limita-
tions. Starting from a value of 3.5 mm, can be extended up to

Fig. 14. Convergent process for the optimization algorithm.

5.5 mm. The shifting between the stator teeth of a phase, mis-
aligned with the mover teeth, was 3.3 mm. In (4), the step of
two consecutive magnetic flux density values, chosen to be of
the same order of magnitude as the air-gap, was set to 0.5 mm. A
smaller value for the step did not induce a significant change for
the values of the force. A relative error of resulted.
Therefore, the following computations used 0.5 mm for the step
between two consecutive forces. The value of obtained with
a NCG error tolerance of , corresponding to the maximum
value of the electromagnetic force, was 3.925 mm. Fig. 14 de-
picts the convergence process of the method.
It can be noticed that the NCG convergence was achieved in

several steps. The optimal solution was been found in 2 m 56 s
after eight iterations. The algorithm proved to be convergent
even if the initial value was far from the optimum.
Theminimization of the objective function with NCGmethod

is presented in Fig. 15.
Therefore, it can be concluded that the solution found with

the NCG method on the a priori given interval is a global min-
imum [32]. The result attained with the Newton-Gauss algo-
rithm yielded to a value of 3.954 mm. For this value the force is
190.35 N, which is an increase of 15% with respect to the force
developed for the initial MTTFRM configuration.
When the optimization considered two variables, slightly dif-

ferent results were found. A second analysis with and as
the optimization parameters was carried out. The values of
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Fig. 15. The minimization of the objective function using NCG method.

Fig. 16. Force variation on half of the pole pitch for various lengths of the axial
tooth obtained from numerical analysis.

were considered to be between 6 and 14 mm. An optimum so-
lution was found when is 11.2 mm. The resulting value
was 3.871 mm. The electromagnetic force was 193.91 N. The
difference between the optimization with one and two parame-
ters was less than 1%.

B. Numerical Analysis

In the numerical analysis, in order to obtain the maximum
value of the developed force an interval between 3.5 and 5.5
mm, with a step of 0.25 mm, was considered for the value of
the axial length of a tooth, Fig. 16. The major shortcoming en-
countered in this analysis was the fact that the optimal value,
which corresponds to the maximum force, is usually skipped
due to the practical impossibility of taking into account all the
values in the considered interval.
A numerical analysis can provide only the interval where the

maximum force can be found. The maximum value of the force
was obtained for different shifting of the teeth of the two ar-
matures when different values of the axial length of a tooth
were considered.When this value was increased due to a smaller
shifting between the teeth, a lower force resulted.
The maximum value of the force was obtained for an axial

length of the tooth of 3.75 mm and it was 202.2 N. A difference
of 15.9% with respect to the initial designed variant resulted.
A conclusion of this numerical analysis is that the maximum
value of the electromagnetic force can be obtained for a value
of between 3.75 mm and 4 mm.

Fig. 17. Force variation on half of the pole pitch for the initial and optimized
machine obtained from numerical analysis.

The optimization procedure developed with the NCG algo-
rithm gave a value of 3.925 mm for the axial length of the teeth;
this value corresponds to the maximum force [40]. A numer-
ical analysis was carried out in this situation as well. In Fig. 17
a comparison of the forces between the initial and optimized
design is presented. The maximum force developed by the op-
timized MTTFRM was 204.66 N and represents an increase of
17.5% with respect to the value obtained from numerical anal-
ysis for the initial variant. A small difference between the force
values of the analytical optimization and the numerical anal-
ysis resulted. It is very important to underline that the maximum
value of the force was obtained in both cases for the same axial
length of the tooth.
The value of the axial length of the tooth greatly influenced

the developed force. However, the value of the shaft radius af-
fected only the mover reluctance, so its influence on the perfor-
mance of themachine should be smaller. The numerical analysis
considered values between 6 and 14 mm for the shaft radius,
with a step of 1 mm. The maximum force of 205.3 N was ob-
tained for a shaft radius of 11 mm and it was slightly larger than
for the initial shaft radius. This value was close to that obtained
from the optimization procedure.
The maximum force density of the optimized MTTFRM was

obtained, as in the case of the initial variant, when the motor
would operate in an intermittent functioning service (S3) at a
relative time of operation of 40%. The obtained value of
N/m confirms the increase of force computed by numerical
means.

V. CONCLUSION

The present paper deals with the optimization of a new type
of tubular machine with a modular construction. The basic
concepts of the configuration of the design were presented.
A semi-analytical analysis based on the magnetic equivalent
circuit method was carried out and the results were in a good
agreement with the imposed design data. The developed force
was expressed as a function of the flux densities obtained from
the system of equations associated with the magnetic equiv-
alent circuit. The expression of the force depends on certain
geometric parameters and was subjected to an optimization
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procedure. The nonlinear conjugate gradient algorithm was
used to maximize the electromagnetic force in the MTTFRM.
The machine with the optimized value of the axial length of

the tooth was numerically analyzed using Flux 3D. A satisfac-
tory agreement between the numerical analysis and the values
obtained with NCG resulted.
An optimized MTTFRM is under construction. Further work

is focused on the validation of the numerical optimized results
with experimental data.
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