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Abstract. The paper presents a new technique for extracting symbolic ground
facts out of the sensor data stream in autonomous robots for use under hybrid
control architectures, which comprise a behavior-based and a deliberative part.
The sensor data are used in the form of time series curves of behavior activation
values. Recurring patterns in individual behavior activation curves are aggregated
to well-defined patterns, like edges and levels, called qualitative activations. Sets
of qualitative activations for different behaviors occurring in the same interval
of time are summed to activation gestalts. Sequences of activation gestalts are
used for defining chronicles, the recognition of which establishes evidence for the
validity of ground facts. The approach in general is described, and examples for
a particular behavior-based robot control framework in simulation are presented
and discussed.

1 Background and Overview

There are several good reasons to include a behavior-based component in the control
of an autonomous mobile robot. There are equally good reasons to include in addition
a deliberative component. Having components of both types results in a hybrid control
architecture, intertwining the behavior-based and the deliberative processes that go on
in parallel. Together, they allow the robot to react to the dynamics and unpredictability
of its environment without forgetting the high-level goals to accomplish. Arkin [Ark98,
Ch. 6] presents a detailed argument and surveys hybrid control architectures; the many
working autonomous robots that use hybrid architectures include the Remote Agent
Project [MNPW98,Rem00] as their highest-flying example.

While hybrid, layered control architectures for autonomous robots, such as Saphira
[KMSR97] or 3T [BFG+97] are state of the art, some problems remain that make it
a still complicated task to build a control system for a concrete robot to work on a
concrete task. To quote Arkin [Ark98, p. 207],

the nature of the boundary between deliberation and reactive execution is not
well understood at this time, leading to somewhat arbitrary architectural deci-
sions.

? This work is partially supported by the German Fed. Ministry for Education and Research
(BMBF) in the joint project AgenTec (521-75091-VFG 0005B).

?? On leave from Tech. University of Cluj-Napoca, Romania. The work was supported by a
Roman-Herzog scholarship of the Alexander von Humboldt foundation

cSpringer-Verlag



One of the problems is to keep up-to-date the symbolic world representation for the
deliberative component. There are solutions to important parts of that problem, such as
methods and algorithms for sensor-based localization to reason about future navigation
actions: [FBT99] presents one of the many examples for on-line robot pose determina-
tion based on laser scans. If the purpose of deliberation is supposed to be more general
than navigation, such as action planning or reasoning about action, then the need arises
to sense more generally the recent relevant part of the world state and update its sym-
bolic representation based on these sensor data. We call this representation the current
situation.

The naive version of the update problem “Tell me all that is currently true about
the world!” needs not be solved, luckily, if the goal is to build a concrete robot to
work on a concrete task. Only those facts need updating that, according to the symbolic
domain model used for deliberation, are relevant for the robot to work on its task. Then,
every robot has its sensor horizon, i.e., a border in space and time limiting its sensor
range. The term sensor is understood in a broad sense: It includes technical sensors
like laser scanners, ultra sound transducers, or cameras; but if, for example, the arena
of a delivery robot includes access to the control of an elevator, then a status request
by wireless Ethernet to determine the current location of the elevator cabin is a sensor
action, and the elevator status is permanently within the sensor horizon. We assume:
The world state information within the sensor horizon is sufficient to achieve satisfying
robot performance.

This said, the task of keeping the facts of a situation up-to-date remains to contin-
ually compute from recent sensor data and the previous situation a new version of the
situation as far as it lies within the sensor horizon. The computation is based on plain,
current sensor values as well as histories of situations and sensor readings or aggregates
thereof. Practically, we cannot expect to get accurate situation updates instantly; all we
can do is make the situation update as recent, comprehensive, and accurate as possible.

This paper contributes to this task an approach of using histories of activation values
in behavior-based robot control systems (BBSs) [Mat99] as a main source of informa-
tion for situation update. This approach is useful for three reasons:

– Activation values are calculated anyway in most BBSs to allow for arbitration or
merging between behaviors; they can be used at no additional computation cost,
provided that they are sufficiently fine grained.

– An activation value is grounded in sensor readings and, by definition, evaluates
them in a way tailored to its respective behavior; using activation values like ag-
gregated sensor readings yields automatically an action-centered way of “looking
through the sensors”.

– To have a practical hybrid robot control, the symbolic world model must be in
accord with the inventory of behaviors anyway; using activation value histories in
situation update only makes even more explicit the need to co-design the BBS and
deliberative control components.

Our approach is not in principle limited to a particular combination of deliberation
component and BBS, as long as the BBS is expressed as a dynamical system and in-
volves a looping computation of activation values for the behaviors. Some additional
requirements apply that will be clarified in the paper.



All demo examples are formulated in a concrete BBS framework, namely, Dual
Dynamics (DD, [JC97]), which has also inspired our abstract view of BBSs. Our view
of building hybrid robot controllers involving a BBS as reactive component is shaped by
our work in progress on the DD&P robot control architecture [HJZM98,HS01], which
blends DD controllers with action plans generated by a classical propositional planner
(concretely, IPP [KNHD97]) as the central deliberation component. Mind, however:
The method for fact extraction from activation value histories of BBSs presented here
is potentially applicable in BBS frameworks other than DD, as will be discussed at the
end of the paper.

The rest of this paper is organized as follows. In Sec. 2, we present our approach
of formulating BBSs as dynamical systems and give a detailed example in Sec. 3. To
provide some background concerning complete robot control systems, we then (Sec. 4)
sketch how we assume the deliberation component interferes the BBS control compo-
nent. Sec. 5 contains the technical contribution of the paper, describing in general as
well as by way of example the technique of extracting facts from BBS activation value
histories. Sec. 6 discusses the approach and relates it to the literature. Sec. 7 concludes.

2 BBSs as dynamical systems

We assume a BBS consists of two kinds of behaviors: low-level behaviors (LLBs),
which are directly connected to the robot actuators, and higher-level behaviors (HLBs),
which are connected to LLBs and/or HLBs. Each LLB implements two distinct func-
tions: a target function and an activation function. The target function for the behavior
b provides the reference tb for the robot actuators (”what to do”) as follows:

tb = fb(s
T ; sT

f
; �T

LLB
) (1)

where fb is a nonlinear vector function with one component for each actuator variable,
sT is the vector of all inputs from sensors, sT

f
is the vector of the sensor-filters and�T
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is the vector of activation values of the LLBs. By sensor-filters – sometimes called
virtual sensors – we mean markovian and non-markovian functions used for processing
specific information from sensors.

The LLB activation function modulates the output of the target function. It provides
a value between 1 and 0, meaning that the behavior fully influences, does not influence
or influences to some degree the robot actuators. It describes when to activate a behavior.
For LLB b the activation value is computed from the following differential equation:

_�b;LLB = gb(�b;LLB; OnFb; OffFb; OCTb) (2)

Eq. 2 gives the variation of the activation value �b;LLB of this LLB. gb is a nonlinear
function. OCTb allows the planner to influence the activation values, see Sec. 4. The
scalar variables OnFb and OffFb are computed as follows:
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where ub and vb are nonlinear functions. The variable OnFb sums up all conditions
which recommend activating the respective behavior (on forces) and OffFb stands for
contradictory conditions to the respective behavior (off forces).

The HLBs implement only the activation function. They are allowed to modulate
only the LLBs or other HLBs on the same or lower level. In our case, the change of
activation values for the HLBs �b;HLB are computed in the same manner as Eq. 2.

The reason for updating behavior activation in the form of Eq. 2 is this. By referring
to the previous activation value _�b, it incorporates a memory of the previous evolution
which can be overwritten in case of sudden and relevant changes in the environment,
but normally prevents activation values from exhibiting high-frequency oscillations or
spikes. At the same time, this form of the activation function provides some low-pass
filtering capabilities, deleting sensor noise or oscillating sensor readings.

Independent from that, it helps to develop stable robot controllers if behavior ac-
tivations have a tendency of moving towards their boundary values, i.e., 0 or 1 in our
formulation. To achieve that, we have implemented gb in Eq. 2 as a bistable ground
form (like in [BGG+99] for a RoboCup application of a BBS of the same type) pro-
viding some hysteresis effect. Without further influence, this function pushes activation
values lower/higher than some threshold � (typically � = 0:5) softly to 0/1. The acti-
vation value changes as a result of adding the effects coming from the variables OnF ,
OffF , OCT and the bistable ground form. Exact formulations of the gb function are
then just technical and unimportant for this paper.

The relative smoothness of activation values achieved by using differential equa-
tions and bistability will be helpful later in the technical contribution of this paper
(Sec. 5), when it comes to derive facts from the time series of activation values of the
behaviors.

In our BBS formulation, behavior arbitration is achieved using the activation values.
As shown in Eqs. 2 - 4, each behavior can interact with (i.e., encourage or inhibit) every
other behavior on the same or lower level. The model of interaction between behaviors
is defined by the variables OnF and OffF .

The output vector or reference vector r of the BBS for the robot actuators is gener-
ated by summing all LLB outputs by a mixer, as follows:

r =
X
b

�b;LLBtb (5)

Together with the form of the activation values, this way of blending the outputs of
LLBs avoids discontinuities in the reference values ri for the single robots actuators,
such as sudden changes from full speed forward to full speed backward.

3 An Example

To illustrate the notation of Sec. 2 we give a demonstration problem consisting of the
task of following a wall with a robot and entering only those doors that are wide enough
to allow the entrance. Figure 1 gives an overview about the main part of our arena. The
depicted robot is equipped with a short distance laser-scanner, 4 infrared side-sensors,
4 front/back bumpers and some dead-reckoning capabilities.



Fig. 1. The demo arena and the final robot pose in Example 1. The robot has started its course at
the lower right corner, below to the round obstacle.

We used a simulator based on the DDDesigner prototype tool [Bre00,BGG+99].
The tool allows checking isolated behaviors or the whole BBS in designated environ-
mental situations (configurations).

The control system contains three HLBs and six LLBs, see Fig. 2. RobotDirection

and RobotV elocity are the references for the two respective actuators. We have the
following HLBs (cf. Fig. 2):

CloseToDoor is activated if there is evidence for a door;
InCorridor is active while the robot moves inside a corridor;
TimeOut was implemented in order to avoid getting stuck in a situation, see Sec. 5;

The LLBs are the following:

TurnToDoor is activated if the robot is situated on a level with a door;
GoThruDoor is activated after the behavior TurnToDoor was successful;
FollowRightWall is active when a right wall is followed;
FollowLeftWall is active when a left wall is followed;
AvoidColl is active when there is an obstacle in the front of the robot
Wander is active when no other LLB is active.

Most of the implemented behaviors are common for this kind of tasks. However, we de-
cided to split the task of passing a door in a sequence of two LLBs. This helps structure,
maintain and independently improve these two behaviors.



Fig. 2. The behavior inventory for our examples as in a screen shot from the DDDesigner tool.
Big circles denote HLBs; squares denote LLBs; the hollow icons at the bottom denote robot
actuator reference values. Arrows denote control flow between LLBs and actuators. The influence
structure between behavior activations is not shown; the small circles are of no importance here.

To give a simple example of BBS modeling, here are the “internals” of Wander:

OnFWander = k1(1� �CloseToDoor) � (1� �FollowRightWall) � (6)

(1� �FollowLeftWall) � (1� �AvoidColl)

OffFWander = k2�AvoidColl + k3�CloseToDoor + (7)

k4�FollowRightWall + k5�FollowLeftWall

RobotDirectionWander = randomDirection() (8)

RobotV elocityWander = mediumSpeed (9)

tWander =

�
RobotDirectionWander

RobotV elocityWander

�
(10)

_�Wander = gWander(�Wander; OnFWdr; OffFWdr; OCTWdr) (11)

where k1 : : : k5 are empirically chosen constants. randomDirection() could be every
function that generates a direction which results in a randomly chosen trajectory.

Due to its product form, OnFWander can only be remarkably greater than zero if all
included �b are approximately zero. OffFWander consists of a sum of terms allowing
every included behavior to deactivate Wander. Both terms are simple and can be calcu-
lated extremely fast, which is a guideline for most BBSs. The OCT term will be briefly
explained in the next section.

Fig. 3 shows the activation value histories generated during a robot run, which will
be referred to as Example 1. The robot starts at the right lower edge of Fig. 1 with
Wander in control for a very short time, until a wall is perceived. This effect is ex-
plained by Eq. 6. While the robot starts to follow the wall, it detects the small round
obstacle in front. In consequence, two LLBs are active simultaneously: AvoidColl and
FollowLeftWall. Finally, the robot follows the wall, ignores the little gap and enters the



door. In the examples for this paper, FollowRightWall is always inactive and therefore
not shown in the activation value curves.

Fig. 3. The activation value histories for Example 1. The numbers are time unit for reference.

This exemplifies the purpose of a slow increase in behavior activation. FollowLeftWall
should only have a strong influence to the overall robot behavior if a wall is perceived
with both side-sensors for some time, so as to be more sure that the robot really has
sensed a wall. The small dent in the activation of FollowLeftWall (around the time
t = 4) is explained by perceiving free space with one side-sensor. If both side-sensors
detect free space this behavior would be deactivated. The turning to the door is de-
scribed by rising/falling edges of some activation values. The second rise of AvoidColl
(after t = 22) is caused by the door frame, which pops into sight as a close obstacle
at the very end of the turning maneuver. Effectively, the collision avoidance guides the
robot through the door. Finally GoThruDoor gets slowly deactivated allowing other
behaviors to take control of the robot.

The HLBs CloseToDoor and InCorridor describe global states, thereby modulating
the interaction, activation and sequencing of the LLBs.

4 From plans to BBSs: Blending behaviors with operators

The technical contribution of this paper is an approach to enhancing the information
flow from the BBS to the deliberation part in hybrid robot control systems. Before
coming to that in Section 5, we want to sketch the control flow in the opposite direction,



from the planner to the BBS, to make complete the picture of the entire robot control
architecture that we have in mind. Not in the focus of the present paper, this description
just consists of stating the basic principle, and we refer to work on the DD&P control
architecture [HJZM98,HS01], which elaborates on the approach.

The basic idea is this: An action planner continually maintains a current action plan,
based on the current situation and the current set of user-provided or self-generated mis-
sion goals. Based on the current plan and the current situation, an execution component
picks one of the operators in the plan as the one currently to be executed. Plan execution
is done in a plans-as-advice [Pol92] fashion: Executing an operator means stimulating
more or less strongly the behaviors working in favor of the operator, and muting those
working against its purpose. Which operator stimulates or mutes which behaviors is an
information that the domain modeler has to provide along with the domain model for
the deliberative component and the set of behaviors for the BBS.

Technically, the influence of the current operator is “injected” into the BBS in terms
of the Operator-Coupling-Terms (OCT ) in the activation functions, see Eqs. 2. The
influence of the current ground operator op gets inside every behavior b through the
term OCTb, as follows:

OCTb =
X

op2OP

s
op

b
c
op

b
(Z

op

b
� �b) (12)

where sop
b
; Z

op

b
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is a constant. sop
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= 1 iff op influences the behavior
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b

models the immediacy or delay of the operator influence on the behavior. Z op

b

expresses whether the operator influence is of the stimulating or the muting sort: If
Z
op

b
= 1, then the respective behavior is stimulated, and muted if Zop

b
= 0. Z may be a

boolean function, returning 0 or 1 conditionally.
To give an example, assume that the domain model for the deliberation component

includes an operator GO-IN-RM(x) modeling the action of some office delivery robot
to go (from wherever it is) to and enter room x. Let the behavior inventory be the one
specified in Sec. 3. Here is a selection of s; Z; and c variables of these behaviors and
how they should be affected by the ground operator GO-IN-RM(A) :

s
GO-IN-RM(A)

GoThruDoor set to 1 as the operator does influence the behavior;

c
GO-IN-RM(A)

GoThruDoor set to some medium value, causing a tendency to influence activation
soon after the operator is chosen as being active;

Z
GO-IN-RM(A)

GoThruDoor set to charFct(CloseTo(A)), i.e., the characteristic function that returns
1 if CloseTo(A) is currently in the fact base, and 0 else;

s
GO-IN-RM(A)

Wander set to 1 as the operator should affect its activation (namely, muting it);

s
GO-IN-RM(A)

AvoidColl set to 0 as collision avoidance should not be affected by the operator (note
the difference between not affecting and actively muting an activation value)

5 From BBSs to plans: Extracting facts from activation values

We now turn to the method how to extract facts from activation value histories. It is
influenced by previous work on chronicle recognition, such as [Gha96].



To start, take another look at the activation curves in Fig. 3 in Sec. 3. Some irregular
activation time series occur due to the dynamics of the robot/environment interaction,
such as early in the AvoidColl and Wander behaviors. However, certain patterns re-
occur for single behaviors within intervals of time, such as a value being more or less
constantly high or low, and values going up from low to high or vice versa. The idea
to extract symbolic facts from activation values is to consider characteristic groups or
gestalts of such qualitative activation features occurring in chronicles over time.

To make this precise, we define, first, qualitative activation values (or briefly, qual-
itative activations) describing these isolated patterns. In this paper, we consider four
of them, which are sufficient for defining and demonstrating the principle, namely, ris-
ing/falling edge, high and low, symbolized by predicates *e, +e, Hi, and Lo, respec-
tively. In general, there may be more qualitative activations of interest, such as a value
staying in a medium range over some period of time. For a behavior b and time interval
[t1; t2], they are defined as

Hi(b)[t1; t2] � �b[t] � h for all t1 � t � t2

Lo(b)[t1; t2] � �b[t] � l for all t1 � t � t2

*e(b)[t1; t2] � �b[t1] = l and �b[t2] = h and (13)

�b increases generally monotonically over [t1; t2]

+e(b)[t1; t2] � �b[t1] = h and �b[t2] = l and (14)

�b decreases generally monotonically over [t1; t2]

for given threshold values 0 � h � 1 and 0 � l � 1, where �b[t] denotes the value
of �b at time t. General monotonicity requires another technical definition, which we
skip here for brevity. The idea is that some degree of noise should be allowed in, e.g.,
an increasing edge, making the increase locally non-monotonic. In the rather benign
example activation curves in this paper, regular monotonicity suffices. Similarly, it is not
always reasonable to use the global constants h; l as Hi and Lo thresholds, respectively.
It is possible to use different threshold constants or thresholding functions for different
behaviors. We do not go into that here. Then, it makes sense to require a minimum
duration for [t1; t2] to prevent useless mini intervals of Hi and Lo types from being
identified. Finally, the strict equalities in Eq.s 13 and 14 are unrealistic in real robot
applications, where two real numbers must be compared, which are seldom strictly
equal. Equality�� is the solution of choice here.

The key idea to extract facts from activation histories is to consider patterns of qual-
itative activations of several behaviors that occur within the same interval of time. We
call these patterns activation gestalts. We express them formally by a time-dependent
predicate AG over a set Q of qualitative activations of potentially many behaviors. For
a time interval [t; t0] the truth of AG(Q)[t; t0] is defined as the conjunction of conditions
on the component qualitative activations q 2 Q of behaviors b in the following way:

case q = Hi(b) then Hi(b)[t; t0]

case q = Lo(b) then Lo(b)[t; t0]

case q = *e(b) then *e(b)[t1; t2] for some [t1; t2] � [t; t0]; and Hi(b)[t2; t0]

case q = +e(b) then +e(b)[t1; t2] for some [t1; t2] � [t; t0]; and Lo(b)[t2; t0]



Note that it is not required that different rising or falling edges in Q start or end syn-
chronously among each other or at the interval borders of [t; t 0]—they only must all
occur somewhere within that interval.

For example, AG(f*e(GoThruDoor);+e(TurnToDoor);Hi(CloseToDoor)g) is true
over [20; 24] in the activation histories in Fig. 3; it is also true over [16; 23] (and there-
fore, also over their union [16; 24]), but not over [16; 25], as CloseToDoor has left its
Hi band by time 25, and possibly the same for GoThruDoor, depending on the concrete
value of the h threshold.

A chronicle over some interval of time [t0; t] is a set of activation gestalts over sub-
intervals of [t0; t] with a finite set of n linearly ordered internal interval boundary points
t0 < t1 < � � � < tn < t. A ground fact is extracted from the activation history of a BBS
as true (or rather, as evident, see the discussion below) at time t if its defining chronicle
has been observed over some interval of time ending at t. The defining chronicle must
be provided by the domain modeler, of course.

We give as an example the defining chronicle of the fact InRoom that the robot
is in some room, such as the one left of the wall in Fig. 1. InRoom[t] is extracted
if the following defining chronicle is true within the interval [t0; t], where the ti are
existentially quantified:

AG(f+e(GoThruDoor)g)[t4; t]
^ AG(f*e(GoThruDoor);+e(TurnToDoor);Hi(CloseToDoor)g)[t3; t4]
^ AG(fHi(TurnToDoor; Lo(InCorridor)g)[t2; t3]
^ AG(f*e(TurnToDoor);*e(CloseToDoor);+e(InCorridor)g)[t1; t2]
^ AG(fHi(InCorridor)g)[t0; t1]
^ AG(fLo(TimeOut)g)[t0; t]

(15)

Assuming reasonable settings of the Hi and Lo thresholds h; l, the following substitu-
tions of the time variables to time-points yield the mapping into the activation histories
in Fig. 3: t = 28 (right outside the figure), t0 = 3; t1 = 12; t2 = 16; t3 = 20; t4 = 24.
As a result, we extract InRoom[24].

This substitution is not unique. For example, postponing t0 until 5 or having t1 ear-
lier at 9 would also work. This point leads to the process of chronicle recognition: given
a working BBS, permanently producing activation values, how are the given defin-
ing chronicles of facts checked against that activation value data stream to determine
whether some fact starts to hold?

The obvious basis for doing this is to keep track of the qualitative activations as
they emerge. That means, for every behavior, there is a process logging permanently the
qualitative activations. For those of type Hi and Lo, the sufficiently long time periods of
the respective behavior activation above and below the h; l thresholds, resp., have to be
recorded and, if adjacent to the current time point, appropriately extended. This would
lead automatically to identifying qualitative activations of types Hi and Lo with their
earliest start point, such as t0 = 3 for Hi(InCorridor) in the example above. Qualitative
activations of types *e and +e are logged iff their definitions (eqs. 13 and 14, resp.) are
fulfilled in the recent history of activation values. As this logging process is local to
every behavior, the complexity is linear O(B) in the number B of behaviors.

Qualitative activation logs are then permanently analyzed whether any of the exist-
ing defining chronicles are fulfilled, which may run in parallel to the ongoing process



of logging the qualitative activations. An online version of this analysis inspired by
[Gha96] would attempt to match the flow of qualitative activations with all defining
chronicles c by means of matching fronts that jump along c’s internal interval bound-
ary points ti and try to bind the next time point ti+1 as current matching front such
that the recent qualitative activations fit all sub-intervals of c that end in ti+1. Note that
more than one matching front may be active in every defining chronicle at any time. A
matching front in c vanishes if it reaches the end point t (the defining chronicle is true),
or else while stuck at ti is caught up by another matching front at ti, or else an activa-
tion gestalt over an interval ending at ti+1 is no longer valid in the current qualitative
activation history.

For complexity considerations, assume that C defining chronicles are defined that
involve a maximum of N � 1 internal interval boundary points. Assume further that A
is the maximal number of qualitative activations occurring in single activation gestalt
conjuncts of all defining chronicles. (A is bounded by the number B of behaviors.)
Then, one cycle of the online matching of defining chronicles runs in O(ACN) time.

Practically, the necessary computation may be focused by specifying for each defin-
ing chronicle a trigger condition, i.e., one of the qualitative activations in the definition
that is used to start a monitoring process of the validity of all activation gestalts. For
example, in the InRoom definition above, *e(GoThruDoor), as occurring in the [t3; t4]

interval, might be used. Note that the trigger condition need not be part of the earli-
est activation gestalts in the definition. On appearance of some trigger condition in the
qualitative activation log, we try to match the activation gestalts prior to the trigger
with qualitative activations in the log file, and, if successful, verify the gestalts after the
trigger condition in the qualitative activations as they are being logged.

To give an example where the derivation of the InRoom fact fails, consider Fig. 4.
The scenario is like before, i.e., the robot starts at the lower right corner, driving upward
and trying to enter any door large enough. Different to Fig. 1, no obstacle is present at
the beginning, and while the robot tries to enter into the detected door, another robot
comes from within the room and blocks it. Fig. 4 right shows the scene after the robot
has failed to enter the door, and left are the respective activation values.

Like before, while InCorridor (t0 = 3), the CloseToDoor and TurnToDoor acti-
vations rise with InCorridor falling (t1 = 9; t2 = 13); then, TurnToDoor is Hi, while
InCorridor is Lo (t3 = 20). But then, mischief strikes. After the long high period
of TurnToDoor, TimeOut jumps up, terminating its Lo period, before GoThruDoor
has risen. In consequence, t4 cannot be bound, and the fact InRoom not extracted. If
*e(GoThruDoor) was used as a trigger condition in the first place, then no unnecessary
matching effort was wasted.

Some more general remarks are in place here. Defining chronicles exclusively in
terms of activation gestalts is a special case that we have used in this paper to keep
matters focused. In general, the obvious other elements may be used for defining them:
sensor readings at some time points (be they physical sensors or sensor filters), and
the validity of symbolic facts at a time point or over some time interval. Our intention
is to provide fact extraction from activation values as a main source of information,
not the exclusive one. That type of information can be added to the logical format of
a chronicle definition as in (15). For example, if the exact time point of entering a
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Fig. 4. Robot example 2: final state and activation curves. See text for explanations.

room with the robot’s front is desired as the starting point of the InRoom fact, then
this might be determined by the time within the interval [t4; t] (i.e., within the decrease
of the GoThruDoor activation) where some sensor senses open space to the left and
right again. As another example, assume that the fact At(DoorA) for the door to some
room A may be in the fact base (as derived from a normal localization process). Then
At(DoorA)[t4] could be added to the defining chronicle (15) above to derive not only
InRoom[t], but more specifically InRoom(A)[t].

The fact extraction technique does not presume or guarantee anything about the
consistency of the facts that get derived over time. Achieving and maintaining consis-
tency, and determining the ramifications of newly emerged facts remain issues that go
beyond fact extraction. Pragmatically, we would not recommend to blindly add a fact as
true to the fact base as soon as its defining chronicle has been observed. A consequent
of a recognized defining chronicle should be interpreted as evidence for the fact or as a
fact hypothesis, which should be added to the robot’s knowledge base only by a more
comprehensive knowledge base update process, which may even reject the hypothesis
in case of conflicting information. A possible solutions would be to add some integrity
constraints to the defining chronicles. However, this is not within the scope of this paper.

6 Discussion

A physical agent’s perception categories must to some degree be in harmony with its ac-
tuator capabilities—at least in purposively designed technical artifacts such as working



autonomous robots.1 Our approach of extracting symbolic facts from behavior activa-
tion merely exploits this harmony for intertwining control on a symbolic and a reactive
level of a hybrid robot control architecture.

The technical basis for the exploitation are time series of behavior activation val-
ues. We have taken them from a special type of behavior-based robot control systems
(BBSs), namely, those consisting of behaviors expressed by nonlinear dynamical func-
tions of a particular form, as described in Sec. 2. The point of having activation val-
ues in BBSs is not new; it is also the case, e.g., for the behavior-based fuzzy control
part underlying Saphira [KMSR97], where the activation values are used for context-
dependent blending of behavior outputs, which is similar to their use in our BBS frame-
work. Activation values also provide the degree of applicability of the corresponding
motor schemas in [Ark98, p. 141].

The activation values of a dynamical system-type BBS are well-suited for fact ex-
traction in that their formal background in dynamical systems theory provides both the
motivation and the mathematical inventory to make them change smoothly over time—
compare, e.g., the curves in Figures 3 and 4 with the ragged ones in [SRK99, Fig. 5.10].
This typical smoothness is handy for defining qualitative activations, which aggregate
particular patterns in terms of edges and levels of the curves of individual behaviors,
which are recorded as they emerge over time. These then serve as a stable basis for
chronicle recognition over qualitative activations of several behaviors. Note, however,
that this smoothness is a practical rather than a theoretical issue, and other BBS ap-
proaches may serve as bases for fact extraction from activation values.

We want to emphasize that the activation values serve two purposes in our case:
first, their normal one to provide a reliable BBS, and second, to deliver the basis for
extracting persistent facts, based on their distinctive patterns. With the second use, we
save the domain modeler a significant part of the burden of designing a complicated
sensor interpretation scheme only for deriving facts. The behavior activation curves, as
a by-product coming for free of the behavior-based robot control, focus on the environ-
ment dynamics, be it induced by the robot itself or externally. By construction, these
curves aggregate the available sensor data in a way that is particularly relevant for robot
action. We have argued that this information can be used as a main source of informa-
tion about the environment; other information, such as coming from raw sensor data,
from dedicated sensor interpretation processes, or from available symbolic knowledge,
could be used in addition.

As activation values are present in a BBS anyway, it is possible to ”plug-in” the fact
extraction machine for a deliberative component to an already existing behavior system
like the DD control system in [BGG+99]. Yet, if a new robot control system is about to
be written for a new application area, things could be done better, within the degrees of
freedom for variations in behavior and domain model design. The ideal case is that the
behavior inventory and the fact set is in harmony in the sense that such facts get used
in the domain model whose momentary validity engraves itself in the activation value
history, and such behaviors get used that produce activation values producing evidence
for facts. For example, a single WallFollow behavior working for walls on the right and

1 We do not speculate about biological agents in this paper, although we would conjecture that
natural selection and parsimony strongly favor this principle.



on the left, may be satisfactory from the viewpoint of behavior design for a given robot
application; for fact extraction, it may be more opportune to split it into FollowLeftWall
and FollowRightWall, which would be equally feasible for the behavior control, but
allows more targeted facts to be deduced directly.

Apart from such design-level interdependencies, which are non-trivial, but not spe-
cial for our approach, we are aiming at a control architecture with a deliberative and a
behavior-based part as two abreast modules with no hierarchy, as sketched in [HJZM98].
The fact extraction scheme leaves the possibility to un-plug the deliberative part from
the robot control, which we think is essential for robustness of the whole robot system.

Our technique is complementary to anchoring symbols to sensor data as described in
[CS01]. It differs from that line of work in two main respects. First, we use sensor data
as aggregated in activation value histories only, not raw sensor data. Second, we aim
at extracting ground facts rather than establishing a correspondence between percepts
and references to physical objects. The limit of our approach is that it is inherently
robot-centered in the sense that we can only arrive at information that has to do directly
with the robot action. The advantage is that, due to its specificity, it is conceptually and
algorithmically simpler than symbol anchoring in general.

7 Conclusion

We have presented a new approach for extracting information about symbolic facts from
activation curves in behavior-based robot control systems. Updating the symbolic en-
vironment situation is a crucial issue in hybrid robot control architectures in order to
bring to bear the reasoning capabilities of the deliberative control part on the physical
robot action as exerted by the reactive part. Unlike standard approaches to sensing the
environment in robotics, we are using the information hidden in the temporal develop-
ment of the data, rather than their momentary values. Therefore, our method promises
to yield environment information that is complementary to normal sensor interpretation
techniques, which can and should be used in addition.

We have presented the technique in principle as well as in terms of selected demo
examples in a robot simulator, which has allowed to judge the approach feasible and
to design the respective algorithms. The computational complexity of the recognition
process is in O(BCN), where B is the number of behaviors,C the number of chronicle
definitions, and N the maximal “length” of a chronicle definition in terms of interme-
diate time points internal to the chronicle definition.

The approach will be applied in the context of the hybrid robot control architecture
DD&P [HJZM98] to generate an important part of the information that is used to update
the symbolic world model from the sensor data stream. Work is ongoing towards a
physically concurrent implementation of DD&P on physical robots, as described in
[HS01].
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