
AXI4-Stream Communication Protocol. AXI4-Stream Compliant Modules

Structure of Computer Systems Laboratory

1 Objective

This laboratory work introduces basic information about the behaviour of AXI4-Stream compliant hardware
modules. The major objective is to describe the general mechanism based on which AXI4-Stream modules
exchange data and to show how it can be implemented in order to develop such hardware components.

2 AXI4-Stream Internal Behaviour

As described in the previous laboratory work, AXI4-Stream protocol is used to exchange data between
various hardware modules and it is extremly useful in processing data in a streaming fashion. The I/O
interfaces of such modules must comply with certain rules defining a ready-valid handshake.

In case of AXI4-Stream modules which perform simple operations in just one clock cycle, the internal
behaviour can be synthetically represented as a two-state Finite State Machine (FSM). In one state, the module
accepts data and performs the actual operation, while in the other state it provides the result at the output.

Figure 1: Internal behaviour of AXI4-Stream modules represented as a FSM

Figure 1 shows the state diagram which describs, in a simplified way, the operating mechanism of an
AXI4-Stream module that is capable of performing the actual processing in a single clock cycle.

Table 1: FSM states

State Description Transition condition Next state
The module is ready to retrieve the

READ OPERANDS values received at the input and All inputs are valid. WRITE RESULTS
performs the actual operation.
The module provides the result at the All receivers are ready

WRITE RESULTS output and indicates that the output to accept the results READ OPERANDS
is valid on every output interface provided by the module.

Table 1 shows the description and the transition condition for the two states of the FSM.

The transition conditions can be described reffering the actual I/O signals as follows:

• READ OPERANDS→ WRITE RESULTS occurs when all TVALID signals of all the input interfaces are
HIGH and the current state is READ OPERANDS

• WRITE RESULTS→ READ OPERANDS occurs when all TREADY signals of all the output interfaces are
HIGH and the current state is WRITE RESULTS

Technical University of Cluj-Napoca 1



3 Example of AXI4-Stream Compliant Module

This section provides an example of AXI4-Stream compliant adder/subtractor, implemented in VHDL using
the approach described in the previous section. The meaning of the port names is the one explained in the
previous laboratory work.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

entity int_adder_subtractor is

Port (

aclk : IN STD_LOGIC;

s_axis_a_tvalid : IN STD_LOGIC;

s_axis_a_tready : OUT STD_LOGIC;

s_axis_a_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

s_axis_b_tvalid : IN STD_LOGIC;

s_axis_b_tready : OUT STD_LOGIC;

s_axis_b_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

s_axis_operation_tvalid : IN STD_LOGIC;

s_axis_operation_tready : OUT STD_LOGIC;

s_axis_operation_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

m_axis_result_tvalid : OUT STD_LOGIC;

m_axis_result_tready : IN STD_LOGIC;

m_axis_result_tdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

);

end int_adder_subtractor;

architecture Behavioral of int_adder_subtractor is

type state_type is (READ_OPERANDS, WRITE_RESULT);

signal state : state_type := READ_OPERANDS;

signal res_valid : STD_LOGIC := '0';

signal result : STD_LOGIC_VECTOR (31 downto 0) := (others => '0');

signal a_ready, b_ready, op_ready : STD_LOGIC := '0';

signal internal_ready, external_ready, inputs_valid : STD_LOGIC := '0';

begin

s_axis_a_tready <= external_ready;

s_axis_b_tready <= external_ready;

s_axis_operation_tready <= external_ready;

internal_ready <= '1' when state = READ_OPERANDS else '0';

inputs_valid <= s_axis_a_tvalid and s_axis_b_tvalid and s_axis_operation_tvalid;

external_ready <= internal_ready and inputs_valid;

m_axis_result_tvalid <= '1' when state = WRITE_RESULT else '0';

m_axis_result_tdata <= result;

process(aclk)

begin

if rising_edge(aclk) then

case state is

when READ_OPERANDS =>

if external_ready = '1' and inputs_valid = '1' then

if s_axis_operation_tdata = "00000000" then

result <= s_axis_a_tdata + s_axis_b_tdata;

else

result <= s_axis_a_tdata - s_axis_b_tdata;

end if;

Technical University of Cluj-Napoca 2



state <= WRITE_RESULT;

end if;

when WRITE_RESULT =>

if m_axis_result_tready = '1' then

state <= READ_OPERANDS;

end if;

end case;

end if;

end process;

end Behavioral;

The performed operation is selected based on the s_axis_operaion_tdata input, as described in Table 2.

Table 2: Operation selection
s_axis_operaion_tdata Operation
00000000 +

̸= 00000000 -

When the value received on the input port s_axis_operaion_tdata is equal to 00000000, the module per-
forms the addition of the values received on the input ports s_axis_a_tdata and s_axis_b_tdata and when
the value of the s_axis_operaion_tdata input signal is not equal to 00000000, it performs the subtraction of
the two values.

The most important signals are described in Table 3.

Table 3: Description of the main signals
Signal Description
state Signal to represent the current state of the FSM
inputs_valid Control signal which indicates that all inputs are valid
internal_ready Control signal which indicates that the module is ready to accept data given as input

(HIGH when the current state is READ_OPERANDS)
external_ready Control signal which ensures that all inputs are consumed at once (HIGH when all

inputs are valid and the module is ready to accept input data)

The signals which depend only on the current state of the finite state machine are internal_ready and
m_axis_result_tvalid. These signals are not influenced by the values of other signals.

• internal_ready is HIGH in the READ_OPERANDS state, to indicate that the module is internally ready to
accept the input data. The external_ready is the control signal which, additionally, ensures that all
the inputs are consumed at once. Therefore, external_ready is HIGH only when both internal_ready

and inputs_valid are HIGH.

• m_axis_result_tvalid is HIGH only during the WRITE_RESULT state to indicate that the output is valid.

These considerations are synthetically described in Table 4,

Table 4: State-dependent signals
State internal_ready m_axis_result_tvalid

READ_OPERANDS HIGH LOW
WRITE_RESULT LOW HIGH

4 Exercises

4.1 Implement an AXI4-Stream compliant module which adjusts the value given as
input so that it fits in a given range. The range limits are also provided as inputs.

Hints

Technical University of Cluj-Napoca 3



• The module should be implemented as a FSM, in a similar way to the adder shown in Section 3.

• The actual operation performed by the module can be described as follows:
procedure ADJUST-RANGE(a,min,max)

if a > max then
res← max

else
if a < min then

res← min
else

res← a
end if

end if
return res

end procedure

• The structure of the entity is shown below.

entity range_adjuster is

Port (

aclk : IN STD_LOGIC;

s_axis_a_tvalid : IN STD_LOGIC;

s_axis_a_tready : OUT STD_LOGIC;

s_axis_a_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

s_axis_max_tvalid : IN STD_LOGIC;

s_axis_max_tready : OUT STD_LOGIC;

s_axis_max_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

s_axis_min_tvalid : IN STD_LOGIC;

s_axis_min_tready : OUT STD_LOGIC;

s_axis_min_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

m_axis_result_tvalid : OUT STD_LOGIC;

m_axis_result_tready : IN STD_LOGIC;

m_axis_result_tdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

);

end range_adjuster;

4.2 Implement an AXI4-Stream compliant module which computes the sum of a
window of values. The module gets a single value at once, then updates the
internally stored window of values and provides at the output the sum of all the
values in the window.

Hints

• The window is represented internally as an array of std_logic_vector.

• The size of the window should be a generic parameter of the entity.

• All the values in the window are initially set to 0.

• The position where the new value is placed is indicated by an index, which is updated when a new value
is read, as follows:

if index < window.size− 1 then
index← index+ 1

else
index← 0

end if

Figure 2 shows how the index indicates the current position where the newest value is placed.

Figure 2: Internal representation of the window

Technical University of Cluj-Napoca 4



• Remember the difference between signal and variable assignment in VHDL. Use a variable to compute
the sum because the window signal is updated only when the process is suspended. To avoid using the
old values, initialize the sum variable with the newest value and then compute the sum of all the values
in the window except for the value placed at the position indicated by the index signal.

• The steps performed by the module when a new value is provided at the input can be described as
follows:

procedure SLIDING-WINDOW-SUM(a)
sum← a
for i← 0, window.size− 1 do

if i ̸= index then
sum← sum+ window[i]

end if
end for
return sum

end procedure

• The structure of the entity is given below:

entity sliding_window_adder is

Generic (

WINDOW_SIZE : integer := 5

);

Port (

aclk : IN STD_LOGIC;

s_axis_a_tvalid : IN STD_LOGIC;

s_axis_a_tready : OUT STD_LOGIC;

s_axis_a_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

m_axis_sum_tvalid : OUT STD_LOGIC;

m_axis_sum_tready : IN STD_LOGIC;

m_axis_sum_tdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

);

end sliding_window_adder;

4.3 Connect the previously implemented modules to get a module which computes
the sum of a window of values which are pre-adjusted to fit in a given range.
Create a testbench to simulate your design.

Hints

• The block design of the module is shown in Figure 3.

Figure 3: The block design of the module to be implemented

References

[1] AMBA 4 AXI4-Stream Protocol Specification - Arm, accessed 11/09/2023, https://

documentation-service.arm.com/static/642583d7314e245d086bc8c9?token=

[2] How the axi-style ready/valid handshake works, accessed 12/09/2023, https://vhdlwhiz.com/

how-the-axi-style-ready-valid-handshake-works/

[3] Stimulus file read in testbench using TEXTIO, accessed 16/09/2023, https://vhdlwhiz.com/

stimulus-file/

Technical University of Cluj-Napoca 5

https://documentation-service.arm.com/static/642583d7314e245d086bc8c9?token=
https://documentation-service.arm.com/static/642583d7314e245d086bc8c9?token=
https://vhdlwhiz.com/how-the-axi-style-ready-valid-handshake-works/
https://vhdlwhiz.com/how-the-axi-style-ready-valid-handshake-works/
https://vhdlwhiz.com/stimulus-file/
https://vhdlwhiz.com/stimulus-file/

	Objective
	AXI4-Stream Internal Behaviour
	Example of AXI4-Stream Compliant Module
	Exercises
	Implement an AXI4-Stream compliant module which adjusts the value given as input so that it fits in a given range. The range limits are also provided as inputs.
	Implement an AXI4-Stream compliant module which computes the sum of a window of values. The module gets a single value at once, then updates the internally stored window of values and provides at the output the sum of all the values in the window.
	Connect the previously implemented modules to get a module which computes the sum of a window of values which are pre-adjusted to fit in a given range. Create a testbench to simulate your design.


