
Reconfiguration and Hardware Agents in Testing and Repair of Distributed
Systems

G. Moiş, I.Ştefan, Sz. Enyedi, L. Miclea
Technical University of Cluj-Napoca

{George.Mois, Iulia.Stefan, Szilard.Enyedi, Liviu.Miclea}@aut.utcluj.ro

Abstract

This paper proposes a new approach for distributed

system testing and repairing using mobile hardware
agents. This way, we obtain a networked
reconfigurable system which does not need human
intervention for maintenance and testing. The
proposed architecture uses two FPGA boards and a
microprocessor (agent host) as components and is
flexible and re-programmable.

1. Introduction

Our times see the continuation of an exponential
development in computer science and
microelectronics, constant growth of systems’
integration level, miniaturization and the development
of increasingly complex and larger scale integrated
digital systems. The maintenance and testing of such
large systems is possible only by using two relatively
new technologies: Mobile Data Agents and Real-Time
Reconfigurable Systems. Therefore, it is very likely
that in the future we will be surrounded by digitally-
aware heterogeneous devices which will communicate
to each other through distributed and wireless
interfaces.

These emerging technologies, as well as the
development of electronics used in heterogeneous
systems, require new testing and fault elimination
methods.

For these systems, classic and local testing and
repair does not produce results at overall system level,
due to the very large number of elementary subsystems
and their heterogeneous nature. On the other hand, a
distributed, decentralized solution is much easier to
design, implement, maintain and utilize.

The growth of microelectronics integration level has
brought, besides benefits, also the multiplication of
transient and permanent faults, a fact that led to a
decrease in reliability. Of course, there are manyoldand
acknowledged solutions for counteracting this

problem, but most of them require human intervention,
or at least the intervention of an external factor. The
solution discussed here accomplishes testing and fault
removal without the need of these factors.

2. Agents

An agent is a piece of software capable of
independent existence within an environment provided
for it, is able to communicate with other entities, to
unaidedly accomplish the work assigned to it and also
to travel between geographically separate locations in
its environment. It is an independent, mobile program
capable of functioning for task execution in a flexible
manner and in continuously changing surroundings.

Any entity that perceives its environment using
sensors and takes action modifying those surroundings
using actuators can be considered an agent.

A seemingly complete definition was given by J.
Ferber (1989): “A real or abstract entity that is able to
act on itself and its environment; which has partial
representation of its environment; which can, in a
multi-agent universe, communicate with other agents;
and who’s behavior is a result of its observations, its
knowledge, and its interactions with the other agents.”
[1].

Distributed systems, especially ones consisting of a
large number of modules or those distributed over a
wide geographical area, are easier to monitor, test and
maintain with the help of such agents.

It is desired that the testing and repairing actions to
be brought to the hardware level by using the Mobile
Hardware Agent paradigm [2]. Mobile Hardware
Agents are software agents which can move together
with their program executable code, data, and hardware
components.

The mobile agent is not a new concept and can be
viewed as a specific instance of the wider concept of
code mobility [3]. The notion of the agent as a special
software engineering paradigm has been somehow
borrowed from the artificial intelligence domain, where

high-level, theoretical aspects of autonomous agents
has been deeply studied and discussed since the mid-
Eighties [4]. There, the main aim was to model rational
and autonomous entities that are able to recreate some
aspects of the human intelligence. In the specific field
of software engineering, agents are computer programs
that can act on behalf of humans [5] and have the
attributes of autonomous behavior, proactivity,
reactivity and adaptivity[4]. Coupled with the newly
emerged idea of code mobility, the notion of agents has
lead to the now well-established concept of mobile
agents defined as software components possessing the
attribute of mobility and the ability to “move from host
to host of their ownvolition” [6].

In practical scenarios, agents have been useful in the
area of distributed and mobile computing [7] and have
significantly improved performance of several
distributed applications such as distributed data mining
[8], information retrieval [9] and web services [10].
The use of Mobile Data Agentstechnology in a system
appears as the most innovative, powerful, less
expensive, most flexible and scalable choice. Mobile
Data Agents guarantee the possibility of observing the
system behavior, evaluate the constraints imposed by
the external environment, and apply appropriate
corrections, with the minimum overhead.

The most appealing and breakthrough advantages of
a system that uses reconfiguration and mobile agents
for testing and repairing will include: lower global
costs, reduced on board hardware and software,
knowledge-based, extension to different classes of
systems or abstraction level.

In our case, the agents travel from device to device,
try to detect and repair errors. They can also gather
“experience” through their work.

3. Reconfigurable System

This article also focuses on the use of
reconfigurable systems and tries to find a viable and
cost efficient solution for the implementation of such
systems. Hardware self-maintenance is a relatively new
method and implies that the defective device or the
device that is about to be out of order “takes notice”
and recovers from this state. Usually, this can be
realized through a surplus or a duplication of the
present functions, in hardware, and through the use of
local software or the use of decision electronics for
testing and/or deactivating the defective part and
reallocating the tasks to the spare part of the device.

There are many solutions for the decision logic and
the replacement of the tasks. If the functionality is
implemented in an FPGA, in case of a fault, an unused
part of the matrix can be reconfigured, taking over the

functionality of the defective part [11,12]. For better
results, one can use a method for detecting the faulty
parts which is similar to the human immune system:
the cells found to be defective are replaced with spare
ones that take over their functions [13].

The key feature of a reconfigurable system is the
ability to perform computations in hardware to increase
performance, while retaining much of the flexibility of
a software solution. Like software, the mapped circuit
is flexible, and can be changed over the lifetime of the
system or even at run-time. In this case the
performance is boosted even more, since the circuits
can be optimized based on run-time conditions. In this
manner, the performance of a reconfigurable system
can approach or even surpass that of an ASIC.

As a positive fact, reconfigurable computing allows
product differentiation, one of the driving forces of
embedded system implementations beside time-to-
market, performance and costs. In this aspect,
reconfigurable computing solutions have a clear
advantage over most of the alternatives what could
help to establish reconfigurable systems in the future
marketplace.

In our research, we tried to achieve system
reconfiguration by reprogramming an entire FPGA in
case a critical part of the system is found to be
defective.

4. Experimental Setup

In this section we present the experimental setup of
a simple reconfigurable system. It represents the
experimental proof-of-concept of a distributed system
that incorporates the reconfiguration and mobile data
agents’ technologies. The prototype we built is
oriented towards a networked infrastructure and is
essentially aimed at exploring a particular architectural
pattern based on a centralized agent host (a
microprocessor) and two low-end peripheral nodes
with reconfigurable capabilities. This organization is
representative for a large class of distributed systems
and could be used to model, for example, a distributed
control application. The nodes are very resource-
constrained embedded systems provided with
reprogrammable hardware (FPGA). The Mobile Agent
System is split into two components, a common
software layer included in the central host and some
low-level local routines installed on each peripheral
node.

We used two XUP V2P Xilinx FPGA boards which
communicate with each other and with the computer
through a wireless interface using Wi-Fi modules.

One of the boards is programmed to act as a
microprocessor in charge of controlling a process. This

part has a high importance in our experimental system,
because if this microprocessor is defective, the entire
system is unable to correctly execute its tasks.

The other FPGA board is programmed to act as a
video board for displaying the parameters of the
controlled process. This is the part of the system that
we can give up in case we need a programmable spare.

The agent host is the supervisor and, collaborating
with the agents, verifies periodically if the two other
components are working without any faults. In fact, the
supervisor waits for a message from the mobile agent
that “lets it know” whether the two other parts of the
systems work correctly. Also, it is continuously
backing up the microprocessor’s state. The mobile
hardware agent scheme was introduced in the project
for pushing the concept of testing and repairing using
mobile agents to the hardware level.

Figure 1. Experimental setup

The program that tests the correct functionality of

the two programmable parts of the system is a mobile
hardware agent. Through a wrapper, it uploads its code
to the microprocessor board and to the display
controller board in order to check their behavior. The
agent runs a series of test routines to see if the two
parts produce the expected data output. If not, it sends
a notice message to the supervisor which will send the
required bitstream through the wireless modules to
reprogram the FPGAs. The FPGAs can be
reprogrammed via SlaveSerial or SelectMAP Modes,
and depending on the number of general purpose I/O
pins that the host microprocessors has, the use of a
CPLD can be needed [14]. This embedded processor-
based configuration solution reduces board real estate
requirements in a distributed system, assuming that the
embedded host processor has sufficient memory.

If the display board is not working properly, the
entire system can execute its tasks without any

immediate intervention, but, if the microprocessor is
damaged, the process is endangered.At this point, the
entire system is reconfigured,reprogramming the video

Figure 2. Hardware agent running the tests

board to act as an identical backup microprocessor.
This new microprocessor has the last valid values of
the old one written in its registers, for controlling the
process. The old microprocessor is no longer used and
the one the supervisor has just programmed takes its
place in the system.

Figure 3. Reconfigured system structure

The experimental setup proves that the concept can

be implemented and can be used to solve problem
situations without needing human intervention.

5. Conclusions

Modern trends in developing digitally-aware
environments will increasingly lead to scenarios where
ubiquitous and heterogeneous digital systems interact
together through distributed and wireless interfaces,
and provide high productivity and great flexibility. The
heterogeneity and the ever-growing complexity of such
scenarios will raise many new aspects and issues
(including, for example, transient faults, unpredictable
working contexts, emerging security flaws and threats,

interoperability issues) that may affect the system
functionality and health, and might become the next
toughest challenges for the IT industry and research
community. Two technologies are emerging as
promising responses to such issues: Mobile Data
Agents, to handle the complexity and heterogeneity of
networked infrastructures, and Real-Time
Reconfiguration, to implement flexible, adaptable, and
high performance digital systems.

In this paper, we analyzed how the innovative
aspects of reconfigurable systems technology and
hardware agents can be exploited to implement
efficient and new test and repair strategies.

We also provided an experimental proof-of-concept
of a self-healing system with the capability to host and
interact with mobile hardware agents. Specifically, we
explored a particular architectural pattern based on a
centralized agent host and two low-end peripheral
nodes. The number of nodes can be increased leading
to an architecture which is representative for a large
class of distributed systems and could be used to model
distributed control applications.

Our experimental proof of concept setup uses an
embedded processor as supervisor and reconfiguration
manager for the hardware agents and reconfigurable
systems, but the use of another FPGA board for this
job is planned. This would give the system even more
flexibility.

10. References

[1] J. Ferber 1989. Des Objets aux Agents. Unpublished

Doctoral Dissertation, University of Paris VI.

[2] A.Benso, Sz. Enyedi, L. Miclea, Intelligent Agents

and BIST/BISR – Working Together in Distributed
Systems, IEEE International Test Conference,
Baltimore (Maryland), October 2002.

[3] A. Fuggetta, G. P. Pico, G. Vigna, Understanding

Code Mobility, IEEE Transactions on Software
Engineering, vol. 24, n. 5, pp. 342-361, May 1998.

[4] M. Wooldridge and N. R. Jennings, Agent Theories,

Architectures and Languages: A Survey, Intelligent
Agents: ECAI-94 Workshop on Agent Theories,
Architecture and Languages, pages 1-32, 1995.

[5] H. S. Nwana, Software Agents: An
Overview,Knowledge Engineering Review:
Intelligent Systems Research, AA&T, BT
Laboratories, UK, pages 206-244, 1996.

[6] S. Fischmeister, and W. Lugmayr. The Supervisor-

Worker Pattern, Pattern Languages of Programs
(PLoP'99) (Allerton House, IL, August 15-18, 1999).

[7] D. Kotz, R. Gray, and D. Rus, Future Directions

forMobile-Agent Research, IEEE Distributed Systems
Online, vol. 3, n.8, August 2002.

[8] S. Krishnaswamy, A. Zaslavsky, and S.W. Loke,

Techniques for Estimating the Computation and
Communication Costs of Distributed Data Mining,
Procs. of International Conference on Computational
Science (ICCS2002) - Part I, Lecture Notes in
Computer Science (LNCS) 2331, Springer-Verlag.
pp. 603-612, 2002.

[9] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G.

Cybenko and D. Rus, Mobile Agents for Distributed
Information Retrieval. In Matthias Klusch, editor,
Intelligent Information Agents, chapter 15, Springer-
Verlag, 1999.

[10] A. Padovitz, S. Krishnaswamy, and S.W.

Loke,Towards Efficient and Smart Selection of
WebService Providers Before Activation, the
Workshopon Web Services and Agent-based
Engineering (WSABE 2003), Melbourne, Australia,
July, 2003.

[11] A. Benso, A. Cilardo, N. Mazzocca, L. Miclea, P.

Prinetto, Enyedi. Sz., Reconfigurable Systems Self-
Healing using Mobile Hardware Agents, Proceedings
of International Test Conference 2005, Austin, TX,
USA, November 8 - 10, 2005.

[12] S. Habermann, R. Kothe, H. T. Vierhaus, Built-in Self

Repair by Reconfiguration of FPGAs, Proceedings of
IEEE International On-Line Testing Symposium,
2006, ISBN 0-7695-2620-9/06.

[13] P. K. Lala, B. Kiran Kumar, An Architecture for Self-

Healing Digital Systems, Proceedings of IEEE
International On-Line Testing Workshop, 2002, ISBN
0-7695-1641-6/02.

[14] Mark Ng and Mike Peattie, XAPP502 (v1.5),

www.xilinx.com, December 3, 2007.

	1. Introduction
	2. Agents
	3. Reconfigurable System
	4. Experimental Setup
	5. Conclusions
	10. References

