
Increasing Systems' Availability through Agents and Reconfigurable Systems

Sz. Enyedi, L. Miclea, I. Ştefan
Technical University of Cluj-Napoca

{Szilard.Enyedi/Liviu.Miclea/Iulia.Stefan}@aut.utcluj.ro

Abstract
 Proactive

Don’t constantly
need instructions

Are able to work un-
aided

In this article, we propose a distributed use of soft-
ware-based self-testing, where intelligent agents are
responsible for the transfer of software routines to the
distributed processors, which in turn will be able to
execute the routines and test/repair the corresponding
subsystem. This distributed strategy is flexible, re-
usable and re-programmable.

1. Introduction

Plain BIST and BISR are not well suited for the
testing, diagnosis and repair of heterogeneous, distri-
buted and geographically scattered systems, such as
nationwide telecommunications or energy distribution
systems. Such a system is presented in figure 1.

Figure 1. Heterogeneous distributed system

with many subsystems.

Decentralization of test and repair greatly reduces
the communicational overhead and increases the flex-
ibility and reliability of the testing system itself. The
multiagent approach is only natural to such a problem,
as multiagent societies are naturally heterogeneous,
decentralized and distributed.

An agent is, as implemented here, a piece of soft-
ware capable of independent existence within an envi-
ronment provided for it, which is able to communicate
with entities similar to it, to unaidedly accomplish the
work assigned to it and also to travel between geo-
graphically separated locations in its environment. Fig-
ure 2 presents the main characteristics of software
agents.

 Figure 2. The main agent characteristics.

The agents’ communication capabilities and mobili-

ty lead to the concept of multiagent society, which is
here a distributed collection of interacting, mobile
agents, residing in different parts of the multiagent
environment. We shall call a multiagent society whose
main actor is the tester agent a testing society. Most
DBIST approaches [1]-[5] use a central control au-
thority to start/stop the remote BIST tests, to generally
organize the DBIST process and gather together the
results. There are also distributed, decentralized testing
techniques, some involving agents [6], [7].

We present an agent society whose agents test the
components (processors, memories, etc) of subsystems
in a distributed system. The agents are used for the
transfer of embedded software portions to the subsys-
tems for the effective execution of BIST sessions.
Agents enable the BIST functions of these subsystems,
therefore the distributed BIST nature of the solution.
The agents may also repair the subsystem, for example
if there is a backup processor installed.

2. Agent-based DBIST and DBISR of pro-
cessors and their peripherals

2.1. Generalities

The IEEE 1232 family of standards, analyzed in [8],
describe common exchange formats and software ser-
vices for reasoning systems used in system test and
diagnosis. The goal is to make the data exchange be-
tween two different diagnostic reasoners easy. The
standard also defines software interfaces, for the use of
external tools that can access the diagnostic data in a
consistent manner. It allows exchanging diagnostic
information and embedding diagnostic reasoners in any
test environment.

Learn

Improve their
actions with
experience

Cooperate

Share informa-
tion with each

other

Able to agree
on subtasks

Intelligent agents are software modules able to
make decisions on their own, communicate with each
other, learn new things and even “travel” from system
to system (see also [9]).

Most of the large systems we talk about are hetero-
geneous, comprising a large number of devices of dif-
ferent types. All these devices have different hardware
and/or software, tasks, dependability requirements, but
all are capable of running software (in order to be able
to run the agent code).

A multi-agent approach and diagnosis ontology for
diagnosis of spatially distributed technical systems is
presented in [10]; however, in that approach, each sub-
system has its own agent monitoring and diagnosing it,
which can be costly in some cases. The memory hold-
ing the agent could be used for system purposes.

In this paper, we propose an innovative solution
based on multi-agent approach for testing and diagnos-
ing distributed systems. It offers many advantages like
flexibility, easy maintenance, diagnosis tool for parts
of the overall system, and fault tolerance due to the
Built-in Self-Repair. Some modern complex devices
have also BIST-ed components, so we can decompose
the diagnosis of the whole system to the diagnosis of
components. Our approach differs from other multi-
agent approaches, because the agents are portable,
highly platform-independent, they can deal with many
types of devices and the system administrator can use
various, inexpensive and friendly tools to supervise the
devices, tests, agents and the agent society in general.

Programmable processors are widely used in com-
plex systems to perform critical system functions. In
many cases, the system has a distributed nature where
several processors are used in different locations of the
system. It is well-known that apart from the functional
usage of processors they can be a very powerful means
of performing other non-functional operations in the
system, such as testing, diagnosis, repair, etc.

Recently, a new self-testing strategy known as soft-
ware-based self-testing (SBST) emerged [11]-[17].
According to SBST an (embedded) processor is used to
execute software routines previously transferred to its
memory and performs testing of itself and the sur-
rounding components in a complex system or System-
on-Chip (SoC). This new self-testing paradigm offers
significant flexibility over hardware-based self-testing
techniques that do not allow re-programmability and
revisions. In software-based self-testing, new self-test
routines can be uploaded at any time, new fault models
can be targeted and new components can be tested.

2.2. Agent society

The agent society is able to share resources and re-
pair the faults whenever possible. One or more agents
diagnose each subsystem.

The agents travel from device to device, try to
detect and repair errors, either by themselves or with
the help of other agents or a central database. They can
also gather “experience” through their work.

A proposed structure of the testing and repairing
agent society is presented in figure 3.

Figure 3. Agents in action.

When an agent cannot detect a cause of an observed

fault or cannot repair it, it appeals to other agents to
start cooperation. Due to the diversity of devices in
modern complex systems, heterogeneous agents can be
implemented that take care of device(s) in their respon-
sibility area.

Different agents have different repair capabilities
and they have to ask their colleagues if they cannot
repair the fault by themselves.

When it has to test a subsystem, an agent moves in,
or “downloads” to the subsystem, into the memory.
Then, the agent code is executed by the processor. The
agent tests the processor, memory and other peripher-
als, using test patterns or test code downloaded and run
by the processor, like shown in figure 4.

The analysis of a subsystem comprises three major
steps:

• detection
• diagnosis
• repair
For each step, the agent has to:
• make a plan
• get the necessary information to execute the

plan
• execute the plan
• analyze the results (not compulsory)
• decide (not compulsory)
The first step is to see if there is a fault or not. This

may or may not be possible, depending on the agent’s
capability in finding a way to check that specific de-
vice.

S u b s y s te m u n d e r te s t

O th e r

C P U

R A M
A g e n t

ru
n

te
s t

s

ru n te s ts

run te s ts

Figure 4. The agent code is executed by the
processor, and it runs the tests.

When the fault has been correctly diagnosed, the

agent tries to repair it. Of course, being software by
nature, the agent is limited mainly to software repairs.

There are four basic types of agents in the society:
• Tester agents
• Nameserver agents
• Facilitator agents
• Visualizer agents
Tester agents are the ones “working”, i.e. effectively

testing the devices.
Nameservers are like phone books, they make easier

for the agents to find each other.
Facilitators are like the Yellow Pages, they know

who has what and who knows how to detect or fix
what problem.

Visualizers are the interfaces between the agent so-
ciety and other systems, for example accepting com-
mands from the system administrator and supplying
information about tested devices and society status.

More about agent management can be found in [18].

2.3. Experimental agent platforms and re-
source needs

2.3.1. Java Micro Edition. Sun’s Java 2 Micro Edition
is standardized, portable, has a small footprint (Sun’s
KVM reference implementation has about 128 ki-
loytes), optimized for networking and very flexible.

To ensure portability among different manufactur-
ers’ devices, the MIDP 1.0 (Mobile Information De-
vice Profile) and specification establishes some basic
functionality for the first generation Java enabled mo-
bile devices. This guarantees that the programs – “mid-
lets” – will run on any MIDP 1.0 certified hardware.

MIDP 1.0 offers only HTTP type connections by
default, but there are a few workarounds to have al-

ways on, flexible, raw socket connections – proprietary
network connections – between the server and the mo-
bile device. MIDP 2.0 is more flexible in this respect,
but few mobile devices comply with it.

On need, the j2me agents can be easily extended
with additional functions, enabling a device’s addition-
al testing abilities.

The drawback of the j2me solution is that from its
conception, Java (Enterprise, Standard or Micro) has
been designed for portability. This means that it does
not allow native access to the hardware, only through
the functions of the virtual machine. On the other hand,
special, device-specific classes can be developed,
which bypass the virtual machine and access the hard-
ware directly.

Another drawback is that the “midlets” – j2me pro-
grams – can be installed and run only on the user’s
request. This is a security measure, aiming at protect-
ing the user’s handheld – the original target of j2me –
from unwanted programs. However, if there is already
a midlet running on the device, with an active network
connection, it can send and receive data, including mi-
croagents.

2.3.2. BREW. Qualcomm’s BREW platform is similar
to Java Micro Edition, but the programs can be devel-
oped in C++, as well. There is a Micro Java virtual
machine for BREW, so that even the j2me programs
are able to run. The main advantage of BREW over
Java Micro Edition is that it can run native applications
that access the hardware. Its main disadvantage is that
its use is not widespread, but the number of BREW
enabled devices is increasing.

BREW is mainly embedded into CDMA communi-
cation devices.

2.3.3. Symbian. Symbian is actually a low scale oper-
ating system, supported by Ericsson, Panasonic, Nokia,
Psion, Samsung, Siemens and Sony Ericsson. It is
mainly for, but not limited to, enhanced mobile phones.
It can even run a Java Micro Edition virtual machine,
allowing the j2me solution, presented above, to run.
Still, the main advantage of Symbian is that it accepts
programs that access the underlying hardware directly,
circumventing the problems of the aforementioned
Java Micro Edition.

Unfortunately, Symbian also requires more re-
sources than the j2me virtual machine, making it more
expensive as embedded agent platform.

2.3.4. PalmOS. PalmOS was originally an operating
system for Personal Digital Assistants. Later, some
PalmOS PDAs became smartphones, and PalmOS got
wireless.

The main advantage of PalmOS, like Symbian’s, is
that its programs can access the hardware directly. The
disadvantage is that it was not designed for background
applications, but for programs that interact a lot with
the user. However, the latest versions (PalmOS 5 and
6) are promising.

2.3.5. Embedded Linux. Linux, the most acclaimed
open operating system, also has many downscaled em-
bedded versions. μCLinux, for example, runs on mi-
crocontrollers.

Linux, in its embedded versions, is the most power-
ful and resource efficient platform for embedded com-
putational tasks. The downside is that since the native
programs contain native machine instructions, they are
not portable to other processors.

2.3.6. Single Board Computers. An SBC is, in fact, a
hardware platform. It is a powerful computer, usually
with network access, audio and video capabilities, lots
of processing power, but all crammed on one small
printed circuit board. There are even 45x45mm SBC
boards.

Most of them use x86 compatible processors, thus
are able to run MS Windows. Nevertheless, the majori-
ty uses Linux, for its flexibility.

2.4. Agent communication

At software level, the agents communicate with
each other through the FIPA (Foundation for Intelli-
gent Physical Agents) ACL (Agent Communication
Language) [18]. For now, our agents have a reduced
language set, mainly allowing sharing test sets, device
test/repair data and system coverage plans.

The FIPA MTP (Agent Message Transport Proto-
col) specifications [18] present different ways of com-
munication for the agents to exchange data. IIOP (In-
ternet Inter-ORB Protocol), WAP (Wireless Applica-
tion Protocol) and HTTP (HyperText Transfer Proto-
col), TCP/IP over wireline are described, as well as
generic wireless solutions. They also deal with
bit-oriented, string-oriented and XML-oriented mes-
sage representations.

3. Conclusions and future work

We presented here a few ideas regarding DBIST
and DBISR with intelligent agents. The agents are able
to work together in order to find and possibly solve
device problems.

The agents travel from device to device, try to
detect and repair errors, and learn new solutions. They
can “live” on their own, or work together with other
agents and/or a database.

When an agent cannot detect a cause of an observed
fault or cannot repair it, it appeals to other agents to
start cooperation. We use a decentralized diagnosis
model, which reduces the complexity and communica-
tion overhead of centralized solutions. Due to the di-
versity of devices in modern complex systems, hetero-
geneous agents can be implemented that take care of
device(s) in their responsibility area.

Different agents have different repair capabilities
and they have to ask their colleagues if they cannot
repair the fault by themselves.

Tester agents do the testing and repair what is re-
pairable. Visualizers supply the interface between the

agent society and the outer world. Nameservers and
Facilitators provide lookup services for the agents, so
they find each other and also offer their services and
knowledge.

The agent management and communication follow
FIPA specifications, which describe the management
services and communication protocols and formats.

The utilization of intelligent agents for the detec-
tion, diagnosis and repair of faults in distributed sys-
tems is the focus of the proposed architecture. Signifi-
cant part of a subsystem can be self-tested using the
processing power of the processors used in the various
sites of a distributed system. The self-testing is ex-
ecuted using embedded software routines which are
able to detect faults in the processors themselves as
well as in other subsystem’s parts such as the memory
system and input/output system.

The proposed architecture is flexible and re-
programmable. It can be used to perform distributed
self-testing in systems with different processor archi-
tectures and with different components in each subsys-
tem. The architecture is also scalable and extensible
since every time a new component (new memory, new
I/O device) is added to a subsystem, a new embedded
software module can be transferred by an agent to per-
form self-testing to the new component.

4. References

[1] L.Miclea, Enyedi Sz., R. Orghidan, On line BIST
Experiments for Distributed Systems, IEEE Euro-
pean Test Workshop ETW’2001, Stockholm, Swe-
den, May 29th – June 1st, 2001, pp 37-39

[2] L. Miclea, D. Cimpoca, M. Gordan, An On-Line
BIST Structure for Distributed Control Systems,
Digest of IEEE European Test Workshop
ETW’2000, Cascais, Portugal May 23rd – 26th
2000, pp. 283-284

[3] A. Benso, S. Chiusano, S. Di Carlo, HD2BIST: a
Hierarchical Framework for BIST Scheduling, Da-
ta patterns delivering and diagnosis in SoCs, ITC
International Test Conference, pp. 899-901, 10 -
2000.

[4] Monica Lobetti Bodoni, A. Benso, S. Chiusano, G.
di Natale, P. Prinetto, An Effective Distributed BIST
Architecture for RAMs , Informal Digest of IEEE
European Test Workshop ETW 2000, pp. 201-206

[5] R. Pendurkar, A. Chatterjee, Y. Zorian, A Distri-
buted BIST Technique for Diagnosis of MCM Inter-
connections, International Test Conference 1996
Proceedings, pp. 214-221

[6] L. Miclea, Enyedi Sz., A. Benso, Intelligent Agents
and BIST/BISR - Working Together in Distributed
Systems, Proceedings of International Test Confe-
rence, Baltimore, USA, 8th–10th October, 2002,
pp. 940-946.

[7] L.Miclea, Enyedi Sz., Distributed Built-In Self-Test
using Intelligent Agents, IEEE European Test
Workshop ETW'2002, Corfu, Greece, May 26th–
May 29th, 2002.

[8] J. Sheppard, M. Kaufman, IEEE 1232 and p1522
standards, AUTOTESTCON Proceedings, 2000
IEEE, 2000, pp. 388-397

[9] J. Ferber, Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence, Addison-Wesley,
1999

[10] I. A. Letia, F. Craciun, Z Köpe, A Netin, Distri-
buted diagnosis by BDI agents, In M H Hamza
(ed), IASTED International Conference "Applied
Informatics", Innsbruck, Austria, 2000, 862-867,
ACTA Press

[11] L. Chen, S.Dey, Software-Based Self-Testing Me-
thodology for Processor Cores, IEEE Transactions
on CAD of Integrated Circuits and Systems, vo.20,
no.3, pp. 369-380, March 2001.

[12] F.Corno, M.Sonza Reorda, G.Squillero,
M.Violante, On the Test of Microprocessor IP
Cores, in Proceedings of the Design Automation &
Test in Europe 2001, pp.209-213.

[13] L. Chen, S. Ravi, A.Raghunathan, S. Dey, A Scala-
ble Software-Based Self-Testing Methodology for
Programmable Processors, in Proceedings of the
Design Automation Conference 2003, pp. 548-553.

[14] N.Kranitis, A.Paschalis, D.Gizopoulos, Y.Zorian,
Instruction-Based Self-Testing of Processor Cores,
in Journal of Electronic Testing: Theory and Appli-
cations, no 19, pp.103-112, 2003 (Special Issue on
20th IEEE VLSI Test Symposium 2002)

[15] A.Krstic, L.Chen, W.C.Lai, K.T.Cheng, S.Dey,
Embedded Software-Based Self-Test for Program-
mable Core-Based Designs, IEEE Design & Test of
Computers, July-August 2002, pp. 18-26.

[16] N.Kranitis, G.Xenoulis, A.Paschalis, D.Gizopoulos,
Y. Zorian, Application and Analysis of RT-Level
Software-Based Self-Testing for Embedded Proces-
sor Cores, in Proceedings of the IEEE International
Test Conference (ITC) 2003, Charlotte, NC, USA,
September 30 – October 2, 2003.

[17] N.Kranitis, Y.Xenoulis, D.Gizopoulos, A.Paschalis,
Y.Zorian, Low-Cost Software-Based Self-Testing of
RISC Processor Cores, IEEE Design Automation
and Test in Europe Conference (DATE’2003), Mu-
nich, Germany, March 2003.

[18] ***, FIPA standards and specifications,
http://www.fipa.org

	1. Introduction
	2. Agentbased DBIST and DBISR of processors and their peripherals
	2.1. Generalities
	2.2. Agent society
	2.3. Experimental agent platforms and resource needs
	2.3.1. Java Micro Edition. Sun’s Java 2 Micro Edition is standardized, portable, has a small footprint (Sun’s KVM reference implementation has about 128 kiloytes), optimized for networking and very flexible.
	2.3.2. BREW. Qualcomm’s BREW platform is similar to Java Micro Edition, but the programs can be developed in C++, as well. There is a Micro Java virtual machine for BREW, so that even the j2me programs are able to run. The main advantage of BREW over Java Micro Edition is that it can run native applications that access the hardware. Its main disadvantage is that its use is not widespread, but the number of BREW enabled devices is increasing.
	2.3.3. Symbian. Symbian is actually a low scale operating system, supported by Ericsson, Panasonic, Nokia, Psion, Samsung, Siemens and Sony Ericsson. It is mainly for, but not limited to, enhanced mobile phones. It can even run a Java Micro Edition virtual machine, allowing the j2me solution, presented above, to run. Still, the main advantage of Symbian is that it accepts programs that access the underlying hardware directly, circumventing the problems of the aforementioned Java Micro Edition.
	2.3.4. PalmOS. PalmOS was originally an operating system for Personal Digital Assistants. Later, some PalmOS PDAs became smartphones, and PalmOS got wireless.
	2.3.5. Embedded Linux. Linux, the most acclaimed open operating system, also has many downscaled embedded versions. μCLinux, for example, runs on microcontrollers.
	2.3.6. Single Board Computers. An SBC is, in fact, a hardware platform. It is a powerful computer, usually with network access, audio and video capabilities, lots of processing power, but all crammed on one small printed circuit board. There are even 45x45mm SBC boards.

	2.4. Agent communication

	3. Conclusions and future work
	4. References

