

Agent-Based Testing and Repair of
Heterogeneous Distributed Systems

Sz. Enyedi, L. Miclea, I. Ştefan
Technical University of Cluj-Napoca, {Szilard.Enyedi/Liviu.Miclea/Iulia.Stefan}@aut.utcluj.ro

Abstract

In this paper, we propose a distributed use of soft-
ware-based self-testing, where intelligent agents are
responsible for the transfer of software routines to the
distributed processors, which in turn will be able to ex-
ecute the routines and test/repair the corresponding
subsystem. This distributed strategy is flexible, re-usable
and re-programmable.

Keywords
Intelligent agent, distributed BIST and BISR, proces-

sor testing.

1. Introduction
Plain BIST and BISR are not well suited for the test-

ing, diagnosis and repair of heterogeneous, distributed
and geographically scattered systems, such as nation-
wide telecommunications or energy distribution sys-
tems. A simplified view of such a distributed system is
presented in figure 1.

S u b s y s te m 1

S u b s y s te m 2

S u b s y s te m 3

S u b s y s te m 4

S u b s y s te m 5

S u b s y s te m 6

S u b s y s te m 7

S u b s y s te m 8

Figure 1. Distributed system with many
subsystems.
Decentralization of test and repair greatly reduces the

communicational overhead and increases the flexibility

and reliability of the testing system itself. The multia-
gent approach is only natural to such a problem, as mul-
tiagent societies are naturally heterogeneous, decentra-
lized and distributed.

An agent is, as implemented here, a piece of software
capable of independent existence within an environment
provided for it, which is able to communicate with enti-
ties similar to it, to unaidedly accomplish the work as-
signed to it and also to travel between geographically
separated locations in its environment.

The agents’ communication capabilities and mobility
lead to the concept of multiagent society, which is here a
distributed collection of interacting, mobile agents, re-
siding in different parts of the multiagent environment.
We shall call a multiagent society whose main actor is
the tester agent a testing society. Most DBIST approach-
es [1]-[5] use a central control authority to start/stop the
remote BIST tests, to generally organize the DBIST
process and gather together the results. There are also
distributed, decentralized testing techniques, some in-
volving agents [6], [7].

We present an agent society whose agents test the
components (processors, memories, etc) of subsystems
in a distributed system. The agents are used for the
transfer of embedded software portions to the subsys-
tems for the effective execution of BIST sessions.
Agents enable the BIST functions of these subsystems,
therefore the distributed BIST nature of the solution.
The agents may also repair the subsystem, for example
if there is a backup processor installed.

2. Agent-based DBIST and DBISR of pro-
cessors and their peripherals

2.1. Generalities
The IEEE 1232 family of standards, analyzed in [8],

describe common exchange formats and software ser-
vices for reasoning systems used in system test and di-
agnosis. The goal is to make the data exchange between
two different diagnostic reasoners easy. The standard
also defines software interfaces, for the use of external
tools that can access the diagnostic data in a consistent
manner. It allows exchanging diagnostic information
and embedding diagnostic reasoners in any test envi-
ronment.

1-4244-2577-8/08/$20.00 ©2008 IEEE

Intelligent agents are software modules able to make
decisions on their own, communicate with each other,
learn new things and even “travel” from system to sys-
tem (see also [9]).

Most of the large systems we talk about are heteroge-
neous, comprising a large number of devices of different
types. All these devices have different hardware and/or
software, tasks, dependability requirements, but all are
capable of running software (in order to be able to run
the agent code).

A multi-agent approach and diagnosis ontology for
diagnosis of spatially distributed technical systems is
presented in [10]; however, in that approach, each sub-
system has its own agent monitoring and diagnosing it,
which can be costly in some cases. The memory holding
the agent could be used for system purposes.

In this paper, we propose an innovative solution
based on multi-agent approach for testing and diagnos-
ing distributed systems. It offers many advantages like
flexibility, easy maintenance, diagnosis tool for parts of
the overall system, and fault tolerance due to the Built-in
Self-Repair. Some modern complex devices have also
BIST-ed components, so we can decompose the diagno-
sis of the whole system to the diagnosis of components.
Our approach differs from other multi-agent approaches,
because the agents are portable, highly plat-
form-independent, they can deal with many types of
devices and the system administrator can use various,
inexpensive and friendly tools to supervise the devices,
tests, agents and the agent society in general.

Programmable processors are widely used in complex
systems to perform critical system functions. In many
cases, the system has a distributed nature where several
processors are used in different locations of the system.
It is well-known that apart from the functional usage of
processors they can be a very powerful means of per-
forming other non-functional operations in the system,
such as testing, diagnosis, repair, etc.

Recently, a new self-testing strategy known as soft-
ware-based self-testing (SBST) emerged [11]-[17]. Ac-
cording to SBST an (embedded) processor is used to
execute software routines previously transferred to its
memory and performs testing of itself and the surround-
ing components in a complex system or System-on-Chip
(SoC). This new self-testing paradigm offers significant
flexibility over hardware-based self-testing techniques
that do not allow re-programmability and revisions. In
software-based self-testing, new self-test routines can be
uploaded at any time, new fault models can be targeted
and new components can be tested.

2.2. Agent society
The agent society is able to share resources and repair

the faults whenever possible. One or more agents diag-
nose each subsystem.

The agents travel from device to device, try to detect
and repair errors, either by themselves or with the help
of other agents or a central database. They can also
gather “experience” through their work.

A view of the testing and repairing agent society is
presented in figure 2. In this example, Agent 1 and
Agent 5 just arrived to the subsystem they are supposed
to test. Agent 4 and Agent 7 do not know how to test
their devices, they will probably ask for help from
another agent. Agent 2 just finished repairing a device
and now hurries to another to test it. Agent 3 is at the
beginning of testing its device, and is looking at it to see
if there is anything wrong. Agent 6 was unable to test its
device, so Agent 8 had to move in to test it. Note that the
administrative agents (Nameserver, Facilitator, Visua-
lizer) have not been drawn. More about these special
agents later.

A g e n t 1

A g e n t 6 A g e n t 8

A g e n t 7

A g e n t 2

A g e n t 4

A g e n t 3

A g e n t 5

Figure 2 – Agents of the society, in action.
When an agent cannot detect a cause of an observed

fault or cannot repair it, it appeals to other agents to start
cooperation. Due to the diversity of devices in modern
complex systems, heterogeneous agents can be imple-
mented that take care of device(s) in their responsibility
area.

Different agents have different repair capabilities and
they have to ask their colleagues if they cannot repair
the fault by themselves.

When it has to test a subsystem, an agent moves in,
or “downloads” to the subsystem, into the memory.
Then, the agent code is executed by the processor. The
agent tests the processor, memory and other peripherals,
using test patterns or test code downloaded and run by
the processor. These steps are sketched in figures 3a, 3b
and 3c.

A g e n t
S u b s y s te m to b e te s te d

O th e r

C P U R A M

lo a d a g e n t

Figure 3a. The agent is loaded into the
subsystem.

A g e n t

S u b s y s te m to b e te s te d

R A M

O th e r

C P U

ru n a g e n t

Figure 3b. The agent is contained in the
subsystem’s memory and is executed
from there.
The analysis of a subsystem comprises three major

steps:
- detection
- diagnosis
- repair

For each step, the agent has to:
- make a plan
- get the necessary information to execute the

plan
- execute the plan
- analyze the results (not compulsory)
- decide (not compulsory)

The first step is to see if there is a fault or not. This
may or may not be possible, depending on the agent’s
capability in finding a way to check that specific device.

S u b s y s te m u n d e r te s t

O th e r

C P U

R A M
A g e n t

ru
n

te
s t

s

ru n te s ts

run te s ts

Figure 3c. The agent code is executed by
the processor, and it runs the tests.
When the fault has been correctly diagnosed, the

agent tries to repair it. Of course, being software by na-
ture, the agent is limited mainly to software repairs.

There are four basic types of agents in the society:
- Tester agents
- Nameserver agents
- Facilitator agents
- Visualizer agents

Tester agents are the ones “working”, i.e. effectively
testing the devices.

Nameservers are like phone books, they make easier
for the agents to find each other.

Facilitators are like the Yellow Pages, they know
who has what and who knows how to detect or fix what
problem.

Visualizers are the interfaces between the agent so-
ciety and other systems, for example accepting com-
mands from the system administrator and supplying in-
formation about tested devices and society status.

More about agent management can be found in [18].

2.3. Experimental agent platforms and resource
needs

Table 1 presents some details about the most promis-
ing agent platforms we experimented with.

Table 1 – agent platforms experimented.
Agent
platform Characteristics

JADE Java Agent DEvelopment frame-
work
This is an agent platform mainly for

full-blown desktop computers (Java 2
Standard Edition). Theoretically, it is
possible to port an open source J2SE
Java Virtual Machine to the target mi-
croprocessor, so that it may run stan-
dard Java bytecode, but that would be
an overkill.
However, it turned out that JADE is
good for testing, especially since its
low-end version, JADE-LEAP, runs on
embedded systems and the agents are
able to connect to the desktop version.

JADE-LEAP Lightweight Extensible Agent Plat-
form
This is the Java 2 Micro Edition ver-
sion of JADE, the main advantage
being the platform’s small size (around
100KB). The micro-agents need from
a few to tens of KBs, depending on
their abilities, mainly testing “know-
ledge”. The JVM adds to this around
200 KB, but this can be further re-
duced.
Unless the test is needed to be real-
time, a regular embedded micropro-
cessor’s processing power proved to
be enough.

Embedded
Linux

Another interesting platform is em-
bedded Linux. The embedded Linux
micro-core needs around 100KB,
however with the networking stack,
core utilities and the agent(s), it takes
about 500-700KB.
What we like about Linux with respect
to Java is easier access to hardware
(including existing Linux support for
various hardware) and higher execu-
tion speed.
One of the smallest Linux based com-
puters is the “picotux”, 35×19×19mm,
or the ARM-based “gumstix” devices.

Single Board
Computers

An SBC is, in fact, a hardware plat-
form. It is a small computer, usually
with network access, audio and video
capabilities, adequate processing pow-
er, but all crammed on one small
printed circuit board.
The ones we worked with use x86
compatible or ARM processors. The
majority uses Linux, for its flexibility.
Good examples are the x86-based
Mini-ITX and Pico-ITX mainboards.

We also plan to implement the agent-based testing on
aJile’s hardware Java processors and other platforms.

2.4. Agent communication
At software level, the agents communicate with each

other through the FIPA (Foundation for Intelligent Phys-

ical Agents) ACL (Agent Communication Language)
[18]. For now, our agents have a reduced language set,
mainly allowing sharing test sets, device test/repair data
and system coverage plans.

The FIPA MTP (Agent Message Transport Protocol)
specifications [18] present different ways of communi-
cation for the agents to exchange data. IIOP (Internet
Inter-ORB Protocol), WAP (Wireless Application Pro-
tocol) and HTTP (HyperText Transfer Protocol), TCP/IP
over wireline are described, as well as generic wireless
solutions. They also deal with bit-oriented,
string-oriented and XML-oriented message representa-
tions.

For a system with mobile subsystems to be tested,
short range, standardized radio-based Bluetooth/WUSB
(Wireless USB) chips can be used. For large scattered
systems, radio-based Wi-Fi/WiMax solutions or
GPRS/EDGE/3G boards are available. Wi-Fi works
even with public Access Points, while GPRS boards are
adequate for low-cost, always-on sporadic communica-
tion over large distances. Currently, our experiments use
Bluetooh, Wi-Fi and 3G, while planning on WUSB. A
simplified structure is shown in figure 4.

WiFi
module

GPRS
module

ZigBee
moduleBluetooth

module

Figure 4. Wireless communication be-
tween the subsystems.

3. Conclusions and future work
We presented here a few ideas regarding DBIST and

DBISR with intelligent agents. The agents are able to
work together in order to find and possibly solve device
problems.

The agents travel from device to device, try to detect
and repair errors, and learn new solutions. They can
“live” on their own, or work together with other agents
and/or a database.

When an agent cannot detect a cause of an observed
fault or cannot repair it, it appeals to other agents to start
cooperation. We use a decentralized diagnosis model,
which reduces the complexity and communication over-
head of centralized solutions. Due to the diversity of
devices in modern complex systems, heterogeneous
agents can be implemented that take care of device(s) in

their responsibility area.

Different agents have different repair capabilities and
they have to ask their colleagues if they cannot repair
the fault by themselves.

Tester agents do the testing and repair what is repair-
able. Visualizers supply the interface between the agent
society and the outer world. Nameservers and Facilita-
tors provide lookup services for the agents, so they find
each other and also offer their services and knowledge.

The agent management and communication follow
FIPA specifications, which describe the management
services and communication protocols and formats.

The utilization of intelligent agents for the detection,
diagnosis and repair of faults in distributed systems is
the focus of the proposed architecture. Significant part
of a subsystem can be self-tested using the processing
power of the processors used in the various sites of a
distributed system. The self-testing is executed using
embedded software routines which are able to detect
faults in the processors themselves as well as in other
subsystem’s parts such as the memory system and in-
put/output system.

The proposed architecture is flexible and re-
programmable. It can be used to perform distributed
self-testing in systems with different processor architec-
tures and with different components in each subsystem.
The architecture is also scalable and extensible since
every time a new component (new memory, new I/O
device) is added to a subsystem, a new embedded soft-
ware module can be transferred by an agent to perform
self-testing to the new component.

4. References
[1] L.Miclea, Enyedi Sz., R. Orghidan, On line BIST Ex-

periments for Distributed Systems, IEEE European
Test Workshop ETW’2001, Stockholm, Sweden,
May 29th – June 1st, 2001, pp 37-39

[2] L. Miclea, D. Cimpoca, M. Gordan, An On-Line
BIST Structure for Distributed Control Systems, Di-
gest of IEEE European Test Workshop ETW’2000,
Cascais, Portugal May 23rd – 26th 2000, pp. 283-
284

[3] A. Benso, S. Chiusano, S. Di Carlo, HD2BIST: a
Hierarchical Framework for BIST Scheduling, Data
patterns delivering and diagnosis in SoCs, ITC In-
ternational Test Conference, pp. 899-901, 10 - 2000.

[4] Monica Lobetti Bodoni, A. Benso, S. Chiusano, G. di
Natale, P. Prinetto, An Effective Distributed BIST Ar-
chitecture for RAMs , Informal Digest of IEEE Euro-
pean Test Workshop ETW 2000, pp. 201-206

[5] R. Pendurkar, A. Chatterjee, Y. Zorian, A Distributed
BIST Technique for Diagnosis of MCM Interconnec-
tions, International Test Conference 1996 Proceed-
ings, pp. 214-221

[6] L. Miclea, Enyedi Sz., A. Benso, Intelligent Agents
and BIST/BISR - Working Together in Distributed

Systems, Proceedings of International Test Confe-
rence, Baltimore, USA, 8th–10th October, 2002, pp.
940-946.

[7] L.Miclea, Enyedi Sz., Distributed Built-In Self-Test
using Intelligent Agents, IEEE European Test Work-
shop ETW'2002, Corfu, Greece, May 26th–May
29th, 2002.

[8] J. Sheppard, M. Kaufman, IEEE 1232 and p1522
standards, AUTOTESTCON Proceedings, 2000
IEEE, 2000, pp. 388-397

[9] J. Ferber, Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence, Addison-Wesley,
1999

[10] I. A. Letia, F. Craciun, Z Köpe, A Netin, Distributed
diagnosis by BDI agents, In M H Hamza (ed),
IASTED International Conference "Applied Infor-
matics", Innsbruck, Austria, 2000, 862-867, ACTA
Press

[11] L. Chen, S.Dey, Software-Based Self-Testing Metho-
dology for Processor Cores, IEEE Transactions on
CAD of Integrated Circuits and Systems, vo.20, no.3,
pp. 369-380, March 2001.

[12] F.Corno, M.Sonza Reorda, G.Squillero, M.Violante,
On the Test of Microprocessor IP Cores, in Proceed-
ings of the Design Automation & Test in Europe
2001, pp.209-213.

[13] L. Chen, S. Ravi, A.Raghunathan, S. Dey, A Scalable
Software-Based Self-Testing Methodology for Pro-
grammable Processors, in Proceedings of the Design
Automation Conference 2003, pp. 548-553.

[14] N.Kranitis, A.Paschalis, D.Gizopoulos, Y.Zorian, In-
struction-Based Self-Testing of Processor Cores, in
Journal of Electronic Testing: Theory and Applica-
tions, no 19, pp.103-112, 2003 (Special Issue on 20th
IEEE VLSI Test Symposium 2002)

[15] A.Krstic, L.Chen, W.C.Lai, K.T.Cheng, S.Dey, Em-
bedded Software-Based Self-Test for Programmable
Core-Based Designs, IEEE Design & Test of Com-
puters, July-August 2002, pp. 18-26.

[16] N.Kranitis, G.Xenoulis, A.Paschalis, D.Gizopoulos,
Y. Zorian, Application and Analysis of RT-Level
Software-Based Self-Testing for Embedded Proces-
sor Cores, in Proceedings of the IEEE International
Test Conference (ITC) 2003, Charlotte, NC, USA,
September 30 – October 2, 2003.

[17] N.Kranitis, Y.Xenoulis, D.Gizopoulos, A.Paschalis,
Y.Zorian, Low-Cost Software-Based Self-Testing of
RISC Processor Cores, IEEE Design Automation
and Test in Europe Conference (DATE’2003), Mu-
nich, Germany, March 2003.

[18] ***, FIPA standards and specifications,
http://www.fipa.org.

	Abstract
	Keywords
	1. Introduction
	2. Agentbased DBIST and DBISR of processors and their peripherals
	2.1. Generalities
	2.2. Agent society
	2.3. Experimental agent platforms and resource needs
	2.4. Agent communication

	3. Conclusions and future work
	4. References

