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Abstract—Depth estimation of the surrounding environment 
using a stereoscopic camera setup is an important and 
fundamental research topic in computer vision. Due to its 
running time and quality performance in real situations the semi 
global matching algorithm is often used. The biggest 
disadvantage of the semi global approach is its large memory 
footprint. On the other hand, block matching stereo is leaner 
when it comes to memory consumption and therefore it is 
commonly used in applications where we do not have many 
resources, in order to obtain coarse depth information of the 
environment. The poor quality performance of such algorithms 
make them impractical for many real life applications. In this 
paper we focus on improving the quality of the classical block 
matching (BM) stereo method by proposing a novel approach 
which tackles the problem of stereo matching for slanted and 
fronto-parallel surfaces by using different types of binary masks 
on the matching window. Another improvement consists in the 
usage of different types of local constraints in the generation of 
the winning disparity for a specific position, such that possible 
outliers are eliminated from the start. The validation of our 
results has been done on the KITTI stereo benchmark dataset. 

Keywords—stereo correspondence, block matching, 3D 
reconstruction, local stereo. 

I.  INTRODUCTION  
Depth estimation from binocular imagery is a core 

issue to many applications like intelligent vehicles [2], 
biometry [1], metrology [3], etc. A stereo system usually 
consists of two side by side cameras observing the same scene. 
After rectifying the images acquired from the stereo sensor, 
the 3D information can be obtained by finding the offset 
between the column coordinates in the left and in the right 
image, for the same observed feature of the environment. This 
offset is called disparity (d) and it is inversely proportional to 
the distance (Z) to the object as presented in equation 1. The 
letters B and f denote the baseline of the stereo sensor and the 
equivalent focal length of the canonical system obtained from 
rectification.  

    Bf
d

Z
=            (1) 

According to the taxonomy proposed by Szelinski[4], 
a typical stereo matching algorithm consists of the following 
steps: matching cost computation, cost aggregation, 
optimization and refinement.  Depending on how we approach 

these stereo correspondence steps, there exist two main 
directions for finding disparity maps, i.e. local and global 
block matching. The global block matching approach tries to 
solve the stereo problem by minimizing a global energy 
function. This method offers very good end results at the cost 
of large computational complexity and high running time. A 
subclass of the global methods is represented by the semi 
global algorithms [5]. The energy function for this subclass of 
algorithms is simpler than the one used for global algorithms, 
and therefore this method can offer good results in decent 
running time; this is the reason why the semi global method 
has gained popularity in over the years. Local block matching 
is the second class of stereo correspondence algorithms where 
the pixels from one image are compared with the ones from 
the second image, and there is no global energy minimization 
constraint. Single pixel matching is more likely to provide 
erroneous results, and therefore the matching is usually done 
using rectangular windows called blocks. The drawback of 
this matching scheme relies in the fact that it considers the 
same disparity across the matching window, and consequently 
assumes that the image consists of frontally viewed planes 
which are perpendicular to the optical axis of the camera.  

This assumption does often not hold for applications 
which have to observe other surfaces, such as the road, side 
objects and building facades. For such objects, the quality of 
disparity computation will be lower.  

Even though local block matching algorithms 
produce results of lower accuracy, these algorithms tend to be 
much faster than the global or semi-global ones. Another 
advantage of block matching compared to other classes of 
algorithms is the low memory requirement. In order to 
preserve the advantages of high speed and low memory 
footprint, while also improving the quality of the disparity 
estimation results, a lot of research has been done towards 
tackling the problems which are likely to cause the stereo 
correspondence errors.  

The rest of the paper is structured as follows: in the 
following section we present related work for stereo block 
matching, in section three we present the paper’s main 
contributions, and in the fourth section the experimental 
results are shown. The last section highlights the conclusions 
of the paper and presents further directions for our work. 

321



II. RELATED WORK 
The idea behind block matching consists in finding the 

correspondences between patches (usually called blocks) in 
the left and right image by searching on the epipolar lines. 
There exist a lot of functions used as matching criteria[6], out 
of which the most frequently used are: sum of absolute 
differences (SAD), rank transform (RT), census transform 
(CT),  normalized cross correlation (NCC).  An embedded real 
time solution called the DeepSea, which was created by the 
TYZX Company and uses local block matching stereo is 
presented in [7]. This solution is implemented in FPGA and 
ASIC and runs with the classical BM having the census 
transform as matching criterion. 

  More modern BM approaches that are trying to address 
the problems of slanted surfaces are presented in [8, 9, 10, and 
11]. In [8] each individual row of a matching block is shifted 
and a penalty is incorporated in the final score in case the best 
matching cost does not come from the classical rectangular 
block.  In [9] multiple operations of sheering and scaling of the 
original image pairs are performed in order to capture non-
frontal planes. The resulted disparities are fused together to 
form the final depth map. In [10] the authors perform a linear 
image warping according to the expected disparity for the 
ground plane. Finally in [11] the non-frontal problem is 
approached by computing the cost from different disparity 
values. The authors penalize the score whenever the best cost 
does not come from the fronto-parallel block; however the 
penalty is not encapsulated in the final matching value.  
Another interesting BM method is presented in [12].  In this 
method multiple blocks of different shapes and sizes are 
aggregated in order to eliminate the effect caused by non-
frontal surfaces. This aggregation method also solves the 
fattening effect which is usually caused by large block sizes. 

III. PROPOSED SOLUTION 
In this paper we will tackle the improvement of BM stereo 

in the presence of slanted surfaces. The block matching on 
these surfaces fails because the distance to the camera is not 
constant within the matching window. By using a multi block 
matching approach many errors are filtered out. However, due 
to the fact that when we are computing the matching 
descriptors we are not considering how the surfaces are tilted, 
we may be introducing auxiliary matching errors. In this 
section we will demonstrate that by creating oriented matching 
descriptors for the blocks in the right image, we are able to 
improve the matching quality. We will also illustrate that if we 
make local constraints on individual values in the winner takes 
all stage of the stereo correspondence pipeline we will be able 
to filter out many erroneous results. 

Due to their low computational complexity and invariance 
to additive and multiplicative offsets in intensity we will be 
using binary descriptors in our paper. 

A. Matching descriptors 
The descriptor cost computation plays an important role in 

finding correct correspondences. Binary descriptors like 
census and its many variations [8], are offering good results 
mainly because they are invariant to additive and 

multiplicative offsets in intensity and the time needed to 
compute them is relatively small. For this reason in our 
approach we have chosen a dense census descriptor. In the 
proposed method different shapes are chosen for the left and 
right patch descriptors. For the left census image the shape of 
the matching window remains the same as in the classical 
fronto-parallel approach (a 7x7 descriptor as described in 
equation 2). For the right descriptor patch we add to the 
descriptor cost four more pixels, from the upper right corner 
and four more pixels from the lower left corner. The 
expression which leads to the formation of the right image 
descriptor is expressed in equation 4. These pixels are selected 
in order to have the necessary information when warping an 
image patch. An intuitive depiction of the image patches is 
illustrated in figure 1. 
 

Fig. 1. Descriptor patch shapes for the left and right images 
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We denote by the symbol “ ⊕ ” the bit-wise concatenation 
of bit strings. The auxiliary function ε  is defined in equation 
3. 
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By the “|” operator we denote the bit-wise concatenation of 
the descriptor blocks. The bit-strings from the 2x2 blocks are 
appended to the end of the 7x7 descriptor. 

B. Hamming Distance Computation 
In order to compute the matching cost between the left and 

right descriptor images the hamming distance is used. In the 
classical approach, for each pixel in the left image, a pixel 
with similar appearance is searched in the right image over a 
number of positions (candidate disparities). The winning 
disparity represents the position where we have obtained the 
minimum Hamming distance.   

7x7 7x7 
2x2 

2x2  
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In our solution we have used a set of binary masks with 
whom we are choosing specific pixels from the right 
descriptor image. The creation of the new descriptor is 
composed by a series of logical ands, binary shifts, and 
concatenation operations. The binary masks were chosen such 
that they can cover several warping angles. These warping 
angles were chosen arbitrarily. We are using the binary masks 
in order to tilt the descriptor patch window so that we can 
better capture the orientation of a surface. 

After the new descriptor has been formed, the Hamming 
distance computation is used. The advantage of using binary 
masks consists in the fact that we know exactly what the 
position of each bit is and the extraction operations are done 
very fast. In figure 2 we illustrate an example of cropping the 
bits for the fronto-parallel case and for one non-frontal 
scenario. In order to maintain a decent running time we have 
chosen just three warping levels.  

Fig. 2. Bit extraction using binary masks example. The colored positons 
represent values of one and the white regions represent values of 0. 

In case of the frontal surfaces the final value is obtained as 
described in equation 5. 

 & FinRez OriginalString FPMaskFP =            (5) 
In case of the non-frontal scenario we compute a new bit 
string descriptor. 
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   By the “&” operator we denote the logical and 
operation, by the “<<” symbol we denote the shift left 
operation and by the “|” operator we denote the appending 
operation.   All the used binary masks are hard coded so we 
know exactly the position of each pixel.  

The result is the minimum Hamming distance 
obtained for all the frontal and non-frontal surfaces. The final 
score for the correlation of left image ith pixel with right 
image pixel at position (disparity) j using mask k is given in 
equation 7. By the “�” operator we denote an iteration 
procedure, not a summation operation. In order to favor frontal 
surfaces, we add an extra penalty in case the best score comes 
from a slanted patch. In our solution we have obtained the best 
results for a penalty of 5. 
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  After computing the Hamming distance a multi block 
aggregation procedure is used for improving the quality of the 
depth map and for reducing the possible outliers. The block 
sizes used are: 1x137, 137x1, 17x17, 7x7. The aggregation 
scheme is similar to the one presented in [11], the only 
difference consisting in the block sizes used as presented in 
equation 8. These block sizes were chosen based on 
experimental results. The sizes of the matching blocks were 
varied and the blocks for which we had the best matching 
scores were selected. We have used the KITTY data set for 
adapting the block sizes. We have also tried to introduce 
auxiliary matching blocks, however the results were not 
satisfactory. 
 

( ), * *1 137 137 1 17 17 7 7AggregatedValue Max val val val valx x x x=    (8) 

By  blockSizeval  we denote the value obtained by summing the 
individual values within a block for one of the specified sizes.  
By max we are referring to a function that takes the maximum 
number between two inputs.    

C. Winner takes all 
As it can be seen from equation 9, in the winner takes all 

step a disparity value is chosen from the computed cost volume 
C for a certain pixel position p.    
   ( ) ( ) ( , )D p argmin C p dd=            (9) 

The generated disparity values may be erroneous for 
multiple reasons: problems caused by reflectance, lack of 
texture, repetitive patterns etc. For this reason in this paper we 
propose several types of local constraints which are used in 
the process of generating the winning disparity.  In order for a 
disparity value to be valid all the constraints have to be 
passed. 

First of all, instead of finding just one minimal value and 
its corresponding index, we are searching for the first three 
minimal values.  

The first constraint we have put is that the ratio 
between the first minimum and the third minimum is lower 
than a threshold. This constraint would ensure that the 
minimal value is at a very steep position. This condition is 
doubled by a second check where we verify how close the 
second minimal value is to the smallest value. We label these 
two conditions as the confidence flag constraint (10), and two 
confidence constraint thresholds have been determined 
experimentally for both of the cases described above. The 
confidence check also gives us a measure of how correct a 
certain pixel got reconstructed. For example, a small ratio 
value would mean that the selected disparity is very good 
while a large ratio value would imply that the selected value 
may not be correct. 

3
1 ,  1  | 1 2| 2

1
 

                           

,

 

0

min
Confidence AND min min Confidence

min
ConfidenceFlag

otherwise

≤ − ≤
=

�
��
�
�
��

(10) 

 
 

323



 
 
 
 
 
 
 
 

Fig. 3. Graphical representation of the periodicity in the cost volume. 

The second constraint refers to the minimal value’s 
periodicity (11). In case the minimal value is periodical, it 
means the reconstructed surface may be un-textured or it may 
have repetitive patterns. In this case we cannot say very much 
about that surfaces disparity. 
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A graphical depiction of this phenomenon can be observed in 
figure 3.  Each spike represents a value where the disparity 
reaches a minimum point. In case there are many such points 
the surface corresponding to that pixel has very little 
information. 

The last constraint refers to the presence of an upside 
down “hill” type structure in the cost volume near the winning 
disparity. In case the minimal values obtained are different, 
and they pass the confidence constraint, we have to determine 
how “sharp” is the position where the minimum is located. 
Figure 4 intuitively demonstrates this concept and in equation 
12 the analytical expression is revealed.  
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The values used for the two confidence thresholds are 15 and 
20000, and the value for the hill threshold is 50000. All values 
were identified experimentally. A disparity value is generated 
if the confidence flag is 1, the periodicity is 0 and the hill flag 
is set to 1, otherwise we do not generate a disparity value for 
that corresponding pixel.  The next step consists in a subpixel 
interpolation procedure, such that the final disparity value is 
more precise. For this step we have used symmetric V, which 
was presented in [13]. The subpixel interpolation equation is 
presented in 13.  
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The parameters M1, M2, M3 are the correlation values 
belonging to the current winning disparity and its neighbors. 
After the subpixel interpolation step two additional stages are 
carried out in order to refine the disparity map.  

 
 

Fig. 4. Illustration of the sharpness of the position where the minimum value 
is located 

These steps are a background fill in stage, which is 
performed in case of occlusions [14] and LR check .The 
analytical expressions for these steps are described in equation 
14.  

The final disparity map is further refined using a 
speckle removing technique and a median filtering blur using 
1x9 and 9x1 kernels. The speckle size that is considered to be 
filled is 200 pixels. 
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No background interpolation technique has been 
implemented. 

IV. EXPERIMENTAL RESULTS  
In this section we present an evaluation of the proposed 

algorithm in terms of quality. We will compare our results to 
the results of classical stereo block matching algorithms and to 
other existing algorithms as well.  The evaluation has mainly 
been done on the KITTI stereo dataset, however we have also 
tested our solution on Middlebury [15] stereo images.  

Fig. 5. Bottom image is the left intensity image, in the second image the 
output of our algorithm is presented, in the first image the result of the census 

algorithm without our optimization is illustrated. 
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The system on which we implemented our method 
contains an Intel I5-2500 CPU with 3 Ghz frequency.  

No hardware acceleration methods have been used. Open 
MP has been used to parallelize some parts of the code.  The 
error threshold used in our testing is 2px.  The evaluation 
metric which is of interest to us is Out-All, meaning we 
evaluate our image on all pixels for which we have ground 
truth information, even if they are occluded.  

 
Fig. 6. Bottom image is the left intensity image and its ground truth, in the 
top left image we have the image obtained with the census descriptor, in the 

top right image the image obtained with our approach is revealed  

Fig. 7. The bottom image is the left intensity image, second image depicts 
the disparity map using our algorithm, the first image represents disparity 

image using the sparse census approach  

 

In figure 5 we illustrate the result of our algorithm in 
comparison to a 7x9 census descriptor. The same aggregation 
and refinement scheme has been used for both algorithms.  As 
we can see our solution is able to reconstruct better the fence 
on the right and other slanted surfaces present in the image. 

In figure 6 a set of stereo images from the 
Middlebury database are presented. The classical 7x9 census 
transform was used on the top left image and our method was 
applied for the top right image. The same parameters were 
used for both images. As it can be seen the multi block method 
approach using census does not reconstruct, as good as the 
method presented in this paper, the colored pillow which is 
tilted towards the head. 

Figure 7 illustrates another outdoor automotive 
scenario where our solution has better results compared to the 
classical approaches. As it can be seen the right slanted wall 
presents some artifacts when using the sparse census 
approach. When generating the disparity image with our 
algorithm the artifacts are reduced. 

In figure 8 we present the Tsukuba image with its 
ground truth and in figure 9 we illustrate the result of our 
algorithm on this image in comparison to the census block 
matching algorithms. 
It should be noted that for the Middlebury images we had to 
change the aggregation block size. For the Tsukuba image 
pairs we have used 61x1, 1x61, 13x13 and 3x3 blocks, while 
for the image with the reindeer we used 150x1, 1x150, 21x21, 
7x7 block sizes. The penalty for our algorithm when we were 
using the Middlebury dataset was set to 4.  In future work we 
will have to make an analysis of how the image size and 
content affect the aggregation blocks dimensions.  
 

               
Fig. 8. Middlebury tsukuba image with ground truth 

               
Fig. 9. The left image is obtained using our method while the right image is 

using a classical census descriptor. 

In table 1 we present the comparison of our algorithm 
and other block matching algorithms which are based on 
binary descriptors.  The metric used is out-all. The density 
illustrates the percentage of the image that has been filled.  No 
background interpolation has been used in with any of the 
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tested methods from table I. This is why for all implemented 
solutions the density is less than 100%.  

TABLE I.  EVALUATION ON KITTY DATA-SET 

Method 
Results on Kitty images 

Density Out-All error 
Census                     99.67% 11.865% 
WCS-

CENSUS 99.98% 11.24% 

MCT 99.68% 11.21% 

OurMethod 99.98% 10.27% 

Sparse Census 99.51% 13.29% 

 

 The KITTY dataset contains outdoor traffic scenarios. 
Many researchers have tested their algorithms on this dataset, 
so the benchmark contains local, semi global and global 
submissions. A rough estimate of our algorithms position on 
the kitty benchmark can be seen in table 2. 

TABLE II.  COMPARISON WITH EXISTING METHODS FROM THE  KITTY 
STEREO DATA-SET 

Position 
Method 

Performance on Kitty dataset 
Density Out-All error 

39 RBM 100% 10.05% 
40 SGM 85.80% 10.16% 
41 DLP 100% 10.19% 
42 OurMethod 99.98% 10.27% 
43 MSGM-LDE 100% 10.68% 

 
44 Ensemble 100% 10.89% 

 
The running time for the proposed algorithm on the KITTY 

dataset is 0.4 s. The current implementation can be accelerated 
in order to obtain a better running time; in the current paper 
however we have focused on improving the quality of the 
reconstruction. The only extra memory used in this approach 
is the one needed for storing the array of binary masks.  

V. CONCLUSIONS AND FURTHER WORK 
In this paper we have presented a new scheme for block 

matching stereo which uses limited resources for computing 
good quality depth maps. During the process of block 
matching the depth within a matching window is considered 
constant. This assumption does not often hold for various 
types of tilted surfaces. For this reason in the proposed 
solution the best descriptor for a surface is chosen by using a 
set of binary masks. The binary masks are used in order to tilt 
the matching window so that the best surface descriptor is 
created. A penalty is encapsulated in the matching value in 
case the best score comes from a slanted window.  The second 
contribution of this paper consists in the creation of local 
constraints which are imposed on the cost volume when 
generating a winning disparity for a certain pixel position. 
These constraints help eliminate the outlying disparities from 

the start. We have conducted experiments using different 
kinds of binary descriptors and the proposed method proved 
superior in terms of quality. In our approach we have used a 
multi block aggregation approach in order to filter outliers and 
eliminate the fattening effect caused by large rectangular 
blocks. The sizes of the various blocks were taken 
experimentally using the kitty dataset ground truth as 
adjustment reference.  We have observed that when using 
other images, the block sizes have to be adjusted. For our 
future work we plan to investigate how different types of 
images affect the sizes of the aggregation blocks used.  

In future work, we will tackle the creation of a more 
flexible method of capturing slanted surfaces, which will work 
with any binary descriptor.  We will also focus on improving 
the running time of our algorithm. 
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