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Abstract— one of the key components of the 
perception system in an autonomous vehicle or 
ADAS is the target tracking module. Using target 
tracking in the sea of clutter, self-driving cars are 
able to better understand the environment and 
make predictions about the surrounding objects. 
Cuboids obtained from a sparse LIDAR often 
exhibit a fluctuating behavior due to segmentation 
problems and errors accumulated from the motion 
correction module. Furthermore, targets in real life 
scenarios do not move in a predictable manner, so it 
is very difficult for a classical motion model to 
describe the complex behavior of any road objects 
in such cases. In this paper we propose a two-step 
data association scheme that efficiently and 
effectively finds correspondences between tracks 
and measurements. Then we aim to generate better 
position estimates for objects with an ambiguous 
dynamic behavior by associating and combining the 
results from two different motion models. The 
proposed solution runs in real time and it was 
validated using a high precision GPS, and also by 
projecting the prediction results in the 
corresponding intensity image and assessing 
whether the prediction falls on the correct item.

Keywords— Vehicle Tracking, 3D LIDAR objects, Data 
Association, Clutter 

I. INTRODUCTION 

The autonomous driving and driver assistance systems 
are attracting a lot of public attention recently. One of the most 
important modules in understanding the traffic environments 
for the ADAS and self-driving cars is the detection and tracking 
of multiple objects. Object tracking usually seeks to 
encapsulate multiple unique traits of the tracked object such as 
object identities, velocities, positions, orientations and in the 
context of autonomous driving the class of objects. For the 
problem of vehicle perception, the task of object tracking is 
essential, as the environmental measurement is useful only if it 
is filtered (not noisy) and identifiable even in occluded 

situations such that the vehicle is capable of making use of the 
measurement and transform it into an actionable information.
  Target tracking can be performed on multiple sensors. 
Traditional tracking methods were developed for RADAR 
applications, where they would operate on point observations. 
Such tracking solutions would vary in their methods of data 
association and state approximation. These algorithms are 
designed principally to allow for measurement inaccuracy, 
ambiguous relationship between observations and the physical 
objects which generate them and spurious observations caused 
by clutter or background noise [1]. In the context of intelligent 
autonomous vehicles or ADAS various sensors could be 
considered. The most common sensors used by researchers are 
the cameras, due to their cheap and versatile characteristics.   
However another research direction is to use time of flight type 
of sensors, with the most popular being the LIDAR (light 
detection and ranging) sensor.  The advantage, tracking using 
LIDAR sensor, has to tracking in the visual color images 
consists in insensitiveness to illumination conditions. Most 
tracking solutions are implemented in 3D Cartesian coordinates 
under a sequential filtering framework. Some of the common 
steps involved in the tracking procedure are the point cloud 
segmentation, candidate matching and motion estimation [2]. 
High quality segmentation is a fundamental requirement for 
tracking algorithms to obtain high quality results. Several 
methods that exist in the literature work either on 2D grid map 
[3, 4, and 5] or on 3D occupancy grids with higher 
computational burden [5].  Candidate matching and tracking in 
cluttered environment are rather difficult with incorrect 
segmentation result. Popular methods for matching and motion 
estimation steps include feature based matching [16] followed 
by an estimation using Kalman or Extended Kalman Filter[5].
3D objects obtained from sparse LIDAR point clouds are 
difficult to track mainly due to their change in appearance, 
unreliable dimensions and fluctuating positions in consecutive 
frames. Furthermore 3D objects which represent moving 
vehicles can have a very complex motion which cannot be 
described by a classical motion model. To this end in this paper 
we propose the following contributions: 

� First we propose a two-step 3D data association 
scheme that associates LIDAR measurements to 
existing tracked objects 
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� Then we propose a data association scheme for finding 
the correspondences between the tracks obtained from 
two different motion models 

� Finally we combine the results of the positions of the 
two trackers using the vehicle orientation 

The rest of the paper is organized as follows: In section II we 
overview the literature on data association and tracking. In 
Section III, the proposed solution is stated. In Section IV we 
evaluate the results using various experiments and compare the 
data to the information obtained from a high precision GPS. 
Section V concludes the paper. 

II. RELATED WORK

An essential part in the perception pipeline of autonomous cars 
and ADAS is represented by the object tracking component. A 
self-driving vehicle can make predictions about its surrounding 
objects location and behavior, and based on that it can plan next 
actions and make proper decisions.  There is an extensive 
research literature on object tracking using multiple types of 
sensors.  Generally autonomous vehicles [6, 7] can be equipped 
with sensors like mono and stereo cameras, thermal, night 
vision, LIDAR, Radar, Inertial Navigation System (INS), 
Global Positioning System (GPS), and Inertial Measurement 
Unit (IMU) in order to have a higher degree of perceiving and 
representing the environment.   

The Kalman Filter (KF) [8] is based on the Bayesian 
method and it computes recursively the optimal parameter 
estimates from its posterior density. The Kalman Filter assumes 
the object dynamic function and posterior density are Gaussian 
distributions and the process and measurement functions are 
linear. As we know in the real world the object dynamics cannot 
be captured by linear motion model so the Kalman Filter had to 
be adapted to encapsulate a non-linear motion and measurement 
model. Two approaches were introduced, the Extended Kalman 
Filter (EKF) [9] and the Unscented Kalman Filter (UKF) [10].
The EKF uses a first order Taylor series expansion 
approximation to linearize the process function. However, 
linearization using Jacobians is computationally expensive so 
for this reason in this paper we have used the UKF, which 
makes an approximation based on the so called sigma point 
sampling.  

The UKF is used widely in LIDAR MOT as presented in 
[2, 3 and 4] due to its low computational complexity 
comparable to the KF. 

In this paper we will focus on tracking objects that come 
from a 16L 3D LIDAR, since this sensor represents the first 
option to acquire 3D spatial information in the intelligent 
vehicles context. Generally, object tracking algorithms can be 
divided into two categories based on representation scheme for 
the object [11]:

A) Tracking by detection (Discriminative) approaches 
Discriminative object trackers localize the object 
using a pre-trained detector. Many approaches 
proposed for discriminative object tracking are based 
on monocular cameras. They main research focus for 
such approaches is data association. An overview of 

such methods can be seen in [12, 13]. In [14]  Azim 
and Aycard proposed a method of detecting and 
tracking moving 3D LIDAR objects using a 
supervised learning approach. The main disadvantage 
of discriminative approaches is knowing beforehand 
the object categories. 

B) Model Free (Generative) approaches 

In order to have a reliable and robust perception system a 
more generic object tracker is required [15]. This type of 
generic tracker is able to track objects even if no prior 
knowledge is available. Generative tracking methods search for 
the next occurrence of an object by looking for the region that 
is most similar to a prior described model of that object. The 
object is usually updated online to handle its changing 
variations. Some of the available generative approaches track 
objects based on their motion [16, 17].  This is one of the most 
widely used methods and are related to the Detection and 
Tracking of Moving Objects (DATMO) [18].  One of the issues 
of these methods is that they are unable to detect stationary 
objects which could potentially move. To deal with these 
problems changes between two or three consecutive 
observations can be analyzed and identify the modifications,
this is also known as frame differencing [16].  Another idea, is 
to build a static model of the scene, called background model 
and find deviations from this model. This process is known as 
“background modeling and subtraction” [19]. Stiller and 
Moosman perform a convexity based segmentation for 
detecting hypotheses. In their approach a KF and ICP are used 
for tracking moving objects and managing tracks. Their method 
includes the 3D reconstruction of the shape of moving objects. 
In [21] the authors use a GIS map to reject outliers. They track 
moving objects using Kalman Filter with a Constant Velocity 
model and ICP for pose estimation. 

In an urban scenario objects do not move in a well-defined 
pattern. There is no defined motion model that can be used to 
precisely predict the trajectory of a vehicle all the time. For this 
reason there are some attempts in the literature that combine 
multiple motion models to obtain a more robust estimate. 
Interacting motion models are generally used for vehicle 
tracking having ambiguous behavior. Some approaches are 
presented in [29, 30] 

 One of the most challenging tasks when performing 
target tracking in heavy clutter is data association. A successful 
association means that a tracking hypothesis can be successfully 
and correctly updated.  Since data association is just a small part 
of the tracking pipeline, this step has to be computed very fast. 
Given this circumstance some tracking solutions include the use 
of the strongest neighbor filter (SNF) [22] and Nearest Neighbor 
Filter (NNF) [23].  The SNF selects the measurement that has a 
highest score from a set of validated measurements, while the 
NNF selects the measurement that is closest to the predicted 
value. Another common approach has been the probabilistic data 
association filter (PDA) [24], which uses all the validated 
measurements to estimate the state and covariance of the object, 
rather than selecting a single measurement. The joint PDA is a 
variation of the PDA algorithm which deals with multiple 
targets. Another variation of the PDA is the integrated PDA, 
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where the track existence probability and the association 
probabilities are estimated together [26]. Another more powerful 
algorithm in the family of DA algorithms is the multiple 
hypothesis tracker (MHT). The MHT associates all the 
measurements to the tracks, and gating and pruning are used to 
eliminate the tracks with low probability [27]. Even though the 
MHT has proven to be very accurate it is more expensive 
computationally. There are multiple variations of the MHT 
algorithm that try to reduce its complexity. For example the 
probabilistic MHT avoids assigning measurements to specific 
tracks and instead calculates the probability of each 
measurement to belong to each track [28].

III. PROPOSED SOLUTION

In this section we present the proposed LIDAR object tracking 
in clutter solution. Detected LIDAR objects are first brought in 
the reference frame of the EGO vehicle and their position is 
compensated with respect to a reference time stamp. In the first 
frame, new tracks are initialized with the information coming 
from the LIDAR measurements. In the current work we are 
using two motion models. The first is the constant velocity 
model and the second is the constant velocity and turn rate 
motion model. The two models are used to cover complex 
vehicle motion that are present in the real world. In the 
following frames a two-step data association scheme is 
employed to make correspondences between existing tracks and 
new measurements. In case new measurements do not have any 
corresponding tracks that can be associated to them, new tracks 
are initialized for those measurements. In case a track was not 
associated with a measurement, a simple predict function is 
called so that the track is updated to the new time stamp using 
its current state and covariance. Tracks are implemented to have 
an internal “death clock”. This means that if a track is not 
associated and updated for a number of frames, it gets erased.  
After this step a track to track association is performed.  Tracks 
coming from the two motion models are associated and the final 
position of an object is given using a weighted combination of 
the two with respect to the orientation of the vehicle. 

A. Two step data association for LIDAR objects 
Data association addresses the issue of determining 

corresponding relationships between targets and detections.  
The main issue that was observed for the LIDAR objects was 
their fluctuating nature. This means that the objects we are 
tracking did not offer reliable dimensions from frame to frame, 
and their position did not follow a smooth pattern. Furthermore, 
due to the fact that target tracking is just one part of a higher 
autonomous driving pipeline we could not perform any sort of 
cross validation using information from other sensors, in order 
to maintain a high running speed.  
Before running our two step data association algorithm we had 
to change the reference point of the detected object. The current 
reference point of the LIDAR objects is the centroid of the 
object. The reference point was changed, taking into 
consideration the vehicle dimensions, to the corner which is 
closest to the ego vehicle since this is the position which has the 

highest reliability and its position fluctuates the least. Figure 1
below intuitively illustrates this process. 

Fig 1. Changing the reference point of the target vehicle

The first step in our data association algorithm is to 
project the given object list onto a 2D color grid.  In this grid, 
the cells occupied by LIDAR objects have the red channel set 
to 255 and the blue and green channels set to the position of the 
LIDAR object in the initial object list. Then we project the 
existing tracks onto the same virtual grid, they are depicted with 
white color in figure 2. The intersections with the 
measurements are marked with yellow for illustration purposes. 
It may happen that one track may fall onto multiple 
measurements. For this reason in every track we embed an array 
containing the maximum overlapping with each LIDAR object 
as described by (1).

   ���

Fig 2. Overlapping tracked objects and measurements 

For each LIDAR object we are selecting the tracks that 
are closest to it in the 2D image with respect to the Euclidian 
distance. This step is performed in order to filter the distant 
tracks from a reference LIDAR measurement. Afterwards the 
selected tracks are filtered further using their dimensions.  Even 
though, the object size varies from frame to frame, tracks which 
are considerably smaller than the LIDAR objects and vice versa 
can be filtered out. So considering a target object (track or 
LIDAR) if the measured object area is comparable to the track 
area with a certain threshold we set a validation flag true (2).

 (2) 

In the equation above x and y are the areas for the track 
and LIDAR object. We further test if the largest visible face of 
the LIDAR object is comparable to the largest visible 
dimension stored in the track so far. If this condition also holds 
true, we compute the overlapping percentage between the track 
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and the LIDAR object. For a LIDAR object detection, we are 
associating the track with the maximum overlapping percentage 
if it is larger than 5%. Figure 2 above illustrates the results of 
the first step of the association algorithm. The blue lines 
indicate object associations. There may be situations in which 
the predictions do not overlap at all on the detected LIDAR 
objects. This may happen due to accumulated errors in the 
motion correction of the point cloud or bad point cloud 
segmentation. The second step of our data association algorithm 
has been implemented to treat this case.  The validation function 
used is presented in the equation 3 below. 

���

In the equation above x and y represent the LIDAR 
and tracked object, used(a) is a function that informs us whether 
a specific object has been previously associated, visible face 
represents the maximum visible face seen with respect to the 
position of ego vehicle and the symbol  denotes the absolute 
value of a. The track and LIDAR object pair that pass the 
validation step, and have minimum Euclidian distance are 
chosen for association. 

The result of the second step can be seen in the figure 
3 bellow. We marked with a blue line the correspondences 
between LIDAR object and track in order to better illustrate the 
data associations. 

Fig 3. Result of associating objects that do not overlap

B. Target Tracking 
In the real world the object dynamics cannot be captured only 
by linear motion model so the Kalman Filter had to be adapted 
to encapsulate a non-linear motion model. To reproduce a more 
realistic scenario two motion models are used. The two motion 
models used are the constant turn rate and velocity motion 
model (CTRV) and the constant velocity (CV) model.   
The state vector is presented in equation x bellow.  

  ���

The constant velocity model represents motion behavior of an 
object with almost constant velocity and the object is assumed 
to have no turn rate, and therefore it is heading to the same 
bearing on all time stamps. The system function is presented in 
(5). 

���

 The CTRV motion model is described using two cases. The 
CTRV process model when the yaw angle is not 0 i.e. the 
vehicle is performing a turn, is illustrated in (6). 

	�
�

When the yaw angle is 0 the vehicle is moving straight and the 
process model becomes (7): 

			���

The UKF generates a set of sigma points and then propagates 
them through the non-linear process function. The Gaussian can 
then be recovered from the newly transformed points.  
The first sigma point is the mean (8). 
     									���
The rest of the points are generated around the mean with a
spreading factor of 

(9) 

							���

The sigma points are fed through the process function. Before, 
we had a covariance matrix and generated sigma points, and 
here we are doing the inverse step, we have predicted sigma 
points and we want to recover the covariance matrix. So we also 
want to invert the spreading of the sigma points. This task is 
performed by using the weights.  Weights are calculated as 
described below in (11) and (12). As it can be seen the weights 
depend on the spreading parameter lambda  

  ����

							����

The mean and covariance are generated using (13) and (14) 
below. 

  ����

      ����
The prediction step for the constant velocity model is simpler. 
The state and covariance are projected forward using a 
transition matrix A (15) and (16). 

  (15) 
    (16) 
The update step is similar in both trackers regardless of the 
motion model. Since the measurement model is linear (we are 
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receiving x, y coordinates similar to the ones in our state model) 
we will not have to perform any linearization procedure. We are 
computing the Kalman gain based on the equation (17) bellow 

(17) 
In the equation bellow we are updating the state and covariance 
based on the measurement readings (18) and (19). 

  (18) 
   (19) 

The results of the tracking process when using the CTRV model 
are depicted in figure 4 bellow. 

Fig 4. Result of the tracking process
The object predictions are depicted with green rectangles, the 
object measurements are illustrated with red rectangles. 

C. Data Association and combination of tracks having 
different motion models 

Associating and merging the results of predictions 
from two different motion models allows us to obtain a better 
overall estimate of how the objects in a scene are moving. In 
order to merge the results of the two filters we first have to 
associate them. For this task we are using an approach similar 
to the two-step association method presented above. Most of the 
time only two predictions will overlap, however there may be 
cases when more predictions from one filter fall within the 
predictions of the second filter. For this reason in this case the 
validation function of the association will be more restrictive 
with respect to the object dimensions.  In the figure 5 bellow we 
illustrate the overlapping in a grid of the tracks obtained with 
the nonlinear tracker with green and the tracks having an 
underlying linear motion model with red.   

Fig 5. Result of the track to track association process
The tracker manager which handles the tracking 

contains an area vector similar to the one present in each track. 
In this case however the area vector is initialized each time we 
search for a correspondence. Similar to the two step association 
we are trying to find the maximum overlapping between two 
tracks. If we identify that two tracks overlap we will consider a 
validation function (20) that checks the maximum similarity 
between the two tracks. For space considerations we will denote 
the following expressions as described below. 

���

Each two tracks that come from the filters containing 
different motion models which are associated are stored in a 
lookup table for fast accessing.  
In order to obtain the final position of an object the two tracks 
are combined taking into consideration the movement 
orientation of the vehicle. If the vehicle orientation is closer to 
0°, 90°, 180°, 270° the track coming from the linear motion 
model will receive a higher weight and the track obtained using 
the CTRV model will receive a lower weight and vice versa. 
The final position is obtained using the weighted sum of the 
predicted positions (21).  

 
       (21) 

IV. EXPERIMENTAL RESULTS

In this section we will evaluate the results of the 
proposed solution with respect to the position given by a high 
precision GPS placed on a tracked target vehicle. The system 
on which we have tested our method contains an Intel i5-2500 
CPU with 3 GHz frequency. The main characteristics of the 
GPS system which was implemented on a target vehicle are 
displayed in Table I bellow.  

TABLE I. GPS CHARACTERISTICS

Feature Value
Standard RT3003
Positioning L1, L2
Position accuracy 0.01m
Velocity accuracy 0.05Km/h
Roll/pitch accuracy (1σ) 0. 03°
Heading accuracy (1σ)2 0. 1°
Track angle accuracy (1σ)3 0. 07°
Slip angle accuracy(1σ)4 0. 15°

The characteristics of the 16L Velodyne used to detect the 
objects are illustrated in Table II bellow. 

TABLE II. VELODYNE CHARACTERISTICS

Features
Time of flight distance measurement with calibrated 
reflective
16 channels
Measurement range up to 100m
Accuracy +/- 3cm
Dual returns
Field of view (vertical): 30° (+15° to -15°)
Angular resolution (vertical): 2°
Field of view (horizontal/azimuth): 360°

Angular resolution (horizontal/azimuth): 0.1° - 0.4°
Rotation rate: 5 - 20 Hz

We will refer to the vehicle on which the GPS is mounted as the 
target vehicle and the car on which the velodyne is mounted as 
the reference (or ego) vehicle. We are selecting the nearest 
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neighbor to the target vehicle in order to assess whether the 
position of the predicted cuboids is correctly identified.  

In the chart below presented in figure 6 with a blue 
color we represent the position of the target vehicle on the x 
(forward) axis, with gray we represent the measurement 
obtained for the LIDAR cuboid and with orange we represent 
the cuboids position obtained from our algorithm. On the 
horizontal axis we represent the number of frames and the on 
the vertical axis the distance to the object. We plot only the x 
axis since the greatest oscillations exist on the axis facing 
forward. 

Fig 6. Position of the vehicle over a number of frames

As we can see the original data, depicted with grey is noisier in 
time. The result of our filtering solution represented with 
orange is much smoother and closer to the ground truth. 
The results of our algorithm on another sequence can be 
visualized in figure 7. The color code remains the same as in 
the previous example. 

Fig 7. Another sequence depicting the vehicle position over a number of 
frames

Another way of evaluating our solution is to project 
the tracked objects in the intensity image, using the 
corresponding projection matrices, and visually assessing 
whether the tracked object falls on the target vehicle. In the 
figure 8 bellow we see that the prediction (with red) overlaps 
with the object measurement (depicted with blue) and it is very 
close to the target vehicle colored with green. The box 
dimensions on the vertical (Z) axis are changed so that in case 
of perfect overlapping we are still able to visualize where the 
projection is situated in the image. 

Fig 8. Measurements, predictions and GPS values projected onto the image

Another example from another scene can be observed 
in the image bellow. In this scene we can also see predictions 
from objects which are no longer present in the scene. We are 
keeping a track alive for a number of 10 frames, afterwards if 
no measurement is associated to it, the tracked object is 
destroyed.  

Fig 9. Tracks without measurements are kept for a number of frames

In figure 10 bellow we can see another example with multiple 
objects. In the left image the 3D LIDAR objects are displayed 
with blue, in the middle image with pink color we can see the 
track predictions which overlap perfectly with the 
measurements, and in the right image the segmentation image,
overlapped over the intensity image is depicted.

Fig 10. LIDAR objects, predictions and front image taken for validation

The proposed solution is having a running time of 20 fps on the 
hardware described above.  

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a real time solution for 
tracking 3D LIDAR objects in clutter under complex real world 
scenarios. One of the reasons why target tracking may fail for 
sparse LIDAR objects is that their position and dimensions vary 
in each frame. This can happen due to bad point cloud motion 
correction or bad segmentation. Such unreliable features may 
lead to false associations and ultimately to poor predictions and 
an inferior understanding of the environment. Furthermore in 
an urban situation tracked objects do not move on well-defined 
patterns, making it difficult for a single motion model to be able 
to represent the object trajectory. For this reason in this paper 
we proposed a two-step data association scheme that finds 
correspondences between objects even if they change in 
appearance in each frame. The associated objects are tracked 
using two trackers one having a linear motion model and the 
other a non-linear model. The two models are able to better 
capture the dynamic behavior of traffic objects. The efficient 
association and combination of trackers using the orientation of 
the vehicle is able to provide better and more reliable estimates 
for the position of the vehicle.  

In future work we will try to further improve the data 
association process using results from the segmentation image 
since this information is already available for other high-level 
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processes and using it will not burden the running time of the 
system. We will also try to implement an efficient way of 
combining and encapsulating more motion models in order to 
have a better representation of the object movement in an urban 
environment.  
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