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Abstract— the unknown correspondences of measurements and 
targets, referred to as data association, is one of the main 
challenges of multi-target tracking.  Each new measurement 
received could be the continuation of some previously detected 
target, the first detection of a new target or a false alarm. Tracking 
3D cuboids, is particularly difficult due to the high amount of data, 
which can include erroneous or noisy information coming from 
sensors, that can lead to false measurements, detections from an 
unknown number of objects which may not be consistent over 
frames or varying object properties like dimension and 
orientation. In the self-driving car context, the target tracking 
module holds an important role due to the fact that the ego vehicle 
has to make predictions regarding the position and velocity of the 
surrounding objects in the next time epoch, plan for actions and 
make the correct decisions. To tackle the above mentioned 
problems and other issues coming from the self-driving car 
processing pipeline we propose three original contributions: 1) 
designing a novel affinity measurement function to associate 
measurements and targets using multiple types of features coming 
from LIDAR and camera, 2) a context aware descriptor for 3D 
objects that improves the data association process, 3) a framework 
that includes a module for tracking dimensions and orientation of 
objects. The implemented solution runs in real time and 
experiments that were performed on real world urban scenarios 
prove that the presented method is effective and robust even in a 
highly dynamic environment.
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I. INTRODUCTION 

Efficient and reliable perception is one of the core 
functions for representing the dynamic environment by 
autonomous vehicles.  The ability to effectively detect the 
surrounding traffic scenarios plays an important role for many 
of the self-driving car components such as collision avoidance, 
path planning or localization. In order to navigate successfully 
several complex situations have to be addressed. The most 
difficult being the crowded places where multiple static and 
dynamic objects are present which may exhibit various motion 
behaviors. For the problem of environment perception, the 
target tracking process is essential since provided 
measurements are useful only if they are filtered (not noisy) and 
identifiable in occluded situations such that higher level 
modules from the processing pipeline can transform each 
measurement in an actionable information. 

To address such complex scenarios which may occur 
in various weather conditions multiple types of complementary 
sensors are usually employed. Chiefly among them the LIDAR 

(Light Detection and Ranging) sensor is used because of its 
ability to provide an accurate position [1, 2].  Other sensors like 
stereo cameras can also be used because of their ability to 
provide the semantic class additionally to the position estimate 
of objects [3]. The main issue that appears with stereo sensors 
is that they may not work well in case of bad illumination, 
perspective effect or lack of texture among others [4]. Radars 
are another category of range sensors which are used in 
autonomous vehicles because of their long range detection 
ability and capacity to accurately detect motion.  The drawback 
of radars is that they have a reduced field of view and are not 
able to reliably detect static objects or objects made of porous 
plastic [5].  Modern perception and tracking architectures 
usually fuse all the available sensor data to obtain a more 
comprehensive understanding of the environment.  However 
one key aspect of any modern architecture is adaptability in case 
of sensor failure. In such a case the remaining sensors should 
be able to accurately detect and track the road objects. In this 
paper we address the problem of target tracking using a LIDAR 
sensor.

We split the challenges of developing a robust tracking 
algorithm in three categories: high level processing pipeline 
related challenges, target tracking related issues and time 
constraints. 

The high-level processing pipeline challenges refers to 
the errors introduced in the target tracking module by the output 
provided by other modules from the self-driving car processing 
pipeline, inefficient sensor calibration or bad sensor 
synchronization. The general pipeline of the detection and 
tracking procedure includes steps like point cloud 
segmentation, candidate matching and motion estimation [6]. 
The quality of the point cloud segmentation algorithm impacts 
the quality of the tracking results. Existing methods in the 
literature work either on 2D [7] grid maps or 3D occupancy grid 
maps with higher computational burden [8]. Incorrect 
segmentation leads to a difficult candidate matching and 
tracking in a cluttered scenario. Some of the common issues of 
objects obtained by incorrect point cloud segmentation are 
change in appearance, unreliable dimensions and fluctuating 
positions in consecutive frames.

On the other hand, poor synchronization of LIDAR 
and camera may lead to bad point cloud projection in the image. 
Which may result in 3D points with an erroneous semantic 
class. In figure 1 we can see such a scenario. In the left-hand 
side of the image, we can observe the semantic class of each 
projected 3D LIDAR point in the semantic image. As we can 
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intuitively see these points do not fall on the correct object 
which may infer a poor sensor synchronization or an erroneous 
motion correction.  

The second challenge refers to the issues one may have 
when developing a tracking algorithm. Such a challenge can 
include issues like the motion uncertainty, the origin 
uncertainty or the presence of heavy clutter among others. The 
motion uncertainty refers to the fact that real objects can have a 
complex motion that cannot be described by single motion 
model. One of the key challenges is represented by the data 
association step which aims to match identified targets to 
oncoming measurements in order to maintain the object 
identity. Mistakes made in the identity maintenance could result 
in a catastrophic failure in many high-level reasoning tasks. To 
obtain a highly accurate multi target tracking solution, a robust 
data association model and an accurate measure to compare 
detections over time is necessary. Popular data association and 
motion estimation methods include steps like feature-based 
matching followed by a filtering step using the Kalman or 
Extended Kalman filter. Lastly the time constraint refers to the 
fact that the target tracking module is useful only if it is running 
in real time. To address the above-mentioned issues in this 
paper we propose the following contributions:

� The implementation of an affinity measurement 
function and the development of a positional descriptor that 
exploits multiple features coming from LIDAR, camera and 
from a semantic segmented image, to find the best track-
measurement correspondences

� We modeled the tracking problem as a Markov 
decision process that improves the quality of the data 
association and tracking process

� The inclusion of a module for filtering the orientation 
and dimension properties of tracked objects

The rest of the paper is organized as follows: In section II 
we overview the literature on data association and tracking and 
in Section III, the proposed solution is described. In Section IV 
we evaluate the obtained results using multiple metrics. Section 
V concludes the paper.

II. RELATED WORK

Existing tracking algorithms aim to model the environment 
at different abstraction levels, depending on the complexity of 
the surrounding world. Many video-based tracking solutions 
have been developed in recent years due to the low cost and 
availability of the video sensors [9, 10]. The problem with 
video-based tracking resides in the fact that all of these methods 
can be affected by environmental conditions such as weather or 

illumination. On the other hand, 3D LIDARs are not affected 
by the illumination conditions, the scale of their measurements 
are uniform despite their distance, and due to technological 
advancement, the sensors are becoming more affordable. An 
approach used in the research literature is the probabilistic data 
association (PDA) [11] filter which does not rely on a single 
measurement to estimate the state and covariance of an object 
but uses the set of validated measurements. Variations of the 
algorithm include the joint PDA [12] used in handling multiple 
targets or the integrated PDA in which the data association 
probability and the track existence are estimated jointly [13]. 
The JPDA (Joint Probabilistic Data Association) filter can 
exhibit poor performance when the objects are close to each 
other. Another class of more powerful algorithms use variations 
of algorithms like the multiple hypothesis tracking (MHT) [14, 
15] to solve the multiple target tracking. This MHT solution 
retains all possible data association hypothesis until there is 
enough information to resolve the ambiguities that occurred in 
older associations. The issue with MHT is that the algorithm is 
computationally more expensive compared to JPDA or GNN.  
Some methods model objects at a higher level of abstraction 
using oriented cuboids [16] or L shaped models [17] due to the 
simplicity in which cars, pedestrians or other road users can be 
represented. The box representation is unable to represent 
complex structures like infrastructure or vegetation, yet it is 
often used due to the simplicity of implementation and high 
running time which is necessary in large computational 
pipelines. In order to improve the performance of the detection 
and tracking algorithm, various solutions try to find a tradeoff 
between more sophisticated representations and computational 
efficiency. For example, in [18] the dynamic objects are 
modeled as deforming contours, in [19] individual 3D points 
are tracked and in [20] boxes with adaptive sizes are used.  

The task of improving the data association process has led 
some researchers to fuse the information coming from a camera 
with the 3D points.  In this regard Held et al. [21] fused a 3D 
point cloud with a color image to obtain a colored 3D point 
cloud. The authors have used the 3D shape and color data to 
reconstruct and track the objects. They have showed that the 
usage of multiple features leads to an overall better velocity and 
position estimate.  In [22] Asvadi et al. propose a 3D object 
tracking algorithm using a 3D LIDAR, an RGB camera and an 
GPS/IMU sensor. The solution starts with a known initial 3D 
bounding box for an object and then two parallel mean-shift 
algorithms are applied for object detection and localization in 
the 2D image and 3D point cloud, followed by a robust 2D/3D 
Kalman filter based fusion and tracking. 

Fig.1 Erroneous semantic class of point cloud projection
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Other solutions use particle filter to estimate shape, velocity 
and object movement. The particles are independent instances 
each having their own position and velocity. In [23] the particle 
filter is employed to estimate velocities, while [24] applies a mix 
of static and dynamic particles to estimate position and 
velocities. In general grid-based tracking solutions are not able 
to accurately estimate the state of cells belonging to a large
uniform area, and this leads to higher uncertainty due to 
incorrect data association. In [25] the authors present an
interesting tracking solution that performs a probabilistic 
hierarchical object association based on 3D information 
provided by a stereo camera and optical flow data. This solution 
relies heavily on image quality to detect, associate and track 
objects and it is not suitable for scenarios with adverse weather 
conditions.  

III. PROPOSED SOLUTION

The most challenging aspect of object tracking is arguably 
that the associations between measurements and objects is 
unknown. The objective of multi-object tracking is to compute 
the posterior density as fast and as reliable as possible for each 
object of interest.  Considering that the sensor, measurement 
and motion models are linear and Gaussian, the exact posterior 
density can be expressed as a Gaussian mixture with one term 
for every association at time k as seen in equation 1. The 
term is a probability mass function which denotes the 

probability of association to a measurement and 
represents a probability density function. We denote the fact 
that the Gaussian mixture spans over all associations that fall in 
the covariance ellipse of a target by the sum 

                (1)
We try to find the best measurement association for each 

target, and prune all other associations that are situated in the 
covariance ellipse of the target object in a global nearest 
neighbor manner. Finding a single association will give a 
computationally cheap algorithm which can meet the real time 
performance requirement of a self-driving car. The posterior 

density can be approximated by in (2), where is 
the sequence of optimal data associations from time 1 to time k

(2)
In order to make sure that an association is more probable, the 
correspondence between a measurement and a hypothesis is 
done using many aggregated features which will be described 
shortly. For the prior densities that are Gausian and the 
measurement model is linear and Gausian the Kalman update 
and prediction rules are used to find the posterior densities. 
Otherwise we linearize the predicted density using the sigma 
point sampling and the Unscented Kalman Filter for the update 
and prediction of the next state. The general pipeline of the 
tracking process is illustrated in figure 1.  Two motion models 
were used in order to achieve a better modeling of the road users 
motion behavior. The motion models used are CTRV (constant 
turn rate and velocity model) and the CV (constant velocity 
model). 

A. Data association score
1) Aggregated Affinity score
In order to select the best measurement correspondent to a 

target, multiple discriminant features have to be considered. In 
general, the task of feature selection is a challenging endeavor. 
The choice of features varies depending on the tracking 
application. For example, in order to track an object which is 
very small, the centroid feature is usually used. On the other 
hand, for large objects a combination of various features may 
be more advantageous. 

In this work, the object association position is considered 
by using the coordinates of the nearest corner, visible to the ego 
vehicle. Furthermore, a 3-channel reduced color histogram is 
used for each object. The color histogram has 8 bins per 
channel, and it is obtained by projecting the 3D points that
correspond to an object onto the front RGB image.  Each 3D 
point that falls in the image casts a vote in a specific bin from a 
channel inside the color histogram of the object. Each bin of the 
histogram can store 32 intensity values. The color score is 
computed as presented in equation (3).

                                    (3)

Fig. 2. Processing pipeline for obtaining the posterior N object density
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RMS is the root mean square metric defined by equation (4), 
where COL.HIST. BINS is the number of bins of the color 
histogram for each channel.
 
       RMS

                    (4)
The point cloud that corresponds to a measurement is also 

projected onto a semantic segmentation image, obtained using 
the ERF neural net [26] such that, semantic class is also 
extracted for each object. Since the semantic segmentation 
image is not perfect and the point projections may not fall
entirely on the desired object in the image, due to motion or 
synchronization errors, the most probable 3 semantic classes are 
used together with their probabilities (5).

            (5)

In equation (5), w[i] takes the value of the position where 
semantic class of the hypothesis matches the semantic class of 
the measurement. If there is no class in the target that should 
match the semantic class of the measurement, w[i] takes the 
value -1. The symbol |a| refers to the absolute value of a. If two 
objects are similar the combined color and semantic 
segmentation cost will be very low (close to zero in case the 
two objects are identical). The cost function has been 
implemented such that two similar objects have a very high 
similarity score. Due to the fact that semantic and color 
information may become unreliable in case of bad weather 
conditions, we are taking the inverse of the computed scores for 
the features generated using a camera. The proposed 
methodology of computing the association score has the 
advantage that in adverse weather conditions when the camera 
information is no longer reliable, the terms in the score function 
corresponding to image and semantic segmentation will have a 
very low weight, and the final score will be computed based 
mostly on geometric features extracted from the LIDAR 
objects.

Geometric properties such as object area, width, length
and measurement-hypothesis overlapping are extracted, and 
used (6) for eliminating candidates that are not similar to the 
compared object. 

              (6)  

Finally, we also use the cuboid orientation, because, we 
reason that object orientation cannot change drastically from 
one frame to the other (7).

                                                    (7)
The final association score for a measurement, hypothesis

pair is obtained by summing the values obtained in equations 
(3), (4), (5), (6) and (7) and weighting it by the distance 
(denoted by wd) between the measurement and target. The 
closer the target is to the measurement, the more reliable the 
aggregated score is. This aggregated score (AgSc) (8), which 
can also be considered the weight ( of the measurement i 
– target j association for a validated measurement in the target 
covariance ellipse, is added to the cost matrix.

     (8)

2) Positional Descriptor (PD)
A positional descriptor is used to better describe the 

relation between the neighborhood of each target and 
measurement. We make an assumption that the neighborhood 
of a measurement and its corresponding target should be similar 
to a certain degree. The PD descriptor is computed as a sum 
over the ColorERROR (CE) differences and objectDimension
(OD) differences of a target vehicle and its neighboring target 
vehicles in a vicinity around the target up to 10 m (9). A similar 
step is performed for each descriptor. 

(9)
The same positional descriptor is also computed for each 
measurement. The difference between the track positional 
descriptor and the measurement descriptor should be as small 
as possible for similar objects. The difference is added to the 
overall aggregated score. In case there is no available descriptor 
a penalty value is added to the final score (10).  The penalty 
value has been found experimentally. 

(10)

To describe the data association, we use the letter ,
measurements are symbolized with the letter z and i is the 
position of the measurement in the queue where the gated
measurements are stored (11).

(11)

The goal of the optimal assignment stage of the tracking 
processing pipeline is to find a sequence 
such that the sum of negative log weights (12) is minimized.

(12)
The optimal assignment can be achieved using the Hungarian 
[27] or Auction [28] algorithms, and will not be discussed in 
this paper.

B. The tracking processes
1) Tracking as a Markov Decision Process
In this section we introduce a Markov decision process 

formulation of the lifetime of a single target in the tracking 
process. The MDP consists of the tuple (S, A, T(*), R(*)):
� The target state s Є S encodes the status of the 

hypothesis
� The action a Є A, represents the action which can be 

performed to the target
� The state transition function T: SxA → S describes the 

effect of each action in each state
� The reward function is a real-valued function that

defines the immediate reward received after executing 
action a in state s; R: SxA → ℝ

The state space contains five states: Initialized, Processed, 
Updated, Drifting and Absolute Death. Figure 3 shows the 
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transition between the five states. Beside the five states the 
target also memorizes other information such as RGB 
appearance, geometry, semantic class, orientation, velocity, 
localization, size, history and others. 

Initialized is the first state of any hypothesis, in this state no 
action is performed on the target. Whenever an object is 
detected by the object detector it enters the Initialized state.  In 
the second state, Processed, a target was associated to a new 
measurement based on an affinity score. In this state, the MDP 
needs to decide whether to keep tracking the target or transfer 
it to a drifting state. If the track is associated in the next frame 
it is transferred into the third state. A track falls in the state, 
Updated, when it is constantly updated using the incoming 
measurements. If a hypothesis is updated for a number of three 
frames while being in the Updated state, the track is labeled 
stable and it is displayed. When a hypothesis has not been 
associated to any measurement for a number of three frames it 
enters the fourth state, the drifting state, and will not be 
displayed until new successful association are found in the next 
frames. The track is not removed because the target may be lost 
due to some reason, such as occlusion, or disappearance from 
the field of view. Finally, if a target has not been associated for 
a number of 15 frames, it has left the area of interest, or a time 
of 2 seconds has elapsed since it was last updated it will enter 
state five, absolute death, and it will be removed as soon as 
possible.

In the current MDP all the actions are deterministic, 
i.e. given the current state and an action we can figure the new 
state for the target. The actions which determine the transitions 
between states are given by the data associations and their 
number. For example, if a target object is in state 1 and there 
has been a successful association in the next frame, the internal 
state will transition to state 2 otherwise it will fall in state 4. In 
state 1 and 2 the object receives a unitary reward, while in state 
3 each time the target is successfully associated a unit is added 
to the target reward.  No rewards are given in state 4 and 5.

2) Prediction and update of target states
The target state has the following constituents: the target 
position on the x and y dimensions, the velocity, the yaw and 
the yaw rate (13).

                                                                          (13)

We are considering two motion models and a 
collaboration scheme that links the two models. The objects are 
tracked independently using the CTRV and the CV motion 
models. The results are then combined using a collaboration 
strategy based on the orientation as described in [4]. For 
tracking objects using the CV motion model, we are using the 
classical Kalman prediction and update rules. On the other 
hand, tracking objects having the non-liner motion model, 
CTRV, requires the usage of the Unscented Kalman filter. The 
process functions in the UKF depend on the type of motion 
used. In case the yaw angle is not 0, the process model can be 
seen in (14).

 (14)

For rectilinear motion the state transition equation is described 
in (15)

(15)

The UKF manages to recover the Gaussian density by 
propagating a set of sigma-points through the non-linear 
process function. The covariance matrix is recovered by 
using the sigma points and a set of weights, which have 
the role of inverting the spread of the sigma points (16) 
and (17). These weights depend on the spreading 
parameter lambda.  

         (16)     

             (17) 

The state mean and covariance are predicted using 
equations (18) and (19) below. 
                                   (18) 

    (19) 
Due to the fact that the measurement model is linear and 

Gaussian the update step is performed as described in the 
classical Kalman filter as described in (20), (21) and (22).

       (20)        
        (21) 

         (22) 
In equation 20, K is the Kalman gain,  is the state of the 
target at time step k and is the covariance at time k.

Fig. 3. State transition process
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C. Filtering meta parameters
Parameters such as the width, height and orientation of a 

cuboid are referred to as meta parameters and are filtered in a 
separate module. The reason for doing this is that the three 
measured parameters fluctuate very violently in consecutive 
frames due to object segmentation problems. 

The usage of these parameter in the state vector presented 
in equation (11) would compromise other values that might 
depend on them, for example the object position. A view of the 
object tracking module can be seen in figure 4. 
The state vector for the meta parameters tracker is illustrated in 
(23).

                (23)     

The transition equations for each member parameter are 
depicted in (24), (25) and (26) below     

         (24)
            (25)

(26)
The Kalman filter is used to update and predict the next 

state for the meta parameters. The collaboration strategy
between the tracked target state and the meta-parameter state is 
based on the level of maturity of each track, i.e. the number of 
successful associations. After computing the correspondence 
between the hypothesis obtained by each motion model as 
described in [4] the level of maturity analogous to the meta-
parameters, is checked.  The targets that have a higher level of 
maturity will be accorded a higher weight. The final orientation 
will be a weighted sum of the orientations obtained in the meta 
parameters associated to each motion model and the one 
inferred by the UKF as seen in (27).

(27)

IV. EXPERIMENTAL RESULTS

In this section we will evaluate the results of the 
proposed solution with respect to two metrics MOTA (Multiple 
Tracking Accuracy) and MOTP (Multiple Object Tracking 

Precision). The system on which the method was tested
contains an Intel i5-2500 CPU with 3 GHz frequency. The 
running time of the solution is 80ms. The characteristics of the 
16L LIDAR, used to detect the objects, are illustrated in Table 
I bellow. 

Table I. LIDAR characteristics

We have evaluated the proposed solution on 3000 frames, 
having objects with multiple classes. 

To indicate the performance of a tracker, MOTA combines 
true positives, true negatives and ID switch (28). By t we 
indicate the timestamp and by GT we refer to the ground truth. 
The value of MOTA can also be negative if the number of errors 
exceeds the number of good object detections.

                                   (28)

The MOTP metric, on the other hand refers to the averaged 
differences between true positives and ground truth. It gives the 
average overlap between the correctly identified tracks and the 
detected objects. 

(29)

In (29), denotes the amount of tracker target match in frame 
t and is the bounding box overlap between tracked target i
and the ground truth object. The scores of the evaluation are 
displayed in table II. The evaluation sequence has been 
recorded in the VW campus. It contains sequences in clear and 
rainy weather. The implemented solution is part of a bigger 
pipeline and it has been tailored to suit the needs of the general 
pipeline. 

Table II. Tracking results
Metrics Value
MOTA 86.86 %
MOTP 85.39 %
IDSW (sum) 130
Total Frames 3000
Total Objects 14317

The results indicate a relatively high degree of accuracy and 
precision for the tracker. The highest miss-rate as has been 
observed for fragmented objects, which present sporadic 
fluctuations with respect to their dimensions, fragmentation, 

Features
Time of flight distance measurement with calibrated 
reflective
16 channels
Measurement range up to 100m
Accuracy +/- 3cm
Dual returns
Field of view (vertical): 30° (+15° to -15°)
Angular resolution (vertical): 2°
Field of view (horizontal/azimuth): 360°
Angular resolution (horizontal/azimuth): 0.1° - 0.4°
Rotation rate: 5 - 20 Hz

Fig.4. Components belonging to a tracked object
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semantic class and position. It is important to mention the fact 
that the quality of the tracker depends on the quality of the 
segmentation and the input. In table III a comparison is 
presented with the traditional GNN and JPDA algorithm on the 
same dataset. 

Table III. Tracking comparison
Name MOTA (%) MOTP (%)

Proposed Solution 86.86 85.39
JPDA 78.3 77.5
GNN 72.13 70.84

In figure 5 the measurements are illustrated with blue color 
and the corresponding hypothesis are depicted with red.  The 
height of all the cuboids is received from the segmentation 
module and it is the same for all objects (2m).

In figure 6 we observe the motion vector of an incoming 
vehicle as well as its trace in the right image. The ID of each 
object has been depicted with a different color in the right-hand
side image. 

Figure 7 depicts another scenario, when the ego vehicle is 
at an intersection near a parking lot.  In the upper part of the 

figure the segmentation image is overlapped over the intensity 
image. The lower part of the image graphically depicts the 
trails left by the targets that are approaching the ego vehicle 
with a speed similar to the ego but with negative sign.  

Figure 8 illustrates the 3D cuboid measurements and 
targets with the corresponding motion vectors of the same 
scenario depicted as in figure 7.

Comparison with state-of-the-art methods is very difficult 
due to the fact that the proposed solution has been tailored to 
work with a particular input type used in the current project. 
Furthermore, the proposed method is implemented as a generic 
solution, being able to track any type of cuboid as long as it 
comes in the correct format, and contains all the required data.  

V. CONCLUSION

This paper presented a novel multi-object tracking 
framework based on a Markov decision process, where the 
lifetime of an object is modeled with five states (Initialized, 
Processed, Updated, Drifting and Absolute Death). 
Furthermore, we presented a data association affinity function, 
which is based on multiple aggregated features like color, 
semantic class, geometric properties, orientation and positional 

Fig. 6. Motion vector and target ID trail

Fig. 7. Semantic Segmentation image and target ID trails

Fig. 8. Targets and measurements in a crowded 
intersection

Fig. 5. Measurements and corresponding tracks
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descriptor. The proposed data association score is able to make 
a good differentiation between objects that are similar or 
clustered even when some of the extracted features are 
inconsistent over consecutive frames. Two motion models were 
used to deal with the motion uncertainty and to describe the 
motion behavior of the tracks, the CTRV and the CV models. 
Our last contribution in this paper was a module for filtering the 
meta parameters like object dimensions and orientation. The 
rationale for making a separate module for the meta parameters 
is that, due to the violent fluctuations of meta parameters, 
variables that depend on these parameters would start to 
fluctuate as well which would lead to more problems overall.
Therefore, a combination of the tracked meta parameters and 
the inferred ones using the two motion models offered a better 
result. The proposed solution runs in real time and was 
evaluated using MOTA and MOTP object tracking metrics 
achieving good results.
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