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Abstract—In the context of a traffic scenario captured during
night with infrared cameras we focus on pedestrian street cross
action and we study the influence of the pedestrian pose with
respect to the road environment on the accuracy of the action
recognition model. This paper presents a complete framework
that performs pedestrian cross action recognition for infrared
sequences captured mainly during night but also during day time.
The main contribution of the paper resides in the study of the
variation in pedestrian action recognition accuracy provided by
the combination of pedestrian pose-based features with several
road context features given by semantic segmentation networks.
The main modules of the proposed framework consist in a
YOLO based infrared pedestrian detector combined with a
tracking algorithm that enhances the detections. A CNN based
pose estimator is applied on detected pedestrians in order to
extract the relevant keypoints of the pedestrian skeleton. Several
semantic segmentation networks like U-Net, FCN and PSPNet
have been adapted in order to perform the semantic segmentation
of the road in infrared images. Pose features are combined with
road context features provided by the semantic segmentation and
input to a LSTM based cross action recognition network. The
obtained results provide a 90% accuracy on CROSSIR dataset.

I. INTRODUCTION

The recognition of actions performed by pedestrians es-
pecially in traffic and focused on street cross or not cross
situations can be of particular interest for autonomous driving
applications, contributing to prevention and accident avoid-
ance. Infrared sensors capture the heat emitted by objects and
can be useful for night driving, in low visibility situations such
as heavy rain, snow, fog, dust. In infrared images pedestrians
may have a complex appearance as it can be noticed from
Figure 1 due to occlusions of cold or warm objects, due
to heat diffusion that makes their border silhouette blurry.
Particular features like head parts, torso parts, or other body
parts can be hardly distinguished in infrared images, hence
approaches [1] suitable for color images in which the head or
torso movement direction of the pedestrian can be relevant for
his future actions, cannot be applied for infrared.

There are many solutions that perform pedestrian action
recognition in the visible domain using either classical ma-
chine learning algorithms and, lately most of them exploring
deep learning architectures that perform time series based
action prediction [2], [3].

The presented method is focused on the recognition of
the street cross action for pedestrians in monocular infrared

Fig. 1. Samples of street cross and not cross actions in infrared images.

sequences. The original aspects of the proposed method reside
in:

• The fine tuning of a neural network based pedestrian pose
estimator to perform pose extraction for the pedestrians
detected in infrared images.

• The adaptation of several semantic segmentation net-
works for performing the semantic segmentation of road
pixels in infrared images.

• The study and comparison of the performance in accuracy
when using pedestrian pose combined with road context
features derived from the semantic segmentation network.

• A generic framework for pedestrian street cross action
recognition in infrared images.

The proposed system has good results for night scenes and
also for day scenes achieving an overall street cross action
recognition accuracy of 90% on CROSSIR dataset [2].

The rest of the paper is structured as follows: section
II presents other existing approaches in the field. Section
III describes the proposed framework including the network
architectures with the fine tuning of parameters. The dataset
used for evaluation, the parameters of the training procedure,
the detailed evaluation are described in section IV, while
section V concludes the paper.

II. RELATED WORK

Forecasting pedestrians’ intentions in advance is a chal-
lenging task in computer vision. Highly rated for automated
driving safety, pedestrian crossing action anticipation meth-
ods are part of the broader family of action recognition in978-1-6654-0976-6/21/$31.00 ©2021 IEEE



traffic scenarios, while reduced to the binary cross/not cross
classification problem. The work in [1] used a Fully Convolu-
tional Network (FCN) model of AlexNet to encode contextual
information (road width, presence of traffic signals, location
type) and pedestrian behavior (gait, attention), which are fed
into a Support Vector Machine (SVM) classifier trained to
estimate the crossing intention. The proposed Joint Attention
for Autonomous Driving (JAAD) dataset used for training was
enriched with relevant contextual information and behavioral
tags. Unfortunately, the vast majority of such clues are not
clearly distinguishable in night vision infrared scenes. From
a temporal perspective, it is important to achieve a confident
level of anticipation in an optimal time frame with respect to
the crossing event. Some studies [4] define the crossing event
immediately before the pedestrian entry on the road surface,
preceded by two distinct actions: standing over the curbside
and walking. Other works [5], [6] extend the typical range
of pedestrian motion including bending, stopping, starting to
cross and crossing-through. The number of trained classifiers
is also increased, in order to deal with each scenario in
particular. Although distinct from this point of view, [6] and
[4] adopt a similar algorithmic approach that learns behavioral
patterns from skeleton-based features analyzed on batches of
consecutive frames, in which pedestrians are detected and
tracked. In this context, the learning dataset (JAAD) was
annotated with Time-to-Event (TTE) information for each
frame: strictly positive values mark frames before the event
and negative values after the event. The chosen classifier
is either SVM or Random Forest (RF). They also support
the hypothesis that high-level features such as skeletons are
more informative than low-level features from Histogram of
Oriented Gradients (HOG), Histogram of Optical Flow (HOF)
or those encoded by Convolutional Neural Networks (CNN).
This is also advantageous for infrared images, which mostly
preserve the appearance of the silhouette. Wang et al. [7] use
AlphaPose [8] to estimate pedestrian pose from monocular
sequences, while normalized positions of 9 particular key-
points from the pedestrian skeleton are selected to feed a
neural network classifier with 2 hidden layers. The output
of the network offers the probability of 3 behavioral states,
respectively crossing, not crossing and walking along the ve-
hicles’ moving direction. Minguez et al. [9] employ Balanced
Gaussian Process Dynamical Models fitted on 3D pedestrian
skeleton joints, in order to incorporate spatial dynamics over
time. These models facilitate prediction state and location in
the future. They are capable to learn activities (e.g. stand-
ing, starting, stopping and walking) associated with specific
pedestrian intentions. The skeleton model is extracted based
on point clouds obtained from stereo pairs and geometrical
constraints. Unfortunately, the method suffers computational
bottleneck when raising the number of processed samples
from input sequences. On the other hand, Rasouli et al. [10]
fuse low-level and high-level contextual features in a stacked
topology of Gated Recurrent Units (GRU), which demonstrate
better prediction for shorter observation length. Their expla-
nation notifies that longer observation time provides more

information, however it is susceptible to more noise. Kotseruba
et al. [11] advocate the importance of inferring intention
information, along local visual features, pedestrian bounding-
boxes and vehicles’ speed, into an encoder-decoder Recurrent
Neural Network (RNN) model capable to predict action. The
training was performed on Pedestrian Intention Estimation
(PIE) dataset [12] specifically annotated with intention scores
for pedestrian instances. Yao et al. [13] train a multi-task
neural network which detects the crossing intention and future
actions coupled by encoder-decoder cells. The hidden states
encoded within the proposed model are classified by Multi-
Layer Perceptron (MLP) networks, which estimate current
intent, current action and predict future actions. Inspired
by neuroscience and psychological literature, the pedestrian
behavior is perceived as the combined result of crossing intent
(as inner will) and action in progress, hence the proposed
model aims to predict both jointly.

III. PROPOSED FRAMEWORK

The proposed framework for performing pedestrian action
recognition contains a Long Short Term Memory Network
that based on the temporal evolution of features related to
the pedestrian pose, speed, position with respect to the road,
predicts the street cross or not cross action. The main com-
ponents employed by the proposed framework are described
in Figure 2: The infrared sequence data represents the data

Fig. 2. Processing pipeline of the proposed pedestrian street cross action
recognition framework

on which the algorithms have been trained or fine-tuned and
it is formed of the sequences in the CROSSIR dataset [2].
The dataset contains 86 sequences captured with a FLIR
PathFindIR camera. The sequences comprise annotated street
cross and not cross actions for day and night traffic scenarios.

The pedestrian detector is based on a spatial pyramid pool-
ing YOLO [14] type architecture that is used for determining
the pedestrian detections in infrared images. It was trained and
validated on the pedestrian annotations from the CROSSIR
dataset. The detections are fed to the pedestrian tracking
component that is composed of the following modules:



• Data association and similarity cost computation.
• Tracking selection.
• Update and refinement.

The tracking approach is a loosely coupled tracking method
that follows the track by detection framework. For associating
tracks and measurements, a similarity cost function based on
appearance and motion has been created. The final assignment
between tracks and measurements is done using an optimiza-
tion algorithm. Finally, the results are refined by removing
tracks which do not have any representation in the scene any
more. For improving the association time between tracks and
detections a measurement validation gate is used around the
position of the predicted hypothesis. Only the measurements
that fall within the validation gate of a track are considered in
the association process for that track. The appearance score is
useful in target tracking for distinguishing between different
objects, even when they are close to each other, based on visual
features. In our approach we have devised the appearance
function to capture the textural uniqueness of each pedestrian.
The proposed appearance score is presented in equation (1).

a(i, j) = whuLbp × huLbp(i, j) + wµs × µs(i, j) +

+wσs × σs(i, j) + whs × hs(i, j) +

+wWs ×Ws(i, j) + wcs × cs(i, j) +

+wos × os(i, j) (1)

The appearance of the terms from the appearance score
equation is the following: huLbp(i, j) represents the histogram
of uniform local binary pattern (LBP) in the region of interest
(ROI) given by the detection, µs(i, j) is the mean value pixel
intensity distance of the ROI, σs(i, j) represents the variance
score in the ROI, hs(i, j) and Ws(i, j) are the height and
width distances, os(i, j) represents the overlapping score and
cs(i, j) represents the class detection probability score. In
case the similarity score based on appearance is not able
to distinguish among pedestrians, we have also included a
motion score that incorporates the motion pattern of the traffic
participants. The expression of the motion score is defined by
equation (2).

m(i, j) = wdst ∗ dst(i, j) + fc(i, j) +

+wσm(σm(i, j)x + σm(i, j)y) (2)

The meaning of the terms from the motion score are the
following: dst(i, j) represents the euclidean distance between
the track position and the detection position,fc(i, j) denotes
the absolute difference between the flow magnitude and angle
averaged in the pedestrian detection region of interest of
the track and detection, and finally σm(i, j)x and σm(i, j)y
are the deviations from the average motion pattern on the x
and y directions. The weights of the appearance and motion
scores have been determined experimentally. Their values are:
whuLbp = 10, wµs = 285, wσs = 8, whs = 10, wWs =
10, wcs = 550, wos = 95, wdst = 85, and wσm = 20.

The final similarity cost is composed by the sum of the
motion and appearance costs as presented in (3).

ε(i, j) = a(i, j) +m(i, j) (3)

The similarity cost between each track and the correspond-
ing detections that fall within the covariance ellipses are
stored in memory and are fed as input to the Hungarian [15]
algorithm. This algorithm finds the optimal track - detection
assignment based on the scores. The following three sce-
narios can be identified after running the Hungarian optimal
assignment algorithm: we can have a track matched with a
detection, an unmatched detection or an unmatched track. Each
of the scenarios has to be addressed independently. For an
unmatched track, its position is predicted in the next frame
based on the motion pattern the track has had so far. After
a number of frames if no detections have been associated to
a track, that track is removed. In the case of detections that
are not associated, new tracks are created. For the successfully
associated tracks and detections, the Kalman filter [16] is used
to predict future positions and update the track state vector.
A more in depth explanation of the whole data association
process and track management used in this solution can be
found at [2]

A regional multi-person pose estimator [17]–[19] was used
by the pedestrian pose extractor (see Figure 2) in order to
extract the pedestrian skeleton. The multi-pose person estima-
tor [17] applies the skeleton feature extractor on the bound-
ing boxes provided by the pedestrian tracking module. The
infrared pedestrian bounding boxes provided by the detector
and tracker are fed to a symmetric spatial transformer network
and to parallel single person pose estimators as described by
[17]. A pose guided proposals generator refines the obtained
pose models. The default COCO key-point representation was
adopted in our experiments. The results contain key-points
for 17 body parts: nose, eyes, ears, shoulders, elbows, wrists,
hips, knees and ankles. The (x, y) image coordinates of the
points corresponding to hips, keens and ankles of a detected
and tracked pedestrian in the infrared image represent part of
the feature vector fed to the cross action recognition module.

The semantic road segmentation module is responsible for
extracting environment context from the infrared images. It
provides a road pixel mask that identifies the pixels in the
image having a high probability to belong to the road. Based
on them we compute the other part of the feature vector. It
is represented by the average number of road pixels that are
around the pedestrian legs. We consider an ellipse of width
and height proportional to the pedestrian size, as shown in
Figure 3 in yellow. Inside this ellipse we compute the average
number of road pixels in the mask image that is output by the
semantic road segmentation module.

Four semantic segmentation networks have been fined tuned
and trained in order to extract the road semantic context. Fully
Convolutional Network (FCN) [20], U-Net [21], Pyramid
Scene Parsing Network (PSPNet) [22] and MultiNet [23]
have been employed in the experiments. The four network
models were previously trained on color images with several
semantic classes. For the infrared semantic road segmentation



Fig. 3. Road features are formed of the average number of road pixels
(marked with cyan) that reside in the ellipse marked in yellow. It shows
the neighbourhood of the pedestrian legs with respect to the road pixels.
The pedestrian skeleton is also depicted showing the points corresponding to
shoulders, hips, knees and ankles.

the structure and parameters of each network was modified in
order to accommodate two classes for semantic segmentation:
background and road. The Fully Convolutional Model [20]
combines the semantic information from a deep, coarse layer
with appearance information provided by a fine layer and
produces accurate and detailed segmentation. U-Net [21] is a
classical down and up-sampling segmentation model in which
only the final up-sampled feature map is utilized for segmen-
tation. PSPNet [22] improves the segmentation accuracy of
FCN type networks by using global image context for the
local level predictions. It is an encoder-decoder architecture.
The encoder uses dilated convolutions combined with pyramid
pooling. The decoder is based on a convolution layer followed
by a 8 bi-linear-upsampling operations. MultiNet [23] is also
an encoder-decoder type architecture that has deep CNN as
encoder and the segmentation decoder is formed based on FCN
architecture.

The street cross action recognition is performed based on
the time series analysis of the feature vector composed of:

• Pose features corresponding to the pedestrian legs and
torso. The pose extractor has as input the pedestrian
bounding boxes that result after the tracking algorithm
is applied on the pedestrian detections. The (x, y) image
coordinates of the following body parts are considered:
shoulders, hips, knees and ankles.

• Semantic road context provided by the average number
of neighbourhood pixels residing in the neighbourhood
of the pedestrian legs (around the ankles).

• Pedestrian motion information which is provided by the
tracking algorithm.

For recognizing the cross versus not cross action of pedestri-
ans we have employed a Long Short Term Memory (LSTM)
for time series classification. LSTM architectures have been
introduced by [24] and are widely used for sequence classifi-
cation problems due to the fact that their recurrent structure
sustains the process of learning over time. Their structure

consists of several cells, each cell being formed of gates: the
input gate that controls the level of cell state update, the forget
gate that controls the level of cell state reset, the cell candidate
that adds information to cell state, and the output gate that
controls the level of cell state added to the hidden state. We
have used the LSTM implementation provided by [25]. The
architecture we have employed in our experiments contains
the following layers:

• The input sequence layer that has an input equal to the
size of the feature vector and its output is connected to
the LSTM module.

• The LSTM module layer with 20 hidden units.
• A fully connected layer with an output size equal to

two which is the number of classes for the sequence
classification task. The two class labels are cross and not
cross.

• A Softmax layer that normalizes the values of its input
data.

• A classification layer that computes the cross entropy
loss.

IV. EXPERIMENTS AND RESULTS

A. Data and modules setup

For training and evaluating the proposed model we have
used the CROSSIR dataset [2]. The parameters we have used
for each module apart are as follows:

• For training the pedestrian detector we have used YOLO
[14]. The model with the highest mean average precision
obtained during training for 20000 iterations is kept.

• For extracting the skeleton features we have included the
above pedestrian detection model in AlphaPose [18]. Due
to low memory conditions, a maximum batch size equal
to two was used for the pose estimation network.

• For the segmentation networks a batch size of 4 was used.
Adam algorithm is used as optimizer. The models were
trained with a weight decay equal to 0.01 and a learning
rate of 0.0001. Each model is trained for 100 epochs.

• The LSTM network uses a batch size equal to 32, is
trained for 50 epochs using the Adam optimizer and an
initial learning rate of 0.001.

B. Evaluation of Cross Action Recognition

The metrics employed for evaluating each of the modules
of the proposed framework are:

• Mean average precision for the pedestrian detector.
• Mean intersection over union (mIoU) for the road seg-

mentation networks.
• Accuracy for the street cross action recognition model.

The pedestrian detector achieves a mean average precision
of 84% on the CROSSIR dataset. The skeleton points were
correctly identified for 85% of the pedestrian detections. The
semantic road segmentation networks attain the following
mean intersection over union values:

• FCN: mIoU = 84%.
• UNet: mIoU = 85%.



• PSPNet: mIoU = 87%.
• MultiNet: mIou = 84%.

The action recognition accuracy with respect to various series
length, and considering road features computed based on the
four road segmentation networks is presented in Figure 4. A

Fig. 4. Accuracy of cross action recognition with respect to series length and
different road segmentation networks.

series length is defined as the minimum number of consecutive
frames for which the feature vectors are computed and input
to the LSTM classification network. It can be noted from
Figure 4 that for a series length of four up to ten frames
the accuracy varies between 0.7 up to 0.84 while for series
length higher than 10 frames the accuracy is above 0.8 up
to 0.9 (the maximum value being 1). This means the model
can recognize the street cross action with a high probability
for feature vectors that are computed along at least 10 frames
before the actual cross action happens. The results obtained
using skeleton features complete the previous results obtained
by [2] that do not use skeleton points in their proposed model.

In what regards the type of segmentation, it can be noticed
that PSPNet provides the best results, due to the high inter-
section over union score obtained for this type of semantic
segmentation network. Nevertheless, the accuracy for all of
the four road segmentation networks considered in this study
is above 0.7 for series length up to 10 frames and above 0.8
for series length up to 10 frames with a maximum accuracy
of 0.9.

The described framework has been tested on a system
having the following parameters: i7 Processor, 16GB memory,
2080Ti GPU. Using this setup the overall inference time of the
proposed framework is about 40fps (an average of 25ms per
frame).

C. Demonstrative results

Some sample street cross action recognition results are
shown in Figure 5. Two cross action scenarios are shown
in Figure 5. In pictures (a,b,c,d,e) there is a start to cross
scenario in which a pedestrian approaches the road and starts
to cross. It can be noted that the cross action is recognized
immediately after the pedestrians heads its legs towards the
street. First two frames (a and b) report a not cross action,
while the consecutive frames (c, d, e) report a cross action.

In pictures (f,g,h,i,j) a continuous cross scenario is captured.
Pedestrians enter the road and continuously cross the street.
The cross action is marked as a red bounding box around the
detected pedestrian.

Demonstrative not cross action recognition results are
shown in Figure 6. The pictures (a,b,c,d,e) in Figure 6 show
a scenario where the pedestrian approaches the road and
stops, without the intention of crossing. In frames (f,g,h,i,j) of
Figure 6 a situation where pedestrians walk along the street is
captured. The not cross action is marked by a green bounding
box around the pedestrian.

V. CONCLUSION

The paper presents a framework for recognizing pedestrian
street cross action in infrared images. It is based on a long-
short term memory network that considers the temporal evo-
lution of several pedestrian features such as motion speed and
direction of movement, position of the body parts with respect
to the road and in the scene. Several semantic segmentation
networks have been employed in the road segmentation task
in order to study and compare the accuracy of the cross action
recognition with respect to the results of the segmentation
network. The best model achieves a 90% accuracy of the street
cross action on a benchmark infrared dataset.

ACKNOWLEDGMENT

This work was partly supported by a grant of the Romanian
Ministry of Education and Research, CNCS - UEFISCDI,
project number PN-III-P4-ID-PCE-2020-1700, within PNCDI
III and partly supported by the CLOUDUT Project, cofunded
by the European Fund of Regional Development through the
Competitiveness Operational Programme 2014-2020, contract
no. 235/2020.

REFERENCES

[1] Amir Rasouli, Iuliia Kotseruba, and John K. Tsotsos. Are they going
to cross? a benchmark dataset and baseline for pedestrian crosswalk
behavior. In 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), pages 206–213, 2017.

[2] Raluca Didona Brehar, Mircea Paul Muresan, Tiberiu Mariţa, Cristian-
Cosmin Vancea, Mihai Negru, and Sergiu Nedevschi. Pedestrian street-
cross action recognition in monocular far infrared sequences. IEEE
Access, 9:74302–74324, 2021.

[3] Amir Rasouli, Iuliia Kotseruba, and John K. Tsotsos. Pedestrian action
anticipation using contextual feature fusion in stacked rnns. In BMVC,
2019.
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