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ABSTRACT The early recognition and understanding of the actions performed by pedestrians in traffic
scenes leads to an anticipation of pedestrian intentions in advance and helps in the process of collision
warning and avoidance in the context of autonomous vehicles. An environment with low visibility conditions
such as night-time, fog, heavy rain or smoke increases the number of difficult situations in traffic. A complete
and original model for assessing if a pedestrian is engaged in a street cross action using only infrared
monocular scene perception is proposed in this paper. The assessment of a street cross action is done by the
time series analysis of features like: pedestrian motion, position of pedestrians with respect to the drivable
area and their distance with respect to the ego-vehicle. The extraction of these features emerges from the
combination of a deep learning based pedestrian detector with an original tracking algorithm, a semantic
segmentation of the road surface and a time series long-short termmemory network based action recognition.
In order to validate the proposed method we introduce a new dataset named CROSSIR. It is formed of
pedestrian annotations, action annotations and semantic labels for the road. The CROSSIR dataset is suitable
for several common computer vision algorithms: (1) pedestrian detection and tracking algorithms because
each pedestrian has a unique identifier over the frames in which it appears; (2) pedestrian action recognition;
(3) semantic segmentation of the road pixels in the infrared image.

INDEX TERMS Image processing, neural network, pattern recognition, night vision applications, FLIR
camera, pedestrian detection, pedestrian tracking, semantic segmentation, time series analysis.

I. INTRODUCTION
Numerous approaches that are able to achieve state of the art
results for pedestrian action, intention and behavior recog-
nition are present in the active field of computer vision for
autonomous vehicles [1].

Existing pedestrian action and intention recognition solu-
tions address mostly information extracted from color or gray
scale images [1]–[3] that come from monocular or stereo-
vision camera setups suitable in particular for day-light
driving scenarios. Little is explored for the situation of
night traffic scenes. For these particular situations, cameras
that capture the heat emitted by objects can be used. Far
infrared sensors are suitable for night driving situations.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jinming Wen.

The development of algorithms coping with the informa-
tion provided by far infrared cameras provides a promising
field of research and can lead to robust and accurate solu-
tions for pedestrian detection, tracking and pedestrian action
recognition.

The method proposed in this paper addresses the prob-
lem of street cross action recognition in the framework of
a monocular far infrared setup in which images have been
captured during winter and spring, both in day and night
driving situations.

Figure 1, presents a set of states that a pedestrian transits
while performing a street cross action. It represents a classical
situation in which the pedestrian comes towards the street and
keeps crossing without stopping.

As it can be noticed in Figure 1-a the pedestrian is crossing
(from right to left) at a marked place but the zebra marking is
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FIGURE 1. Sequence of states for a cross vs. not cross action.

slightly visible in the infrared image. Hence approaches based
on the position of a subject with respect to a marked crossing
are not applicable in the case of the infrared field.

Another characteristic situation in assessing the aware-
ness of an autonomous driving system with respect to the
cross action performed by a pedestrian involves a contin-
uous motion towards the drivable area, followed by a stop
in motion, meaning the pedestrian has a low probability of
crossing the street. This situation is depicted in Figure 1-b.

The two situations exemplified in Figure1 are frequently
encountered in every day driving scenarios. A high awareness
of the autonomous driving system regarding the actions per-
formed by pedestrians, especially the cross versus not cross
situations, would improve the system anticipation level and
furthermore could reduce the chance of injury.

The proposed solution is based on the interaction and
interconnection of several coupled modules which all define
a multi-cue environment representation model. The main
components are:

1) Data acquisition;
2) Road surface estimation;
3) Pedestrian detection and tracking;
4) Pedestrian distance estimation;
5) Pedestrian speed computation;
6) Pedestrian action recognition;

The authentic outcomes and contributions of the paper
reside in:

• The proposal, design and development of an original
tracking algorithm applied on top of a deep learning
based pedestrian detector fine tuned to work with far
infrared images.

• The recognition of pedestrian street-cross or not cross
actions, in the difficult situations of night and / or low
visibility driving. A time series Long Short Term Mem-
ory based model is trained using features like:

– Distance of the pedestrian with respect to the ego-
vehicle (in meters)

– Pedestrian motion features like the horizontal and
vertical optical flow components and the horizontal
speed component (transversal to the road) of the
tracked pedestrian.

– Position of pedestrians with respect to the road:
pedestrian on road or pedestrian off road.

• In order to validate the results of the proposed solution a
dataset of cross / not cross annotated image sequences
captured with a FLIR infrared camera is introduced.
The experimental results report a recognition accuracy
of 93%.

II. RELATED WORK
The proposed solution is a complete model that comprises
pedestrian detection in infrared sequences, a robust tracking
method and a cross action recognition module. A survey of
existing state of the art methods is presented in the following
subsections.

A. PEDESTRIAN DETECTION IN INFRARED IMAGES
Even though most of the pedestrian detection approaches
are based on monocular or stereo cameras, the use of FLIR
cameras has attracted attention of the research community
and manufacturers of ADAS or autonomous systems due to
the ability of thermal cameras to provide reliable detections
for vulnerable road users in bad weather conditions such as
snow, fog, rain or bad illumination situations.

Feature based classification approaches and deep learning
models are highly explored in what regards the topic of
detecting pedestrians in infrared images. Traditional classi-
fication techniques that extract visual image features which
are fed to machine learning algorithms are highly explored in
color images [4]–[6] and their typologies have been restruc-
tured and adopted for infrared images or for fused infrared
and color images [7]. Histogram of Oriented Gradients,
Local Binary Patterns, Edgelets or feature pyramids are com-
bined with AdaBoost, Support Vector Machine and other
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types of algorithms in order to obtain reliable classification
solutions [8]–[12].

The high recognition rates achieved using deep learning
based object recognition models [13] in color images con-
stitute the basis for object detection and recognition in the
infrared domain. An illumination aware Faster R-CNN deep
learning based convolutional neural network architecture is
employed by [14] for pedestrian detection in both infrared and
color images. A brightness aware deep learning based mech-
anism is proposed by [15] and it is used to detect pedestrians
under day or night conditions respectively. An automatic
region proposal network is introduced by [16] to generate
bounding boxes with confidence scores for far-infrared (FIR)
pedestrian detection. A Faster R-CNN network is trained
on infrared images augmented with their saliency maps that
serve as an attention mechanism for the pedestrian detec-
tor [17]. The saliency maps are generated using static and
deep methods and show an improvement in detection espe-
cially during daytime. A multi-class object detection solution
based on YOLO [18] architecture is presented by [19] with a
focus on pedestrian and car detection in monocular infrared
images. To validate the model, the authors of [16] uses the
LSI, CVC09, CVC14 and SCUT FIR pedestrian detection
datasets in their experiments. They obtain a log average miss
rate of 49.4 for CVC09, 38.06% for LSI and 17.54% for
SCUT FIR.

B. PEDESTRIAN TRACKING
Multi object tracking (MOT) can be applied in very many
different settings and scenarios, and for some advanced tech-
nical systems, like autonomous cars, multiple object tracking
is a necessary enabling technology. For an autonomous vehi-
cle to drive safely in an urban environment, it is important
to track pedestrians or cyclists while using this information
carefully to plan its trajectory for collision avoidance. The
challenges that appear in the MOT problem can be split into
two categories, sensor and data association related issues. The
far infrared sensor related challenges may refer to:

• Unknown number of objects with unknown number of
states that are present in the sensor field of view (FOV)

• Objects leave and enter the FOV of the sensor
• The detector of objects is imperfect and is susceptible to
two kind of errors i.e. missed detections (due to environ-
ment conditions, object properties, occlusions) and false
detections or clutter (a detection that is not caused by an
object). Both error types can lead to fatal outcomes in
the worst-case scenario if they are not handled.

In addition to the sensor challenges stated above there is
yet another challenge in target tracking which is the called
the data association problem. The gist of this problem is
that we do not have any information about the origin of the
detection or what caused them. Therefore, the challenges for
treating the data association problem can be split into two
categories:

• The origin uncertainty – we do not have any information
about the new measurements and how they relate to the
previous sensor data

• The motion uncertainty – objects can have multiple
motion models

Poor handling of the data association problem leads to bad
tracking results. Most multi object tracking methods use a
tracking-by detection framework, which means they rely on
an object detector to provide the object candidates. Multiple
papers in the literature propose tracking solutions that address
the previousmentioned problems using different types of sen-
sors: like single cameras, stereo cameras LIDARS, RADAR,
FIR (far infra-red) or a combination of them. Several stud-
ies describe tracking systems in video sequences taken by
color or monochrome cameras mounted on a vehicle [20],
[21]. Some approaches use a handcrafted cost function [22],
[23], allowing a better control over the selected features and
the data association process, while other methods propose
deep learning (or data-based) association and tracking meth-
ods [24], [25] which let a neural network decide the best
feature combination for solving the correspondence problem.
The main issue with deep learning and data-based methods
in general is that the tracker may get latched onto an object,
that may be a false detection, but looks similar to something
from the training data-set, and never recover. Furthermore,
if motion information is not incorporated in the neural net-
work model, in case an object is occluded by a similar object
the tracker may get latched onto the wrong object.

When fusing multiple sources of information for perform-
ing more robust object tracking, very many of the current
approaches center their solution on a single input (like the
camera) or do not exploit the information coming from all
the input sources [26], [27]. This means that in case of camera
failure their solutionwould not function properly. The authors
in [28] and [29] address this issue by ensuring that each sensor
is able to perform its role reliably and independently. The
overall system performance is improved when all sensors
are functioning, however in case one sensor is not work-
ing, the whole system does not crash. The solution in [28]
uses deep learning to fuse the different modalities, while the
method presented in [29] uses a combination between an
Unscented Kalman Filter (UKF) and single layer perceptron
to fuse the data. In another approach [30] the authors use deep
neural networks to jointly detect and track 3D objects using
a stereo camera system. In this approach a neural network is
used to detect 2D bounding boxes in images, and improve
the 3D bounding box detected from the point cloud using a
regression strategy.

The use of Far Infrared(thermal) cameras has attracted
many researchers due to their ability to operate in badweather
conditions and in low illumination or night conditions. Some
approaches describe solutions using single thermal [31] cam-
eras for tracking, while others use stereo vision [32], based
on far infrared cameras, to reconstruct and track pedestrians.
Other solutions combine probabilistic algorithms for tracking
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pedestrians using a thermal camera. For example, in [33] the
authors use a Kalman filter and a mean shift algorithm to find
the exact position of moving pedestrians. In [34] the authors
fuse multiple sensors including a LIDAR and FIR camera to
obtain both ego motion and distance estimation. The solution
presented in [35] illustrates a modular approach for tracking
pedestrians by merging the predictions of the Kalman filter
with past history analysis. This solution is able to help correct
temporary miss-recognitions that occur when the detector
fails as well as reduce false detections. The authors in [36]
try to solve the data association and tracking problem in
thermal images using deep network architectures. They pro-
pose a feature model comprising of thermal infrared specific
features and correlation features for thermal infrared object
representation. The features are coupled for a more robust
data association and tracking using a multi task matching
framework. The paper presented in [37] proposes a simple
weighted function that combines similarities in position, size
and appearance. The main issue with this work is that the
appearance score is computed in a naive manner and no
information related to the motion of the pedestrian is used in
the final cost function, whichwouldmake the data association
fail in case of similar overlapping pedestrians.

C. PEDESTRIAN ACTION RECOGNITION
The development of methods able to estimate pedestrian’s
action of crossing the street is an active field of research, espe-
cially nowadays when the autonomous vehicles are starting
to be part of an every-day reality in urban traffic. A detailed
survey of existing approaches in pedestrian action recogni-
tion and intention prediction is performed by [1]. As it is
described, even if largely addressed in the scientific com-
munity, the pedestrian intention prediction subject is a chal-
lenging problem because pedestrians have an unpredictable
behavior, they canmove in any direction and suddenly change
motion [1]. Existing approaches consider particular situations
like crossing at an intersection, or at a marked crossing
zebra, or more generically, in situations when the street is not
marked at all.

Several categories of prediction models are very popular
[38]: (1) pedestrian related approaches (2) context based
approaches (3) path prediction approaches. These approaches
are applied on color images and few methods have been
proposed for infrared images.

Pedestrian related methods define a model in terms of
features (motion, appearance) and these features are learned
by a classifier. For example, numerous approaches consider
features that define the body pose of pedestrians by means
of skeletons or 2D joints. [39] use a CNN based model for
skeleton fitting (pose estimation) and the most stable points
of the skeleton which correspond to the legs and the shoulders
are fitted to a Random Forest (RF) classifier that provides
the probability of the cross / not cross action. [2] use a low
dimensional feature vector that contains flow variations on
the pedestrian legs and upper body. Stereo measurements,
vehicle velocity and yaw-rate measurements are considered

to compute the ego-motion compensated and normalized
optical flowfield that is further used to extract features given a
bounding box detection and distance estimation z of a pedes-
trian. The action classification is done using a particle filter
model. The 2D articulated pose extracted by a convolutional
neural network model from monocular images is employed
by [39] in order to recognize the intentions of both pedestrians
and cyclists. A Random Forest (RF) classifier is applied
on top of skeleton features and it provides a probability to
perform the cross vs. not cross classification. They consider
only pedestrian training samples with a minimum bounding
box width of 60 pixels and no occlusion.

Context related approaches integrate pedestrian features
with environment clues. The authors of [40] propose a
descriptor based on themotion of the pedestrian relative to the
road and based on the spatial layout of the scene considering
information like pedestrian lights, zebra crossings and traffic
islands, waiting areas as bus stops. A classification based on
Support Vector Machine is applied to the feature vector for
predicting the pedestrian intention in color intensity images.
An algorithm that predicts the pedestrian’s intention to cross
the street in infrared images is presented in [41]. Dynamic
fuzzy automata are employed in combination with spatio-
temporal features like the distance between the curbs and the
pedestrian, the velocity of pedestrians and head orientation.
Furthermore, the authors consider four intention states for
pedestrians: standing-sidewalk, walking-sidewalk, walking-
crossing and running crossing. The predicted intentions are
’stop’ or ’cross’.

Path prediction approaches are highly related to intention
estimation besides current action recognition. For example,
[42] propose an encoder-decoder Long Short-Term Mem-
ory (LSTM) network that extracts the state streams from
both vehicle trajectory and pedestrian trajectory. A decoder
network performs the state fusion and predicts the future
trajectory. The pedestrian location and pose are inferred by
means of a Balanced Gaussian Process Dynamical Model
(B-GPDM) and naïve-Bayes classifiers in the work of [43].
The classifiers use 3D joint positions in lateral direction and
the displacements of the 3D joints in the same direction.
Based on the lateral position of a pedestrian [44] a long-
term intent predictionmodel is proposed. They train a stacked
LSTM and formulate the intention as a time series prediction
problem.

The quantification and labeling of the pedestrian crossing
intention depends on the type of intention model proposed.
Several types of annotations and labels for pedestrian cross-
ing intentions have been explored. For example [40] define
the pedestrian crossing intention in relation with the situation
when the pedestrian’s principal aim is to cross the street.
A human based annotator rates the cross intention in an
interval from 0 to 1 with a step of 0.25, where 0 means
the pedestrian does not cross the street, and 1 means the
pedestrian crosses the street. The inner intervals of 0.25,
0.5 and 0.75 model possible uncertainties upon the pedestrian
decision.
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Two scenarios are considered by [2] when the pedestrian
is walking towards the road side curb: will the pedestrian
cross or stop at the curb. For each trajectory where the pedes-
trian stops the moment of the last placement of the foot is
labeled as the stopping moment. A time-to-stop value is set
to zero for that moment. Similarly for cross scenarios a time-
to-curb is defined in relation with the closest point to the
curbstone (with closed legs).

The authors of [39] have enriched the JAAD dataset [45]
with time-to-event (TTE) information for the cross actions.
Two scenarios were considered by [39]: start-walking-to-
cross when the pedestrian stands near the road and then he
starts to cross and keep-walking-to-cross when the pedestrian
is involved in a continuous cross action. For keep-walking-
to-cross the time to event is zero at the first frame at which
the trunk of the walking pedestrian is over the curbside. For
start-walking-to-cross the time to event is zero at the frame
at which the stopped pedestrian starts moving a leg forward.
Positive TTE values correspond to frames before the event,
negative values to frames after the event.

Thework on cross action recognition is based on pedestrian
detection algorithms, which rely on benchmark datasets for
infrared images. The most popular datasets are:

• KMU Pedestrian Intention Prediction Database in Ther-
mal Images [41] contains a collection of infrared
sequences captured by a FIR camera of a moving car
roof at nighttime. The dataset totals 3254 frames and
37 pedestrians, collected in 6 videos. Each video shows
four behaviours: standing, walking on the sidewalk,
walking, and running on the road.

• The KAIST MultiSpectral Pedestrian Dataset was
introduced by [7]. It comprises pedestrian annotated
instances for pairs of temporally and spatially aligned
color and infrared images, corresponding to both day
and night situations.

• SCUT FIR Pedestrian Dataset [46] consist of about
11 hours-long image sequences at a rate of 25 Hz by
driving through diverse traffic scenarios at a speed less
than 80 km/h. Bounding box annotations are provided
for 7,659 unique pedestrians.

• FLIR-ADAS [47] provides multi-class annotations for
far infrared images. The instance labels are for pedestri-
ans (over 20k annotations), cars, bicycles and dogs.

• PTB-TIR: A Thermal Infrared Pedestrian Tracking
Benchmark [48] that contains sequences of thermal
images, which are annotated manually. The benchmark
also contains the results and rankings of different track-
ing algorithms on the provided image datasets.

It can be noted that only the KMU [41] pedestrian dataset has
annotations that support cross action recognition algorithms.
The dataset is suitable for pedestrian detection based algo-
rithms as it contains action and bounding box annotations.
With this paper we enrich the field of benchmark datasets by
introducing CROSSIR action recognition dataset that can be
used for pedestrian, context and motion based approaches.

FIGURE 2. Aquisition System: the infrared camera, the analog to digital
converter, the system that receives the captured frames.

It contains bounding box annotations, unique identifiers for
pedestrians, semantic segmentation information for road pix-
els andmotion type descriptors (walk, stand, run). The dataset
is available for the scientific community.1

As it can be noted from existing state of the art approaches,
the pedestrian cross action recognition for color images is
highly explored in the literature. However, approaches to
infrared based pedestrian cross action recognition are not
yet sufficiently addressed. The model proposed in this paper
combines pedestrian feature with context and motion based
approaches. It uses a deep learning based pedestrian detector
and a novel texture based tracking approach that ensures sta-
ble detections across successive frames and provides motion
information along with pedestrian features. All these features
are combined with context information which is extracted by
the combination of a semantic segmentation of the road and
monocular distance estimation which enhance the pedestrian
feature vector which is used by a Long Short Term Memory
Network for recognizing the cross action in infrared scenes.

III. MATERIALS
In order to ensure variety for the experiments presented in this
paper, and to cover day and night diving scenarios using a far
infrared camera, a new dataset is introduced: CROSSIR. It
contains annotated infrared sequences, with focus on cross
/ not cross actions of pedestrians, but also a set with road
segmentation ground truth which is applicable for semantic
segmentation.

A. ACQUISITION SYSTEM
The used image sensor consists of a FLIR PathFindIR
camera, incorporating an uncooled 320 × 240 Vox
microbolometer, with 8-14 µm spectral response. It is
equipped with automatically heated 19mm lens providing
a 36◦(h) and 27◦(v) field of view. The core is hermeti-
cally sealed and protected against dust and water spreads
(IP67 rated) allowing the unit to perform in a wide range of
weather conditions. The PAL analog video output running
at 25 fps is turned into digital format with DVD EZMaker
7 converter from AVerMedia and the images are up-sampled
to 640× 480 resolution.

B. CROSSIR DATASET
The proposed dataset contains sequences of infrared images
grabbed in winter and spring time. Acquired frames have

1https://users.utcluj.ro/ raluca/crossir/
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FIGURE 3. Scenarios for cross action: pedestrians are marked with a
point: the red point figures a pedestrian that is walking or running
towards the road and is crossing continuously without stopping, the blue
point represents the scenario in which a pedestrian is standing close to
the curb and starts to cross, while the green point represents a
pedestrian walking on the road.

a resolution of 640 × 480 pixels. The annotation has
been realized using the Computer Vision Annotation Tool
(CVAT) [49].

Pedestrian annotations are present for 86 sequences of
various lengths captured during night or day in the city of
Cluj-Napoca, Romania. An annotation contains:
• Pedestrian identifier (id) – that is unchanged for every
frame in which the pedestrian appears, making the
dataset appropriate for tracking algorithms.

• Pedestrian bounding box in the form of top left coordi-
nates, width and height.

• A label for the performed action. It can be cross or not
cross.

• A label for the direction of movement with respect to
the road. The label can take the values: lateral, longitu-
dinal or diagonal.

• A label for the type of motion: walk, stand, run.
• A label that marks if the pedestrian is occluded or not.

The cross scenarios captured by the proposed dataset are:
1) pedestrians walking or running towards the road and

crossing continuously.
2) pedestrians standing close to the curb and starting to

cross
3) pedestrians walking on the road, having a longitudinal

direction of motion (their motion is parallel to the
motion vector of the ego-vehicle)

These scenarios are depicted in Figure 3.
The not cross scenarios acquired in the proposed dataset

are:
1) Pedestrian standing, walking or running parallel to the

road. In this situation the pedestrians do not enter the
drivable area and their direction of motion is parallel to
the road.

2) Pedestrians walking or running towards the road and
stopping.

These scenarios are depicted in Figure 4. The dataset con-
tains fully visible and also occluded pedestrians. At least one
pedestrian is present in each sequence. The total number of

FIGURE 4. Scenarios for not cross action: the red point represents a
pedestrian that walks towards the street and then stops, the green point
represents a pedestrian walking on the pavement without entering the
street area.

annotated frames is 14678. The dataset contains a total num-
ber of 175 unique pedestrians. Road segmentation sequences
contain 471 night frames, and 376 day frames. These are
annotated as polygonal areas. The annotations are made for a
random subset of frames from all the acquired videos in order
to ensure the large diversity of the annotations.

IV. METHODS
The proposed processing pipeline is described in Figure 5 and
its main modules are:
• Pedestrian detector – applies a CNN based detector
to input images for each frame. Its outputs are a
set of bounding boxes defined by position and size:
[x, y,width, height].

• Pedestrian tracking – performs tracking on top of
detected bounding boxes. It improves quality of detec-
tions and provides an updated list of bounding boxes,
speed components (vx, vy), optical flow magnitude and
angle.

• Distance estimator – using the geometric constraints of
the system setup (position of FLIR camera on top of the
ego-vehicle) it computes the distance of any point in the
image with respect to the camera and also with respect
to the Ego vehicle coordinate system (centered in the
road projection of the mid point of the front bumper).
It is used for estimating the relative position and speed
between the tracked pedestrians and the ego-vehicle.

• Action recognition module – uses a Long Short Term
Memory Network that given a sequence of states and the
measured features for a pedestrian in each state (frame)
provides the probability the pedestrian is engaged in a
cross or not cross action.

A. PEDESTRIAN DETECTION AND TRACKING MODULES
A YOLO [18] type architecture with spatial pyramid pooling
was adopted for detecting pedestrians in infrared images.
This choice is made due to the high classification accu-
racy obtained with such a network in previous work [19].
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FIGURE 5. Main modules of the proposed processing pipeline: the FLIR
Image that results after the acquisition is processed in parallel by the
pedestrian detector and the semantic road segmentation module. The
results of the pedestrian detection are forwarded to the pedestrian
tracking and distance estimator that output features like pedestrian
motion direction, speed and distance with respect to the car. All these
features and the position of the pedestrian with respect to the road are
input to the action recognition module that predicts the cross or not cross
action using a time series Long Short Term Memory
model.

The algorithm employed by YOLO splits the image into
multiple regions in which weighted bounding box predictions
are made. The weights are obtained using bounding box
priors. These are computed by K-means clustering on the
input training dataset.

The proposed tracking method, which will be discussed
in detail in this section, consists of the following major
components: data association and similarity cost computa-
tion, track selection, update and refinement. The pedestrian
tracking algorithm using a far infrared camera is one of the
contributions of this paper.

We build upon the state of the art by creating a loosely
coupled tracking solution that follows the track by detection
framework and we engineer a similarity cost that includes
both motion and appearance scores thus making better cor-
respondences between the tracks and detections. We make
an optimal assignment between tracks and detections using
an optimization algorithm and finally we refine the results
removing any unwanted tracks. The input to our algorithm
is a set of bounding boxes corresponding to the detected
objects, which also have the classification probability for that
object class. The output is given by the set of tracked objects
that have a unique ID associated to them and a smoothed
trajectory.

FIGURE 6. Graphical depiction of the measurement validation gate.

1) DATA ASSOCIATION AND DISSIMILARITY COST
COMPUTATION
In the presence of clutter, it is often difficult to distinguish
sensor measurements from false alarms. Furthermore, com-
puting an association score between a track and every detec-
tion in a frame is a computationally intensive task. Hence,
a measurement validation gate is used to reduce the number
of comparisons by forming a gate around the position of the
predicted hypothesis and only considering detections within
that region. The gate is described by an origin (which is
usually the position of the predicted value X k ) and a gate
volume Vk . The validation region for ellipsoidal gating is
given by equation (1).

(χ ik − X k )
′S−1k (χ ik − X k ) ≤ γ (1)

In equation (1) χ ik is the ith measurement inside the val-
idation gate Sk which is defined in [31], and it represents
the innovation co-variance, while γ is a probability threshold
which can be obtained from tables of the chi-squared distri-
bution and it is kept constant for a given application. The gate
volume is given by equation 2, where c is a scaling value.

Vk = cγ
1
2 |Sk |

1
2 (2)

A graphical depiction of the grating process can be seen
in Figure 6.

Some far infrared cameras (including ours) can have freez-
ing moments in which frames are not acquired for a number
of seconds. Due to this phenomena the tracked objects may
be at larger distances than predicted (due to the loss of mea-
surements). The proposed model was built to cope with such
situations by inferring two values for the parameter c. The far
infrared camera signals the freezing moment by displaying a
small white square in the bottom right corner, hence we know
when to apply a more reasonable value for the variable c. The
expression for c when the camera is functioning normally
is displayed in (3) and for the frames following a freezing
moment the expression is depicted in (4).

c = 2× (w+ h) (3)

c =
2wh
3

(4)

The scaling of the gate volume depends on the tracked
object dimension, w represents object width and h represents

74308 VOLUME 9, 2021



R. D. Brehar et al.: Pedestrian Street-Cross Action Recognition in Monocular Far Infrared Sequences

object height. The two expressions for calculating the value
c were determined experimentally. After obtaining the gated
measurements for a track, a similarity cost is computed
between the track and all measurements within the validation
gate.

In the proposed solution, the similarity cost ε(i, j) (5), that
is computed between the ith infrared measurement and the
jth object in the tracking list, is defined as the sum of two
distance measures, one representing a motion score m(i, j)
and another representing an appearance score a(i, j). Each of
the two scores is a weighted sum of several terms which will
be described shortly.

ε(i, j) = a(i, j)+ m(i, j) (5)

One of the main difficulties when building similarity cost
functions is trying to solve some problemswithout un-solving
others. To this end each time a new termwas introduced in the
cost function equation with the purpose of solving an issue,
all the scenarios corresponding to the already available terms
were tested as well to ensure they are still working.

In the proposed solution we have decided to engineer
the cost function because such a solution would offer more
control regarding the effect of each feature that is used in
the cost computation, so the final equation is not a black
box. Furthermore, we know which feature is responsible for
solving certain issues. Solutions based on neural networks
would not give us the flexibility mentioned above, and in case
a scenario is presented to the network that was not covered
by the training test, the network might fail or latch onto the
wrong object.

a: APPEARANCE SCORE
The appearance score is important in tracking because it
can offer a way to recognize an object in different frames
and is also a measure of distinguishing between different
objects when they are in proximity of each other. Nonetheless,
the appearance of an object may be altered in consecutive
frames due to deformations or changes of view point. The
thermal infrared emission is independent of any light source,
however the combination between the human skin infrared
emissivity and the clothes that each person wears, leads to
a unique thermal signature for each subject. Therefore, it is
important to define a method that captures the changes in
appearance and the texture uniqueness of each pedestrian.
To address this problem in this work, we design an appearance
score that relies on multiple weighted features. The expres-
sion of the appearance score between the tracked object and
the infrared detection is given in (6).

a(i, j) = whuLbp × huLbp(i, j)+ wµs × µs(i, j)

+wσ s × σ s(i, j)+ whs × hs(i, j)

+wWs ×Ws(i, j)+ wcs × cs(i, j)

+wos × os(i, j) (6)

The terms whuLbp,wµs,wσ s,whs,wWs,wcs,wos are the
weight contributions for each distance measure. They were

determined experimentally by evaluating each term’s con-
tribution over 160 sequences recorded with the thermal
camera in different conditions including day, night, cold
and warm scenarios. The values determined experimentally
for each weight are whuLbp = 10,wµs = 285,wσ s =
8,whs = 10,wWs = 10,wcs = 550,wos = 95.
The values determined for the weights are not unique and
small variations are possible without affecting the out-
put of the algorithm. For readability, some weights were
approximated to the nearest multiple of 5, where it was
possible.

The meaning of each distance measure from the appear-
ance cost equation is the following: huLbp(i, j) represents the
histogram of uniform local binary pattern (LBP) in the region
of interest (ROI) given by the detection, µs(i, j) is the mean
value pixel intensity distance of the ROI, σ s(i, j) represents
the variance score in the ROI, hs(i, j) and Ws(i, j) are the
height and width distances, os(i, j) represents the overlapping
score and cs(i, j) represents the class detection probability
score.

To capture the texture structure of each hypothesis, in order
to use it in the track and measurement association, we have
used a uniform local binary pattern histogram over the region
of interest. The object level structure can be a good feature to
measure the correlation between a track and ameasurement in
adjacent frames, due to the fact that the structure of an object
is not expected to change drastically in consecutive frames.
The LBP descriptor outputs a binary word for each pixel as
shown in (7):

LBPP,R =
P−1∑
p=0

s(gp − gc)× 2p (7)

The number of neighbors to be analyzed on a circle of
radius R is given by P, s(x) = 0 if x ≥ 0∧s(x) = 1 otherwise;
gp is the intensity of neighbor p and gc is the intensity of the
center pixel. In the proposed solution a 3 × 3 neighborhood
is used. All LBP codes from the region of interest can be
represented in the form of a 256-bin histogram. In order
to achieve a faster feature comparison, reduce the memory
consumption and achieve more robustness to noise, a uniform
local binary pattern histogram is employed. A LBP is called
uniform if the binary pattern contains at most two bitwise
transitions from 0 to 1 and vice versa when the bit pattern
is traversed circularly [50]. Therefore, by comparing pixel
values in a 3 × 3 neighborhood, there are a total of 256 pat-
terns, 58 of which are uniform, which yields in 59 different
labels. The voting of each LBP code in the uniform LBP
histogram is done via a look up table in order to improve the
running time efficiency of the feature extraction. The intuitive
depiction of the uniform LBP histogram creation is depicted
in Figure 7.
The final value of the histogram of uniform local binary

patterns, huLbp(i, j), term is obtained by performing a root
mean square operation on uniform LBP histograms contained
by the measurement j, huLbp(j), and the one stored by track
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FIGURE 7. Computation of the LBP descriptor for the region of interest,
and the creation of the uniform LBP histogram using a Uniform LBP LUT.

i, huLbp(i) as illustrated in (8).

huLbp(i, j) =

√√√√ 1
59

59∑
k=1

(huLbp(i)k − huLbp(j)k )2 (8)

To compute some of the dissimilarity values from the
appearance score the function expressed in (9) is defined.The
operator |a| refers to the absolute value of the variable a.

F(x, y) = |x − y| (9)

The mean and standard deviation of the region of interest
are two measures that are used in the appearance score.
Mainly due to the fact that the thermal camera does not need
an external source of illumination the two mentioned values
do not have large variations between consecutive frames
for the same object instance (because the pedestrian cannot
increase his temperature abruptly in consecutive frames). The
mean is a measure of the intensity, while the standard devia-
tion is a measure of the contrast in the region of interest, both
characterize the level of thermal infrared radiation emitted
by the pedestrian. The scores of (µs(i, j)) is obtained by
applying (9) as shown in equation (10).

µs(i, j) = F(µs(i), µs(j)) (10)

The value of (σ s(i, j) is computed analogously by applying
the function F defined in (9) with the parameters (σ s(i)) and
(σ s(j)). The value ofµs(i) and σ s(i) is computed as illustrated
in (11) and (12), where h and w are the dimensions of the
regions of interest and Image is the region of interest from
the far infrared image.

µs(i) =
1
M

(
h−1∑
k=0

w−1∑
r=0

Image(k, r)

)
(11)

σ s(i) =

√√√√ 1
M

(
h−1∑
k=0

w−1∑
r=0

(Image(k, r)− µs(i))2
)

(12)

The physical attributes of each pedestrian, like width and
height, are other properties that offer clues when performing
object association. Physical particularities of the detected
pedestrians do not change suddenly and due to the fact that
the frame rate of the used thermal sensor is sufficiently high,
we can capture the variations for the same object instance.
Even though properties such as width and height can help
distinguish between pedestrians of different noticeable sizes,

in case the pedestrians are similar in dimensions these prop-
erties alone are not sufficient. For this reason, the mentioned
features are introduced in the appearance score among other
functions. The height measure for track j and detection i,
hs(i, j), is computed by applying the function F(h(i),h(j))
defined in (9), where h(x) is the height of instance x. The
width distance score, Ws(i, j), is computed analogously tak-
ing the width measure instead of the height.

In the aggregate cost function the classification probability
coming from the pedestrian classifier in thermal images is
also included. It was noticed that the classification score
difference from adjacent frames for the same pedestrian
instance is very small compared to the difference obtained
by subtracting the classification score for different pedestrian
instances from consecutive frames. The classification score
cs(i, j) is obtained by applying function F(c(i),c(j)) (9), where
the c(x) represents the classification score of x. The result
is a value between 0 and 1, the closer the difference is to
0 the more similar the two objects are with respect to this
distance metric. It may happen that multiple pedestrians have
similar classification scores, in such a scenario, this metric is
not sufficient to discriminate between objects, hence the value
was used as a component of the appearance cost not just by
itself.

The last term of the appearance cost function is a
size-based distance function. This term incorporates the size
similarities of a track and a measurement, as well as localiza-
tion information of each detection compared to the predicted
localization information from a track. Therefore, the size-
based distance, os(i, j), between a measurement i and track
j is considering both the location and size of the bounding
boxes and is defined in equation (13); where Ai is the area of
the measurement, Aj is the area of the tracked object, and A∩
is the area of the intersection between the two objects.

os(i, j) =
|Aj − Ai|
A∩

(13)

b: MOTION SCORE
In some situations when two pedestrians are very similar as
viewed from the thermal camera, the appearance score might
be unable to distinguish between them. For such scenarios,
the motion pattern of each pedestrian is also included in the
final cost. The final expression for the motion score, m(i, j),
between measurement i and track j is shown in (14). As in the
case of the appearance score, the weights were determined
experimentally, their values are wdst = 85, wσm = 20.

m(i, j) = wdst ∗ dst(i, j)+ fc(i, j)

+wσm(σm(i, j)x + σm(i, j)y) (14)

When tracking an object in adjacent frames, its motion is
offering an important clue regarding the objects future posi-
tion in the next frame. We define the difference between the
predicted position and the measured position as the motion-
based distance measure. The Euclidean norm is used, and
the center positions of the objects bounding boxes expressed
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in 2D image coordinates are selected when computing the
distance.

Another term that is included in themotion score is the flow
distance metric between the detection i and track j. Tracking
using a sparse optical flow algorithm may not be reliable
from a qualitatively point of view and dense optical flow is a
very expensive procedure computationally and qualitatively
may be imperfect on unstructured surfaces. Although the
individual trajectories that result from the optical flow may
be inaccurate, collectively they can provide clues regarding
the motion of objects in consecutive frames. After applying
the algorithm presented in [51] for computing the optical
flow, several steps were performed for obtaining the angle and
magnitude values for the optical flow of the region of interest.
First of all, 36 bins are created to store the flow values. Each
flow vector value casts a vote in one of the 36 bins based
on its angle. Secondly, after having all the identified flow
vectors vote inside their corresponding bins, we compute the
mean values for themagnitude and angle for each bin. Finally,
a search is performed to find the bin where the majority of
votes were cast and afterwards the mean magnitude and angle
corresponding to that bin are selected as flow parameters
for our region of interest. We have observed using multiple
sequences recorded in various scenarios, that objects do not
change their motion pattern abruptly in consecutive frames,
a thingwhich has led us to define the flow cost as shown in 15.

fc(i, j) = F(θi, θj)× wθ + F(ϑi, ϑj)× wϑ (15)

The flow angle is represented by (θ), the flowmagnitude is
represented by (ϑ), the function F has been defined in (9) and
wθ = 40 and wϑ = 15 are two weights whose values were
determined experimentally.

The last term of the motion score, σm, represents the
deviation of object motion from the objects current motion
pattern, on x and y directions. We have included this term
because we want to penalize large deviation from the current
motion pattern of the object. The rationale behind this term
is: if we consider the motion pattern of the pedestrian in the
last five frames, the next move will most likely resemble the
same pattern, having a small deviation for the correct object
association. We would also want to mention we stored the
last five positions for each tracked object. The expression for
variation cost distance is displayed in equation (16). This cost
is applied on both x and y components of the 2D motion.
The variable Xi represents a detection, Zj(k) represents the
kth stored past position of track j.

σm(i, j) = |Xi −

√√√√1
5

4∑
k=0

(Zj(k)− Zj(k + 1))2| (16)

It is worth mentioning the fact that the identified weights
for the appearance and motions scores are not unique, other
variations are possible however the selected values offered
the best results in our case.

c: TRACK SELECTION, UPDATE AND REFINEMENT
Once the motion and appearance similarity scores have been
computed between measurement i and track j, they can be
assembled into the final cost ε(i, j) as shown in equation (5).

The similarity cost is computed for all tracks stored in
memory against all the detections from the current frame that
fall within the track co-variance ellipse. The affinity scores
are stored into a matrix format and are used as input in the
Hungarian [52] algorithm, that finds the best assignment for
each detection in the current frame with the corresponding
track. If the similarity cost for a track-detection assignment
pair is above a threshold, the assignment is nullified and a
new track is created for that measurement.

After finding all the viable correspondences between the
tracks and measurements, the following scenarios can be
identified: we can have a track matched with a detection,
an unmatched detection or an unmatched track. In the case
of a successful track and measurement association, the track
and all its parameters are updated, using the new informa-
tion coming from the measurement. In case we have an
unmatched detection, a new track is created. The newly cre-
ated track will remain in an unstable state until it will be
associated to new detections and tracked for another five
frames, and afterwards it will become stable and it will be
displayed.

One of the key features of a tracking algorithm is to main-
tain the tracked object even if the detection is not available
for a number of frames due to errors in the object detec-
tor, occlusions and other factors. For this reason, each track
incorporates a history counter, which counts the number of
frames for which a specific track has not been associated.
The position of the unmatched track in the next frame is
predicted based on the motion pattern the track has had so
far, using a Kalman filter predict function. After a number of
frames, if the unmatched track remains un-associated it enters
a drifting state, where the track is not displayed however it is
still kept in memory. The track is finally removed in the drift-
ing stage if still not matched. Therefore, unmatched tracks
are not removed immediately. It is important to mention the
fact that tracks that exit the region of interest are marked
for termination and removed. In the proposed solution the
track history and drifting history have different values for day
and night scenarios, which were determined experimentally
and depend on the camera frame rate. The value for the
history counter is 20 and for drifting counter is 15 for night
scenarios, while for day cases history counter becomes 25 and
drifting counter becomes 15. It is worth mentioning the fact
that the drifting and history counters values mentioned above
are applicable only to stable tracks. In case of tracks which
are not stable, they will be set for removal if they are not
associated after 5 frames for night scenarios or 7 frames for
day scenarios. In Figure 8 a scenario is illustrated where
a pedestrian gets occluded by some trees, but his iden-
tity is maintained until he becomes visible again and the
object detector is once again able to successfully detect
him.
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FIGURE 8. a)Pedestrian fully detected and tracked b)pedestrian begins to
get occluded; c) pedestrian is fully occluded but continues to be tracked;
d) pedestrian is occluded we can observed parts of him between the
trees, the detector is unable to detect him, but due to the tracking
algorithm his identity is maintained; e) Pedestrian reappears and is
detected and tracked.

Finally, the track list is updated with the newly found tracks
and old tracks are removed. In Figure 9 we show a scenario
where two pedestrians cross paths. The proposed solution is
able tomaintain the correct identity of each pedestrian and not
latch onto the wrong pedestrian when the pedestrians overlap.
The bottom right image from Figure 9 shows the path history
of each pedestrian position.

Another scenario where multiple pedestrians walking
on a sidewalk are being successfully tracked is displayed
in Figure 10. The pedestrian ID is maintained and there is
no ID switch error for the pedestrians that are close to each
other. The meaning of the four images that make up Figure 10
remain the same as in the case of Figure 9.

B. SEMANTIC SEGMENTATION OF THE ROAD SURFACE IN
INFRARED IMAGES
A key factor that influences the decisions of a pedestrian
action recognizer is given by the position of the pedestrian
with respect to the street, or with respect to the drivable
area. A semantic segmentation of the road in infrared images
is embraced in this paper. The convolutional neural net-
work model proposed by [53], [54] is adopted. The net-
work contains a sequential architecture based on an encoder
segment producing downsampled feature maps and a sub-
sequent decoder segment that upsamples the feature maps
to match input resolution. We have kept the original archi-
tecture proposed by [53], [53] which consists in 16 layers
that combine residual blocks and downsampling blocks defin-
ing the encoder, while layers 17 to 23 form the decoder.
The decoder includes transposed convolutions that have the
role to upsample the encoder’s feature maps. The result of
the segmentation is a labeled image of size equal to the
input image size having the pixels labeled as either road or
non-road.

In our experiments we have used the PyTorch implemen-
tation and the pretraied encoder provided by ERFNet. This

FIGURE 9. In the top left, object detections are shown, with their
corresponding motion vectors. In the top right, the detections are
projected in a grid. In the bottom left each track is represented with a
unique id and color and in the bottom right the tracked objects are
depicted as well as the motion trail corresponding to the path of each
pedestrian.

FIGURE 10. In the top left, the measurements are shown. In the top right,
the image illustrates the detections projected onto a grid. In the bottom
left the tracked objects are shown, and in the bottom right the trail left by
the tracked object is displayed.

encoder was pre-trained on ImageNet while the decoder was
trained from scratch on the infrared images. We have modi-
fied the number of classes to two (road and non road pixels),
and trained the network with a batch size of 6 for 150 epochs.

C. PEDESTRIAN CROSS ACTION RECOGNITION
The cross action recognition module represents another orig-
inal contribution of this paper as it engineers a times series
prediction model for action recognition in infrared images.
The input of thismodule consists in time series feature vectors
of maximum length equal to t and the output is a cross
action recognition probability vector for frame t . As time
series prediction model we use the classical Long Short Term
Memory (LSTM) Network proposed by [55] and extended
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FIGURE 11. LSTM network topology: considers as input the time series
feature vectors for frames t − 3, t − 2, t − 1, t and predicts the action for
frame t .

FIGURE 12. Three LSTM cells and the data flow from frame t − 2 to frame
t − 1 and to frame t as implemented by [58].

by [56], [57]. It is able to process sequential data one sample
at a time and its additive interactions improve the gradient
flow through the network.

The LSTM network employed in this paper is a many-
to-one topology for classification. Its structure is presented
in Figure 11. The input is formed of feature vectors computed
for continuous frames in the video sequence. The feature
vectors are detailed in section IV-C. To predict class labels,
the network ends with a fully connected layer, a soft-max
layer, and a classification output layer.

The LSTM layer in Figure 11 contains several LSTM
cells [55], [58]. Each cell comprises computational blocks,
named gates, that control the amount of information that is
added or removed by the cell. The LSTM layer with three
cells, from Figure 12 depicts the data flow from frame t − 2
to frame t .
The input vectors for timestamp t , t − 1, t − 2 and t − 3

are xt , xt−1, xt−2, xt−3. Two states, ht –the hidden state and
ct – the cell state are maintained at each time stamp. The i, f ,
g, and o represent the input gate, forget gate, cell candidate,
and output gate. The input gate i is beneficial for storing new
information in the cell, the forget gate, f helps in discard-
ing/forgetting irrelevant information from the previous state,
the cell candidate gate g is used for updating the cell state and
the output gate, o controls which information is transmitted
to the next time step. The cell state at a given time step t is
given by:

ct = ft � ct−1 + it � gt (17)

where � represents the element-wise multiplication of vec-
tors. The hidden state at time step t is:

ht = ot � tanh ct (18)

As described by [57] and [58] the weights that are learned
and updated during the training process of an LSTM are the
input weights W, the recurrent weights R, and the bias B:

W =
[
Wi Wf Wg Wo

]T
,

R =
[
Ri Rf Rg Ro

]T
,

B =
[
Bi Bf Bg Bo

]T
, (19)

FIGURE 13. Features computed for the time series analysis– from left to
right we consider the bounding box information provided by the
pedestrian detector, the pedestrian speed provided by the tracking
module, the pedestrian relation with respect to the road and the distance
of the pedestrian with respect to the ego-vehicle.

At time step t the behavior of the gates in the cell is defined
as follows:

it = σg(Wixt + Riht−1 + Bi)

ft = σg(Wf xt + Rf ht−1 + Bf )

gt = tanh (Wgxt + Rght−1 + Bg)

ot = σg(Woxt + Roht−1 + Bo) (20)

where σg is the sigmoid function, σ (x) = (e−x + 1)−1.
In the implementation for this paper the LSTM network
functionality provided by [58] was used. The fully connected
layer is used to combine the features in order to classify the
actions. The output size of the fully connected layer is equal
to two, as we have two actions which are to be recognized.
The softmax layer applies a softmax function to the output
of the fully connected layer. This layer is followed by the
classification layer that has the role of computing the cross
entropy loss during the network training procedure.
Features Used By the LSTM: The cross action recognition

is based on a time series analysis of the pedestrian’s position
in the image, motion features, distance of the pedestrian with
respect to the ego-vehicle, and road context information as
shown in Figure 13.
The feature vector for a pedestrian track k in frame t

contains:
• Bounding box parameters of the tracked pedestrian:
BBkt =

[
x topkt y

top
kt ,wkt , hkt

]
• The horizontal and vertical optical flow components,
Okt =

[
oxkt , o

y
kt

]
• Horizontal speed of the tracked pedestrian: shkt
• Distance from the ego-vehicle to the pedestrian: zkt
• Road context feature vector Rkt .

The bounding box parameters are computed by the pedes-
trian detection and tracking module. The horizontal and ver-
tical optical flow components are computed in the feature
extraction phase of the tracking module. In our experiments
a monocular infrared camera was used for acquiring the
sequences, hence the distance estimation method from the
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FIGURE 14. Initial setup of the scene geometry: (OC XC YC ) denotes the
camera coordinate system, with blue we have the image plane and
p1(u1, v1) is the projection on the image plane of a 3D point P1 situated
on the road plane.

monocular camera was implemented. The top view projection
of the scene was also used for computing the relative speed
on the horizontal direction (Ox). The speed was temporally
filtered by a low pass average filter of dimension 5. The
horizontal speed is computed based on tracking and 3D infor-
mation, while the road context feature vector computation is
explained bellow.

In order to estimate the pedestrian distance with respect to
the ego-vehicle an approximate method for distance measure-
ment using a monocular camera is employed. The constraints
considered in the proposed approach are shown in Figure 14.

As shown in Figure 14 we consider the following assump-
tions in order to compute distance relative to the ego-vechicle
coordinate system:

• Consider 3 coordinate systems: the Ego-vehicle coordi-
nate system (OEXEYEZE ), the Camera coordinate sys-
tem (OCXCYCZC ) and the World coordinate system
(OWXWYWZE ), which is related to the road (considered
flat);

• Their relative position and orientation is established dur-
ing the system set up as presented in Figure 14: between
the ego-vehicle and the world coordinate systems there
is only a translation (offset) along the Z direction (due
to the camera mounting system on the ego-vehicle);
between the world coordinate system and the camera
coordinate system there is only a translation along the
Y axis (camera mounting height above the ground) and
a rotation around the X axis (pitch angle α)

• Let Ow be the projection of the camera’s optical center
(Oc) on the road plane. We consider Ow to be the origin
of the world coordinate system in which all the 3D mea-
surements are computed. The transformation of the 3D
coordinates from the world into the ego-car coordinate
system can be done by a simple translation along the Z
axis by subtracting the (offset);

FIGURE 15. The side-view projection of the points in the scene.

• The extrinsic parameters of the camera model (offset ,
height and α) can be precisely estimated during the sys-
tem setup. Offset and height are measured using a laser
rangefinder while the pitch angle (α) is computed as
α = tan−1(OwOC/OwOP10) applied on the OcOwOP10
triangle (Figure 15) whereOP10 is the intersection of the
optical axis with the road plane. In order to determine the
3D coordinate (mainly the depth OwOP10) of the point
OP10 a white cross was drawn on the image, centered
in the principal point (Figure 21) and a corresponding
marker was drawn on the road surface in such a manner
that its image projection perfectly overlapped the white
cross. Themeasured depth of the marker relative to point
Ow is the length of the OwOP10 segment;

• We also know the camera intrinsic parameters [59], from
the camera dustsheet:
– fx - focal length measured as number of horizontal

pixels
– fy - focal length measured as number of vertical

pixels
– p0(u0, v0) - the principal point measured in pixels.

The focal length expressed in pixels (f [pixels] =
f [mm]/PixelSize[mm] according to [59]) is used to
transform the pixel coordinates intometric units as it will
be shown in equations (21) - (27).

Let suppose that we observe a 3D vertical segment (i.e. the
median vertical axis of the pedestrian - Figure 14) having as
extremities the 3D points P1(X , 0,Z ) and P2(X ,Y ,Z ). Their
projections on the image plane are the 2D points p1(u1, v1)
and p2(u2, v2) The goal is to compute the 3D coordinates of
the points P1 and P2 in the world coordinate system and by
translation in the ego-vehicle coordinate system.
First a side-view projection of the scene on the YwOwZw

plane (having Xw = 0) is performed as depicted in Figure 15.
Point P1 is projected in point P10, p1 is projected in p10 and
P2 in P20 and so on.

Based on trigonometric relations in the triangle Ocp10p0
one can compute the angle γ :

γ = tan−1
(
v1 − v0
fy

)
(21)
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FIGURE 16. The top-view projection of the scene on the horizontal plane
Xw Ow Zw .

Using the relations in triangle OcOwP10 the depth of point
P10 (respectively P1 in the world coordinate system) can be
deduced as:

Z = [OwP10] =
height

tan(α + γ )
(22)

From the right triangle Ocp20p0 we can compute the angle
θ which will be used further for the height computation of the
object/pedestrian YY :

θ = tan−1
(
v2 − v0
fy

)
(23)

The height YY is computed from the right triangle
OcY2 P20:

YY = [OcOw]− [OcY2] = height − Z · tan(α + θ ) (24)

The top-view or bird-eye view projection of the scene on
the horizontal road plane XwOwZw (Figure 16) is used to
compute the X coordinate – the lateral offset of point P1 with
respect to the axis OwZw:

X = [P1P10] = [p1p10] ·
[OwP10]
[OwZ1]

=
(u1 − u0)
[OwZ1]

· Z (25)

The length of the segment [OwZ1] where Z1 is the projec-
tion of the point p10 on the horizontal plane can be deduced
from the side view projection:

[OwZ1] = [Y1p10] = [Ocp10] · cos(α + γ )

=
fy

cos(γ )
· cos(α + γ ). (26)

From equations (25) and (26) the X coordinate is
computed:

X =
u1 − u0
fy

·
Z

cos (α + γ )
· cos γ (27)

FIGURE 17. Rectangles in which road context features are considered:
(a) the pedestrian is on the road, (b) the pedestrian is outside the road,
but very close to it. Road pixels are marked with green.

In our experiments a monocular infrared camera was used
for acquiring the sequences, hence the distance estimation
method from the monocular camera was implemented. The
top view projection was also used for computing the relative
speed on the horizontal direction (Ox). The speed was tem-
porally filtered by a low pass average filter of dimension 5.

The road context features are computed inside a set of 8
rectangles at the bottom of the bounding box, because that is
the place having a high probability of the pedestrian touching
the ground (when lower body occlusions are not present) - see
Figure 17 and Figure 18. The number above the bounding box
in Figure 17 represents the distance in meters between the
pedestrian and the ego-vehicle computed with the distance
estimation algorithm above, while the green part of the image
represents the result of the road segmentation module.

The eight rectangles have a dimension proportional with
the size of the pedestrian bounding box. In each of these eight
rectangles the average number of road pixels is computed.
If a pedestrian is on the road, these average values will be
high in most of rectangles, exceptions being made by the
two rectangles that usually capture the feet, that will have a
lower street pixel average. If the pedestrian is outside the road
these averages will be low. The size of the eight rectangles is
based on the width and height of the bounding box as shown
in Figure 18. The dimension of the eight rectangles are either
equal to h

6 ×
w
4 or to h

6 ×
w
2 , where h is the height of the

bounding box and w is its width (both expressed in pixels).
These sizes have been chosen empirically.

V. EXPERIMENTS AND RESULTS
The proposed solution is based on a tight combination of
modules that provide the features for the action recogni-
tion model. Each module was trained and evaluated sepa-
rately. The evaluation metrics and results for each module are
described in what follows.
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FIGURE 18. The rectangles in which road features are considered: for
each of the eight rectangles in the lower part of the pedestrian,
the average number of road pixels is computed.

A. PEDESTRIAN DETECTION AND TRACKING
The YOLO based pedestrian detector was trained on
FLIR-ADAS [47] dataset and fine tuned for the CROSSIR
dataset. Starting with the weights of the FLIR-ADAS model
obtained by [19] for our experiments we have trained YOLO
on the annotated pedestrians in our dataset. The training was
done for 20000 iterations. The model with highest mean aver-
age precision is kept. We only consider pedestrian training
samples with a minimum bounding box width of 30 pixels
and with no occlusions.

To compare the performance of the proposed far infrared
tracker with other state of the art solutions, we have used the
PTB-TIR benchmark dataset. In this dataset there are mul-
tiple thermal image sequences each having manual annota-
tions.The center location error (CLE) is an average euclidean
distance between the tracked object position and the ground
truth position for that object. If the CLE is within a given
threshold (20 pixels on the PTB-TIR benchmark) the tracking
is said to be successful at this frame. The precision score
measures the percentage of how successful is the tracking
on the data-set. Apart from the dataset, evaluation results
from multiple types of trackers on the given sequences are
available such that the strengths and weaknesses of each
solution can be observed comparatively. In the evaluation
of the proposed tracking solution on the PTB-TIR bench-
mark, we have selected to include only the sequences that
are related to pedestrians as seen from a vehicle mounted
thermal sensor (since our tracker has been specifically tai-
lored to track pedestrians for the field of intelligent vehicles).
The results of the proposed solution on the benchmark are
displayed in Figure 19, under the name OURS along with
other representative approaches from the literature. It is worth
mentioning that the proposed solution comprises no hardware
acceleration methods and the data association function was
engineered. Consequently wewere able tomonitor the impact
of each feature independently, while keeping a clear view on
the feature extraction part from the data association module.

TABLE 1. Comparative evaluation for various tracking solutions.

FIGURE 19. Comparative evaluation of the tracking solution with respect
to the precision of the solution.

The numeric results from Figure 19 are also displayed
in Table 1.

B. ROAD SEGMENTATION
The training of ERFNet [54] was done using the Adam
optimizer [73], with a batch size of 6, momentum of 0.9,
weight decay of 2e−4 and a starting learning rate of 5e−4.
The learning rate is set every epoch according to the formula
below:

lri =
(
1− (i− 1)

m

)0.9

(28)

where i is the current epoch number and m is the total
number of epochs over which the model is trained. Con-
vergence is achieved after 150 iterations with a segmen-
tation accuracy of 83.78% obtained on the test set. The
training set contains 500 labeled images, the validation
set contains 147 images and the test set contains 200
images.
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FIGURE 20. Qualitative results for the road segmentation: top row
contains the infrared images and the bottom row shows the
segmentation results: road pixels are marked with red.

FIGURE 21. Static scenario used for quantitative evaluation of the
distance estimator with a pedestrian positioned in 5 known locations.

Figure 20 shows some segmentation results. The original
images are shown in the top part of the figure, while the
bottom row of Figure 20 displays in green the pixels having
a high probability to belong to the road.

C. DISTANCE ESTIMATOR EVALUATION
For the quantitative assessment of the proposed monocular
distances estimator, firstly a static scenario was considered
(Figure 21). A person with known height (YGT ) was placed
in 5 different static positions (a .. e) with precisely measured
depths (ZGT ). For each position of the person, a pair of
points, the lowest and the highest image coordinates along
the persons vertical median axis, were manually selected and
the absolute (ZMae

) and relative (ZMre
) depths errors were esti-

mated (Table 2 - columns 3,4), according to (22) by averaging
the results over 3 consecutive static image frames.

Even a person’s height estimation is not relevant for the
pedestrian cross-action recognition problem, its evaluation
is an important clue for the overall assessment of the pro-
posed monocular measurement model, since both the depth
and height estimations of the objects are very sensitive to
the accurate selection of the object’s base point (the image
projection of the lowest contact point of the object with
the ground/road) and its top-most point in the 2D image.
Therefore the absolute (YMae

) and relative (YMre
) height errors

were estimated (Table 3 - columns 3,4) for the same pairs

TABLE 2. Depth evaluation in a controlled scenario.

TABLE 3. Height evaluation in a controlled scenario.

of manually selected points for each person’s instance (a ..
e), according to (24), again by averaging the results over
3 consecutive static image frames.

The same measurement pattern was performed for lowest
and the highest mid points of the 2D bounding box provided
by the pedestrian detector module, and the obtained absolute
(ZPDae ) and relative (ZPDre ) depths errors and the obtained
absolute (YPDae ) and relative (YPDre ) height error are pre-
sented in the last 2 columns of Tables 2 and 3, respectively.
The errors for the manually selected points (columns 3,4)
and for the automatically detected points (columns 5,6) are
of the same order, ranging mostly bellow 5% which is more
than acceptable for a near-depth range urban scenario, and are
comparable with the performances of more precise sensors
(i.e. stereo vision [74]), considering the simplified flat road
assumption.

For the lateral position estimation (X coordinate), GT data
was not acquired for each person’s instance from the
static (controlled) scenario but the width of the furthest struc-
ture visible in the image (the door contour visible in the
background of Figure 21) was assessed. So, at approximately
13m depth, for the 2.653m width structure an absolute width
error of -38 mm corresponding to a relative width error of -
1.43% was obtained. Obviously, accuracy of X coordinates
can be offset-ed by the imprecise alignment between the
OCZC and OEZE axes (Figure 14) during the sensor’s setup,
but it can be minimized by carefully align the principal point
of the thermal camera (white cross from Figure 21) with the
OEZE axis of the ego-vehicle.

The lateral movement of the pedestrian was assessed
by computing the relative speed component (between the
pedestrian and ego-car) along the OEXE axis in a dynamic
sequence. The image positions of the mid-bottom point of the
tracked pedestrians’ bounding-boxes (Figure 22.a), provided
by the pedestrian detection and tracking modules, were trans-
formed in metric coordinates (22, 24, 27) and mapped in the
top-view image (Figure 22.b). The horizontal component of
the pedestrian’s speed is computed as the temporal derivative
of the X coordinates against the time difference between two
consecutive frames (1t = 40 ms⇔ fr_rate = 25 fps):

vrelX =
X (t)− X (t −1t)

1t
=
1X · fr_rate

1000
[m/s] (29)
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FIGURE 22. Dynamic scenario used for quantitative evaluation of the
horizontal component (along OE XE axis) of the relative speed between
pedestrians and the ego-car: a. perspective view with tracked
bounding-boxes; b. Top view projection of the scene, showing the
segmented road surface (magenta) and the reference position of each
pedestrian (green cross).

FIGURE 23. Horizontal component of a pedestrian crossing the street
from left to right: red plot - raw speed, green plot - filtered speed with a
mean low-pass filter of size 5; blue plot - average speed over the entire
sequence.

For the dynamic scenario presented in Figure 22 the
horizontal component of the relative speed vX was com-
puted for the whole sequence summing about 60 frames.
Figures 23 and 24 show the row values (red plots) of the vX
component for two tracked pedestrians crossing the street in
front of the ego-car. The row speed components were tempo-
rally filtered with a mean low-pass filter of size 5 (green plot)
as they are used by the action recognition module. The blue
dotted plots represent the average row speed components over
the entire sequence and show the general movement behavior
of the pedestrians: pedestrian with ID = 8 is crossing the
street by walking from left to right with an average speed
of 1.54 m/s (5.5 km/h) while pedestrian with ID = 11 is
crossing the street by running from right to left with an
average speed of -2.93 m/s (-10.5 km/h).

The difference between the oscillating raw speed and the
smoothed one are mainly due to the instantaneous varia-
tions of the bottom-center point of the pedestrian (v1, u1) as
provided by the pedestrian detector, which influence the X
coordinate of the pedestrian’s position according to (21), (22)
and (27) and secondary due to the fact that the pedestrian
speed is not constant and follows a stepping induced pat-
tern. However the smoothed speed components have lower
standard deviations (0.3 .. 0.4) for both pedestrians being
approximately half of the ones computed for the raw speed
components (0.6 .. 0.8) and can be used as input features for
the cross-action recognition classifier.

FIGURE 24. Horizontal component of a pedestrian crossing the street
from right to left: red plot - raw speed, green plot - filtered speed with a
mean low-pass filter of size 5; blue plot - average speed over the entire
sequence.

TABLE 4. Cross action recognition accuracy for various time series
lengths.

D. CROSS ACTION RECOGNITION EVALUATION
For evaluation we have used time series of various lengths
extracted from the test dataset. The length of the time series
represents the minimum number of frames before the action
can be recognized. The metrics used for evaluation are accu-
racy and F1-score. During the experiments we have varied the
length of the time series from 3 to 20 frames and measured
the metrics for each length. Table 4 presents these results.

A good accuracy for a time series having a short length
means the system can predict the cross or not cross action
based on less information about the evolution of the features
in time. The accuracy chart and the evolution of the F1-score
for various time series lengths is also shown in Figure 25.
It can be noticed that for all time series lengths, varying

from 3 to 20, the accuracy is above 90% with a precision
higher than 93%. This means the proposed model predicts the
pedestrian actions correctly, considering a minimum amount
of information gathered for at least 3 frames. The measures
presented in Table 4 are average measures for all pedestrian
instances.

We also measure the evolution of the cross probability,
in relation with pedestrian distance from the car for each of
the scenarios depicted in Figures 3 and 4. These measure-
ments are highly dependent on the content of the sequences.
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FIGURE 25. Cross action accuracy for various lengths of the time series in
the test set.

FIGURE 26. Cross action evaluation: F1-score for various lengths of the
time series in the test set.

FIGURE 27. Cross action probability for the continuous cross scenario.

Most of the sequences in the CROSSIR dataset contain pedes-
trians that are at a distance from 3 to 30 meters with respect
to the vehicle.

In the scenario with pedestrians walking or running
towards the road and crossing continuously not far from the
car (2-12 meters) the average cross probability is shown
in Figure 27. We also depict the minimum and maximum
cross probabilities. It can be noticed from Figure 27 that the
minimum cross probability has a value greater than 50%,
while the average cross probability for this scenario is close
to 90%.

FIGURE 28. Cross action probability for the start to cross scenario.

FIGURE 29. Cross action probability for the pedestrian on road cross
scenario.

Figure 28 shows the evolution of the cross probability
for the scenario in which pedestrians are standing close to
the curb and starting to cross. It depicts the average, min-
imum and maximum cross probabilities. It can be noted
that the cross probability starts increasing from a distance
of 20 meters. This fact is due to the nature of the test
sequences in the dataset for which pedestrians are crossing
the street in front of the car, their distance with respect to the
car being in the range 5 to 30 meters.

Figure 29 shows the evolution of the cross probability
(average, minimum and maximum values) for scenarios in
which pedestrians are on the road and start to cross or are
already engaged in a cross action. This situation appears when
the car turns on a street where a pedestrian is on the road,
engaged in a cross action with the direction of movement
perpendicular to the direction of the car, or the pedestrian’s
movement direction is parallel to the direction of the car. It
can be noticed that the cross probability in this situation starts
to increase if the pedestrian is situated at a distance smaller
than 38 meters.
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FIGURE 30. Cross action probability for not cross scenario in which the
pedestrian is standing next to or moving parallel to the road.

TABLE 5. Cross action recognition accuracy – comparison with other
methods.

A similar analysis was performed for predicted cross prob-
ability on not cross scenarios. When pedestrians are standing,
walking or running parallel to the road they do not enter the
drivable area and their direction of motion is parallel to the
road. Figure 30 shows the evolution of the cross probability in
this case. It can be noted from Figure 30 that the average cross
probability is below 40%, which is typical for such situations.

For the case in which pedestrians are walking or running
towards the road and then stop without crossing the street the
evolution of the cross probability is presented in Figure 31.
In this situation it can be noticed that as the pedestrian is
getting closer the cross probability increases around of 50%
average value and then it decreases. Minimum and maximum
cross probabilities are also depicted and it can be observed
the maximum cross probability reaching as high as 99%.
This case is typical for the sequences in which the pedestrian
comes towards the car quickly and stops in the last moment
very close to the car.

A comparison with other methods is shown in Table 5.
Even if those methods are trained for color images, we have
used similar algorithms and features that can be computed
from the infrared images. For computing the gait information
we have employed the pose extraction algorithm proposed
by [75]–[77].

AlexNet is trained for gait (walking / standing) estimation
by [45] and the model is modified in order to provide features
on top of which a SVM classifier is trained. We have used as
context the road information provided by the semantic seg-
mentation module. Due to the nature of the infrared images
we could not include pedestrian crossing signs or traffic lights

FIGURE 31. Cross action probability for not cross scenario in which the
pedestrian is approaching the road and stops.

which are not distinguishable in the heat map of the infrared
image.

Two other pedestrian detectors, namely Aggregated Chan-
nel Feature (ACF) [6] pedestrian detector and Regions with
CNN features (R-CNN) [79] were used as baseline pedes-
trian detectors with the purpose of result comparison. The
pedestrian bounding box information was combined with
motion, distance and road features and fed to the LSTM
action recognition model.

The execution time for the proposed method was mea-
sured on an onboard computer having the following fea-
tures: i7-3770K CPU with 16GB of memory and an NVidia
GeForce RTX 2080 Ti. The execution time for extracting the
features provided by the pedestrian detection and tracking
module is 26ms, for computing the features given by the road
segmentation and pedestrian distance estimation is of 13ms,
while the LSTM inference time is of 10 ms.

Figure 32 presents results of the action recognition module
in different scenarios. The road segmentation mask is over-
lapped over the images, the detected and tracked pedestrians
are marked with either green (if they do not cross) or red
(if they cross), the distance of the pedestrians with respect
to the car is shown above the bounding box, while the cross
probability is written under the bounding box.

For example the start to cross scenario in which the pedes-
trian is walking towards the road and he / she starts to cross
the road. In Figure 32 a) we show the pedestrian distance with
respect to the car and the cross probability. If the action is a
not-cross action the pedestrian bounding box is green, and if
the pedestrian is crossing the system displays a red bounding
box. The continuous cross scenario is shown in Figure 32 b)
with pedestrian distances in various ranges: far or closer to
the car.

The not cross scenarios when the pedestrian comes towards
the road and stops or when the pedestrian is walking parallel
to the road are shown in Figure 33 a) and b). Some demon-
strative videos and the CROSSIR dataset are available at.2

2 https://users.utcluj.ro/ raluca/crossir/
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FIGURE 32. Results for cross action recognition: the segmented road is marked with light gray, pedestrians that do not cross are marked with a
green bounding box, pedestrians performing a cross action are marked with a red bounding box. The pedestrian distance with respect to the
ego-vehicle is noted at the top-left corner of the bounding box, while the cross probability (a number between 0-100) is shown at the bottom
left corner of the bounding box.

FIGURE 33. Results for not cross actions: the segmented road is marked with light gray, pedestrians that do not cross are marked with a green
bounding box. The pedestrian distance with respect to the ego-vehicle is noted at the top-left corner of the bounding box, while the cross
probability (a number between 0-100) is shown at the bottom left corner of the bounding box.

VI. CONCLUSION
A modular system for detecting, tracking and recognizing
the pedestrians’ actions in far infrared images was presented.
The contributions of the proposed approach reside in an
original time series based cross action recognition model that
estimates the pedestrian locations in the scene, their speed and
direction of movement, and recognizes with a high accuracy
the cross or not cross actions.

The infrared setup is useful for day and night driving condi-
tions, for low visibility environments with fog, snow or heavy

rain. The proposed model is based only on the information
provided by a monocular infrared camera. Using the known
system setup we are able to estimate the pedestrian distance
with respect to the ego vehicle. Based on a robust pedestrian
detector combined with an original tracking algorithm capa-
ble to extract motion and direction information, we integrate
road segmentation data, in order to build a time series predic-
tion model that recognizes the pedestrian cross action.

For the evaluation of the model we also propose and
share towards the scientific community an annotated dataset,
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CROSSIR that can be used for pedestrian detection, tracking
and action recognition in infrared images. Experiments with
various time length series show that the proposed solution
achieves an accuracy over 90% for all cross and not cross
scenarios captured in the proposed dataset.
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