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Abstract—Depth estimation approaches are crucial for 

environment perception in applications like autonomous driving 

or driving assistance systems. Solutions using cameras have 

always been preferred to other depth estimation methods, due 

to low sensor prices and their ability to extract rich semantic 

information from the scene. Monocular depth estimation 

algorithms using CNNs may fail to reconstruct due to unknown 

geometric properties of certain objects or scenes, which may not 

be present during the training stage. Furthermore, stereo 

reconstruction methods, may also fail to reconstruct some 

regions for various other reasons, like repetitive surfaces, 

untextured areas or solar flares to name a few. To mitigate the 

reconstruction issues that may appear, in this paper we propose 

two refinement approaches that eliminate regions which are not 

correctly reconstructed. Moreover, we propose an original 

architecture for combining the mono and stereo results in order 

to obtain improved disparity maps. The proposed solution is 

designed to be fault tolerant such that if an image is not correctly 

acquired or is corrupted, the system is still able to reconstruct 

the environment. The proposed approach has been tested on the 

KITTI dataset in order to illustrate its performance. 

Keywords— fault tolerance, monocular depth estimation, 

stereo reconstruction, CNN, fusion, automated driving.  

I. INTRODUCTION 

    The future of transportation is driven by the development 
of autonomous vehicles and advanced driver assistance 
systems, in order to reduce driving failures and enable a safer 
and more comfortable way of transportation. 
    The general pipeline of an autonomous system is built of 
four components: the sensing field, the perception module 
[1], the path planning module [2] and the control module [3]. 
Environment perception is one of the most fundamental and 
challenging problems of autonomous driving. Using this 
module, the autonomous system has to reliably detect all the 
traffic participants in various weather conditions like snow, 
rain, fog etc. and predict their future states. In order to get a 
3D representation of the surrounding environments, accurate 
depth measurement is an essential task. In the case of 
autonomous systems, for gathering 3D data, a complex 
network of multiple sensors is needed for the perception of 
the environment to fully replace the human driver, such as 
LiDARs [4], RADARs [5], stereo-cameras [6] or mono-
cameras [7]. To accurately represent the environment, in 
autonomous cars, multiple sensors are fused [8] to combine 
the redundant and complementary information from all 
sensors. Even so, for ensuring high quality results, the fusion 
system should not be centred around a single sensor and the 
output coming from each sensor should be as good as 
possible. Not centering the whole system around a single 
sensor will ensure robustness against individual sensor 
failure. 3D LiDARs provide very accurate geometric 
information of the driving scene, which can be useful to 
support a close object detection [4] or a SLAM [9] system. 
However, because of the sparsity of the acquired point 

clouds, LiDARs can offer a poor representation of the scene 
topology, and can have difficulties in detecting objects at far 
distances. Furthermore, the costs of LiDARs are very high 
and they have accuracy problems in adverse weather 
conditions. RADARs have an advantage over other 
technologies due to their ability to measure objects that are 
not in their direct line of sight, as a result of the ability of 
electromagnetic waves to bounce off hard surfaces [10]. 
Moreover, RADAR technology can be used to measure the 
speed of objects and they can work in adverse weather 
conditions. A downside of RADARs is that they discard 
objects in order to avoid over-reporting. Such a feature may 
be useful when omitting the road surface, however it can be 
very risky for object detection applications because it may 
fail to detect static objects. In addition, RADARs have a small 
vertical field of view and are unable to reconstruct the whole 
scene in detail. 
    Stereo vision-based 3D reconstruction is a much cheaper 
method of representing the environment. Such solutions have 
attracted a lot of interest from the research community due to 
the fact that cameras can also extract semantic information 
from a scene. Multiple types of methods have been developed 
for various applications. For instance, applications which 
require low resource consumption and real time execution, 
use local stereo algorithms [4]. For improving the quality of 
the 3D reconstruction, semi-global methods are used [11]. 
These solutions usually perform a semi-global matching 
aggregation on the cost volume in order to produce better 
quality results. Semi-global approaches can run in real time 
if they are tailored to run on a GPU or if CPU hardware 
acceleration methods are used. Global stereo reconstruction 
approaches produce high quality depth maps, however they 
are not suitable for real time automotive applications because 
of the high power and resource consumption when they are 
hardware accelerated [12].    
    Monocular depth estimation (MDE) uses a single camera 
to infer a depth map of the environment [7]. The papers 
published in the literature in the past 50 years regarding 
monocular depth perception can be split into three categories: 
structure from motion-based methods [13], handcrafted 
features methods [14] and state of the art deep-learning based 
methods [15]. The recent progresses in neural network-based 
solutions have made monocular depth estimation more 
reliable and desirable for advanced driver assistance systems 
and autonomous systems applications. There are many 
advantages of MDE solutions with respect to the stereo 
camera-based approaches. First of all, the costs of acquisition 
are smaller since there is a need only for one camera instead 
of two. Secondly, there is no need for complex cross 
calibration and temporal alignment approaches for obtaining 
accurate results.  Even though humans appear good at judging 
depth from a single image, because of their common sense, 
life experience and exploitation of certain features like 
perspective or scale of known objects, it is impossible for a 



computer vision system to learn all prior knowledge about the 
geometric structures of all the objects in a scene. Certain 
structures from the environment may be incorrectly 
reconstructed and some may be unreconstructed at all. This 
issue makes current monocular depth perception solutions 
less reliable for critical applications. In this paper we propose 
an original fusion approach between monocular and stereo 
depth estimation in order to obtain better quality disparity 
maps. Furthermore, two refinement solutions are proposed 
for improving the disparity maps obtained using the two 
reconstruction methods. The main contributions of this work 
are enumerated below: 

• An original pipeline for combining monocular depth 

estimation with local stereo algorithms in order to obtain 

a more reliable and fault tolerant approach for depth 

estimation. 

• An original algorithm for eliminating speckles of wrong 

disparities. 

• An adaptation to monocular depth estimation of a 

refinement algorithm, previously applied in stereo.  

• A fusion scheme that combines disparity values from 

monocular and stereo depth estimation using semantic 

segmentation, resulting in an improved disparity map. 

 The rest of the paper is structured as follows: in section II 
we will review the state of the art in the field of monocular 
depth perception. In section III the proposed solution will be 
presented and in section IV we discuss the results obtained 
with our refinement approach. Finally, we conclude the paper 
in section V. 

II. RELATED WORK 

A. Monocular Depth Estimation 

    Inferring depth from single images is not a straightforward 

task because of the loss of the 3D information in the process 

of capturing images with a single camera. Early monocular 

depth estimation algorithms mainly relied on texture 

variations, occlusion boundaries, defocus, surface layout and 

size of known objects as indices for predicting the dense 

depth maps. In the pioneering work of Horn et. al. [16] the 

color gradients of an acquired image are exploited to estimate 

depth information of objects. Following the feature 

engineering approach Kong and Black [17] formulate depth 

estimation as an intrinsic image estimation problem. The 

intrinsic images correspond to physical properties of the 

scene such as shadows, surface shape or reflectance. The 

authors train a contour detector to predict surface boundaries 

from shading. The predicted contour is used for enhancing 

the quality of depth maps.  

    The author in [18] proposes a depth estimation from mono 

approach that uses a learning mechanism which incorporates 

the size of the known objects in the image. The absolute scene 

depth is derived from the image structure represented as a set 

of features from Fourier and wavelet transforms.  As the 

recognition of objects in unconstrained conditions is prone to 

errors, the authors in [19] combine texture features, geometric 

context and motion boundary based monocular features with 

co-planarity spatio-temporal constraints to infer depth from 

monocular videos.  In [20] the authors categorize the objects 

in four types: sky, ground, cubic and plane. Based on the type 

of object and using the perspective information, a relative 

depth value is assigned to each object model. 

    Compared to the feature engineering approaches the deep 

learning solutions have achieved much greater reconstruction 

accuracy in the field of dense depth estimation. In the work 

of Laina et. al. [21] the authors propose a fully convolutional 

network, having an encoder decoder architecture, for the task 

of depth estimation. The encoder consists of a modified 

ResNet-50 [22] architecture after removing the FC layers and 

the last pooling layer. The decoder guides the network to 

efficiently upscale the results via a series of convolutional 

layers. By having the depth of the network increase, the 

accuracy of the model also increases because the large 

receptive fields capture more context information. By using 

this idea CNNs with more than 100 layers have been applied 

for the task of MDE [23, 24]. To further improve the quality 

of depth maps, Mancini et al. [25] has concatenated optical 

flow and the current RGB image. The stacked images are fed 

to an encoder-decoder network to learn depth from fused 

information. Alhashim and Wonka build upon the state of the 

art of MDE and design a connected encoder-decoder 

architecture [26]. The decoder used consists of a bilinear up-

sampling and two convolutional layers. With the deep 

network architecture and elaborate training strategies the 

designed model obtains more accurate results on international 

datasets. Yin et al. [27] proposes the use of a geometric 

constraint in the 3D space, by designing a loss term. The 

designed loss function fuses the pixel-wise depth 

supervisions with geometric information which enables the 

depth estimation network to generate an accurate depth map. 
Another semi-supervised depth estimation framework is 

presented in [28]. The proposed architecture consists of two 
networks: the first one is a pose estimation network and the 
second is a symmetric depth estimation network. The model 
is fed the RGB and semantic segmentation image to produce 
two results, an initial depth map and a semantic weight map. 
The two maps are combined to generate the final refined depth 
map. 

B. Stereo Vision Depth Estimation and Fault Tolerance 

    Feature engineered based stereo matching methods can 

lead to ambiguous associations among the patches from the 

left and right images, as wrong matches can easily have lower 

association cost than the correct ones because of occlusions, 

reflections, noise etc. To overcome this issue, many cost-

aggregation approaches have been developed to achieve more 

accurate depth estimations [29, 30].  

    Even though, recently, stereo reconstruction solutions 

which occupy the top positions in international benchmarks 

use deep learning methods, such approaches need vast 

amounts of training data to produce high quality results [31, 

32]. Moreover, a GPU is needed to run deep learning models 

in real time. Furthermore, when a network is presented a 

scenario which was not available in the dataset, the method 

might not reconstruct the scene accurately. Feature 

engineering-based approaches like the ones presented in [29] 

and [30] can run in real time on the CPU without hardware 

acceleration methods, which makes them suitable 

applications on low-cost single board computers. 

    The most common descriptors used for stereo matching are 

intensity based (SAD, NCC) [33], binary (census, daisy) [29], 

non-parametric (Rank Transform) or other custom ones [6].  

An aggregation step improves the robustness against noise or 

surfaces which are not fronto-parallel [29]. An additional 



semi-global [34] or global [35] optimization step is used for 

refining the results and finally a smoothing is performed 

using a median or bilateral filter.  
One common issue when dealing with stereo methods is 

that a frame may not be acquired correctly or the image may 
be corrupted. One of the reference approaches from the 
literature that deals with error mitigation in the context of 
stereo vision is presented in [36]. The key steps for recovering 
the missing stereoscopic video frames are temporal change 
detection from two successive left images, disparity 
estimation and frame difference projection. This proposed 
disparity-based frame difference projection solution, manages 
to offer good results in case there is a frame drop issue. In his 
work, Chung et al. [37], exploits the motion vectors of each 
color image for concealing the right color frame. Furthermore, 
the authors use a 3D image warping technique to determine 
matching pixels between inter-views, and use the motion 
vectors and the intensity differences of matching pixels to 
reconstruct the image. Miclea et. al. [38] identifies three points 
of failure in the stereo reconstruction pipeline and uses a 
neural network to resolve the failure. The proposed network is 
modelled as a regression and uses the previous correctly 
acquired RGB image, the previous disparity image and the 
semantic segmentation image to output the final disparity 
map. 

III. PROPOSED SOLUTION 

The proposed solution section is split in four sub-sections. 
In the first three sections, the contributions regarding the 
disparity refinement approaches are displayed. The fourth 
section is dedicated to the fusion of monocular and stereo 
disparity maps with the aim of creating an improved result. 
The system is built such that it can also be fault tolerant in case 
of individual camera failure.  In Figure 1, a block diagram of 
the proposed solution is displayed. Once the left and right 
frames are captured, they are verified to see if they are valid 
(if the frame contains information, and is not just noise). If 
both frames are validated, they are used in the stereo and 
monocular reconstruction modules and after the refinement 
stages, the results are fused to obtain a higher quality depth 
map. In case only one frame is correctly captured, that frame 
is used by the MDE approach, regardless which frame it is. 
Finally, if no frame is captured correctly a warning message is 
displayed. 

A. Monocular Depth Estimation 

The monocular depth estimation approach used for 
generating the disparity map is based on the Convolutional 
Neural Network(CNN) presented in [39].  

The neural network was built on an encoder decoder 

architecture having a total of 14 layers. The base architecture 

of the neural network and the distribution of layers is given 

by a slightly modified version of the VGG-16. At the same 

time, the whole architecture can be seen as an encoder-

decoder type architecture, where the encoder part represents 

the down-sampling of the feature maps, and the decoder part 

represents the reverse up-sampling operation. The encoder 

contains 7 blocks, and in each of them the application of 

convolutional filters is first performed using stride 1 and the 

necessary padding in keep the image size because their rapid 

decrease would lead to a considerable loss of image 

information. Following this operation, we perform a strided 

convolution using a stride of 2 in order to halve the height 

and width of the image. The encoder contains 7 convolutional 

layers having ELU activation. The architectural structure of 

the encoder is the following: we first use a convolutional 

layer having 7x7 kernel and 32 filters, the second 

convolutional layer has a kernel of 5x5 and 64 filters, the third 

one has 128 filters and a kernel size of 3x3, the fourth has 256 

filters and the convolution kernel size of 3x3, the fifth, sixth 

and seventh convolutional layers all use 512 filters and kernel 

size of 3x3.  

The CNN's decoder also consists of 7 blocks, and each 

block consists of two parts: the operation of multiplying the 

dimensions of the feature maps received as input by a factor 

equal to 2, together with the unification of the new feature 

map obtained in the previous step with the corresponding 

block (having the same dimensions) in the encoder and 

applying a new convolution using stride 1 to obtain even 

more features or to recover information lost during 

dimensional reduction. Unification is performed using skip-

connections with the encoders blocks. The reconstruction can 

be performed by a bilinear sampler using in turn the original 

left images together with the right disparity maps, and then 

the original right images together with the left disparity maps. 

For accurately computing the disparity map we store the 

original image as well as 3 other images obtained by dividing 

the original to 3 different scaling factors (2,4 and 8). The final 

disparity image is obtained by uniting the individual disparity 

images obtained for the four scales mentioned above with the 

help of a cost function. The whole cost function is composed 

of: the cost that compares the reconstructed images with the 

original images (both for the left image and for the right 

image), the cost that forces the disparities to be smooth 

locally and the cost that forces the obtained disparity maps 

(left and right) to be equal to each other. As for the cost 

function that forces the disparity maps to be locally smooth, 

L1 norm will be applied on the disparity gradients, and as 

discontinuities often occur at color changes in the image, the 

comparison terms applied on the disparity gradients and the 

image gradients.  

The model has been implemented in TensorFlow and the 

architecture used has approximately 30 million parameters, 

which are modified during the learning process. The CNN 

was trained using the Adam optimizer, for 50 epochs 

applying different learning rates. The first 30 epochs have 

been trained using a learning rate equal to 1e-4. The learning 

rate was halved for the following 10 epochs, and then halved 

again for the last 10 epochs. The input data was augmented 

using the following transformations: horizontal flip, random 

color changes and gamma change with a random value 

 

Figure 1. Pipeline of the fault tolerant approach that combines the refined stereo and 
mono disparity maps. 



between 0.8 and 1.2, the color intensities in each channel 

(RGB) were also be changed with a random value, after 

which the values of all pixels were normalized. It is worth 

noting the fact that we did not create the architecture 

described above. However, we have mentioned the most 

relevant details of its design for the manuscript completeness 

and because we use it in our main processing pipeline. 

B. Tree based refinement 

The monocular and stereo disparity maps obtained are 

refined in order to obtain better quality results and eliminate 

regions which are not correctly reconstructed. The refinement 

algorithm has three steps: the creation of minimum spanning 

trees based on disparity values, the process of linking the 

trees and a final aggregation step.  The tree-based refinement 

is an adaptation of the algorithm presented for stereo in [40], 

for the monocular depth estimation problem. The disparity 

map resulted by taking the left image as reference can be 

thought of as an undirected graph, in which each pixel will 

form a node in the graph, and possible edges exist in 4 

directions (up, down, left and right). Each edge will have 

associated to it a weight, which is calculated according to (1) 

and denotes the difference in intensity of the pixels that form 

the edge in the original left image together with the difference 

in disparity of the same pixels, from the left disparity map. 

𝑊𝑒𝑝𝑞
=

{
max

𝑐 ∈{𝑟,𝑔,𝑏}
| 𝐼𝑐(𝑝) −  𝐼𝑐(𝑞) | ∗ 𝛼 + (1 −  𝛼) ∗  ∆𝑑 , ∆𝑑 <  𝜏

𝐶,                                                                             ∆𝑑 ≥  𝜏
  (1) 

    The nodes of the neighboring pixels p and q, are linked 

using an edge denoted by 𝑒𝑝𝑞. The intensity value of a pixel 

in the original image is represented by 𝐼𝑐  and ∆𝑑  is the 

difference in disparity while the constants used have the 

following values 𝛼 = 0.8, 𝜏 = 8 and 𝐶 = 256. 

It should be noted that only the edges which have a label less 

than constant C will be considered for the step of the 

generation of minimum spanning trees. The constant value C 

will be assigned to an edge when the difference in disparity 

of the pixels forming the edge is greater than a predetermined 

constant value, τ, because a higher value denotes the 

dissimilarity between the two pixels. 

    As all possible minimum spanning trees were built 

following the application of Kruskal's algorithm, it should be 

noted that some of them will be considered as support regions 

(stable trees) for areas with reconstruction errors. The 

purpose of the second major step of the algorithm (binding) 

is to find a support region for each erroneous (unstable) tree. 

The classification of trees into the two categories is achieved 

by taking into account both the size (number of existing nodes 

in the tree) and the ratio of the tree error, as presented in (2) 

and (3). If the number of nodes in the tree is less than a 

predetermined threshold, it indicates that the grouping 

represents a small hole. As the tree error ratio is higher than 

another set threshold, an area was identified which was 

present in only one of the two pictures when the network was 

run. In both cases, it will not be considered a support region, 

therefore it will be labelled as unstable. 

                        𝛿 = {
0, 𝑟 >  𝛾1 𝑠𝑎𝑢  𝑛 <   𝛾2

1, 𝑟 ≤  𝛾1  𝑠𝑖  𝑛 ≥  𝛾2
                    (2) 

                           𝑟 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑑𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
         (3) 

In (2) n represents the number of nodes in a tree, r is the 

error ratio of the tree and 𝛾1 and 𝛾2 are two constants having 

the values 𝛾1 = 0.2 and 𝛾2 = 100. In order to calculate the 

error ratio, each tree must know its number of erroneous 

nodes. A node (pixel) will be considered erroneous when the 

difference between the disparity value at the position of that 

pixel in the left disparity map and the value at the position of 

the same pixel shifted to the left by the previously obtained 

disparity value in the right disparity map is greater than or 

equal to a threshold of 1, which indicates an inconsistency at 

that position in the two disparity maps. Determining the 

correctness of each node is already done when initializing the 

trees. 

    The first step in finding a support region for an unstable 

tree is to identify all neighboring stable trees which have an 

error rate lower than that of the unstable tree. Starting from 

the root of the unstable tree, all neighboring trees will be 

searched in 8 directions and if they comply with the condition 

aforementioned regarding the error ratio will be considered 

to be target regions to support the tree in question.  

Having established the possible support regions for each 

unstable tree, the next step is to find the most suitable of them. 

If no stable tree was found in any of the neighboring region, 

the whole procedure will be reiterated after all unstable trees 

have been evaluated. The choice of the most favorable 

support region will be made according to a new term, called 

suitability that will take into account the difference in 

intensity and the difference in disparity of the last pixel in the 

unstable tree and the first pixel encountered of the target tree. 

The formulas used for computing the value of suitability can 

be observed in (4), (5), (6). 

 𝑍 =  𝜆𝑅 ∗ 𝑅 + 𝜆𝐼 ∗ 𝐼 + 𝜆𝐷 ∗ 𝐷                   (4) 

               𝑅 =  −𝑟, 𝐼 =  − max
 

|𝐼(𝑝) −  𝐼(𝑞)|              (5) 

𝐷 =  
𝑐𝑎𝑟𝑑|𝑡𝑟𝑒𝑒.𝐷𝑡∩𝑡𝑟𝑒𝑒.𝐷𝑇|

𝑐𝑎𝑟𝑑|𝑡𝑟𝑒𝑒.𝐷𝑡∪𝑡𝑟𝑒𝑒.𝐷𝑇|
, 𝐷𝑡 =∪ 𝑑𝑝, 𝑝 ∈ Tp         (6)  

    The meaning of the terms in the equations above are the 

following: r is the error ratio of the target tree, the variable I 

represents the difference in intensity between pixels p and q 

in the left original image, by 𝑐𝑎𝑟𝑑|𝑀| we denote the total 

number of elements in the collection M, 𝐷𝑡  is the collection 

of disparity values of the stable nodes p in the unstable tree t, 

𝐷𝑇  represents the collection of disparity values of the stable 

nodes p in the target tree Tp, and finally the values of the used 

constant weights are 𝜆𝑅 = 0.1 , 𝜆𝐼  = 0.8, 𝜆𝐷  = 0.1. The 

support tree that will be selected will be chosen according to 

the highest Z value. The linking between an unstable and a 

stable tree will be achieved using a new edge between the root 

node of the unstable tree and one of the nodes of the 

neighboring stable tree. Since the result of the linking will be 

a new tree, it is necessary to recalculate the total number of 

nodes, the error ratio of the resulting tree and possibly the 

new disparity interval corresponding to the tree. Following 

the union, it is necessary to recalculate the total number of 

nodes, the error ratio of the resulting tree and possibly the 

new disparity interval corresponding to the tree. Both the 

number of nodes and the error ratio will be calculated by 

summing these values already calculated for each of the two 

trees, before the binding step. In order to recalculate the range 

of disparity values by combining the range of disparity values 

corresponding to the unstable tree with that corresponding to 

the target tree, one of the following three conditions should 

be met. The first condition is that the total number of nodes 

of the target tree is less than a threshold equal to 100 in our 

case or the error ratio of the tree is greater than another 



threshold empirically set to 0.6. The second condition refers 

to the range of disparity values calculated for the target tree 

has identical consecutive values, which indicates the 

presence of a hole. The third and final condition refers to the 

difference in the error ratio between the most suitable tree and 

the unstable tree which should be below a threshold equal to 

0.05. If none of these conditions is met, the new disparity 

interval of the newly created tree will be identical to the 

unmodified one of the most suitable tree found. In order to be 

able to perform the last step of the algorithm, the aggregation 

of the resulting trees, it is necessary to create a cost volume 

based on the left image disparity map, as described by (7). 

𝐶𝑑(𝑝) = {
|𝑑 − 𝐷(𝑝)|, 𝑝 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝐷(𝑝) > 0
0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (7) 

The value d refers to one of the disparity interval values 

(which is maximum 128 in our case) and 𝐷(𝑝)  disparity 

value of stable pixel p in left disparity map. The aggregation 

step aims to change the disparity value of each node 

according to all the other nodes contained in the tree in which 

it is located. In this step the disparity values of the stable 

nodes are propagated to the erroneous ones. The level of 

contribution of each node depends on the distance between 

the two nodes, which will be calculated by summing all the 

labels of the edges that connect the two nodes in the tree, 

following the shortest path between them. The greater the 

distance between two nodes, the less important the 

contribution will be.  In each tree, starting from the leaves, 

the contributions of each node will be propagated to the root 

thus calculating an aggregated cost volume based on the cost 

volume constructed using (8). In the second step the 

algorithm will start from the root of the tree and the 

contributions will propagate to the last nodes in the tree, 

calculating a final cost volume based on the one built in the 

previous step. The equations can be seen in (8). The term 

𝐶𝑑(𝑣)  is the value from the cost volume resulted by 

aggregating the values in a bottom-up manner, S is a function 

that computes the similarity of two values, P is the parent 

node of node v. 

   𝐶𝑑
𝐴(𝑣) = 𝑆(𝑃(𝑣), 𝑣)𝐶𝑑

𝐴(𝑃(𝑣)) + [1 − 𝑆2(𝑣, 𝑃(𝑣))] 𝐶𝑑(𝑣)    (8) 

Therefore, by inspecting the lists of possible disparity 

values corresponding to each pixel, the lowest values 

encountered in each interval will be retained, but they will not 

represent the final values. The last step in the refining 

technique using stability-based trees is the sub-pixel 

interpolation, which aims to influence each minimum value 

of disparity previously found by the two neighbors between 

which it is located. We apply this interpolation in order to get 

more accurate results. This refinement method has been 

implemented on the GPU. 

C. Speckle Filtering 

Speckles of erroneous disparities may appear on the 

resulted disparity map due to repetitive patterns on some 

regions or untextured surfaces. For removing these speckles 

and replacing them with a more suitable disparity values, 

obtained from the region neighboring values, the speckle 

removal approach was created which uses two traversals of 

the original image in order to identify and remove the 

unwanted values.  
In the first traversal we create clusters of similar disparities 

and assign a label( or ID) to each of them. The first labels will 

be designed for the values of disparities encountered, with 
respect to a four-neighbour vicinity (left, top left, top, top 
right). However, only the disparities that meet the condition 
from  (9) will be considered to be part of the same cluster. 

 |𝐷𝑖𝑗 − 𝑓𝑖𝑟𝑠𝑡(𝐷𝑖𝑗
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

)| < 𝑇             (9)  

      In equation (9) the term 𝐷𝑖𝑗  refers to the disparity value 

of the unlabeled pixel, 𝑓𝑖𝑟𝑠𝑡(𝐷𝑖𝑗
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

) is the first disparity 

value found for a certain cluster which has been labeled, T is 

a threshold which was chosen empirically and has the value 

15 and finally | x | refers to the absolute value of x. If no 

neighboring pixel complies with (9) a new ID will be 

assigned to the unlabeled pixel in question. In case a pixel has 

a neighbor, which was previously identified, and the pixel 

respects (9) the unlabeled pixel will receive the same ID as 

its neighbor. When there are two or more neighboring pixels 

that have been visited and they all respect (9), the current 

pixel will be labeled using the minimum cluster ID and all the 

clusters that neighbor that specific pixel will be considered 

equivalent. After creating the equivalence classes between 

the disparity clusters, in the next step we apply a breadth first 

search (BFS) algorithm to identify all the connected 

component clusters and reassign to each one a new label. The 

new label received by the new clusters resulted after the BFS 

operation is selected as the minimal label ID of the clusters 

that have been combined. After re-labelling we also have the 

size in pixels of each disparity cluster as a biproduct. We 

make a second pass through the image and nullify all 

disparity values belonging to clusters having an area smaller 

than 30x30 pixels. 
For filling the zeroed regions, we are using the 

semantically segmented and instance level segmentation 
images. Going from left to right and from top to bottom in the 
entire disparity map, for each incorrectly reconstructed value, 
we search for the closest neighbouring pixel that is correctly 
reconstructed provided that both pixels are part of the same 
instance or in case the instance is not available (for example 
for the road, or vegetation scenarios) the search will be 
validated using the semantic image. The process will be 
repeated over the entire disparity image each time a new pixel 
with an incorrectly reconstructed disparity value has been 
identified. The final result will be filtered using a 3x3 median 
filter.   

D. Mono and Stereo Disparity Map Fusion 

The stereo and monocular fusion is useful because in 

case one of the cameras from the stereo rig fails to capture 

images or breaks for any reason, the system should still be 

able to reconstruct the scene, even though the quality might 

not be as good as when both cameras are functioning. 

Furthermore, the stereo vision system may fail to reconstruct 

certain regions due to issues like repetitive patterns, 

untextured areas, occlusions and so on. For such scenarios the 

monocular depth estimation approach might provide useful 

information, and help fill in the unreconstructed regions. 

For creating a solution that does not consume many 

resources and is therefore portable on embedded devices, we 

have used a stereo solution based on local stereo 

reconstruction algorithms with a configuration similar to the 

one presented in [29].  In the first step, we are checking if the 

image received from the camera is correct. For this the 

histogram of the grey level image is computed in a region of 



interest in the lower part of the image. If more than 70% of 

all the pixels from the histogram are below the threshold 

value 10 or above 230, the image is labelled incorrect and it 

is not used in the reconstruction process. In the case only one 

image is acquired correctly, the scene is reconstructed using 

the monocular depth estimation algorithm. If both images are 

correctly acquired the block matching approach is applied on 

both images, as well as the monocular depth estimation 

method on each individual image. It is worth noting the fact 

that if both images are acquired correctly the left image is 

taken as reference and the fusion is performed using the left 

disparity image from the monocular depth estimation 

procedure.  The next step in our algorithm is verifying if in 

the disparity image obtained via stereo reconstruction there 

are any unreconstructed regions. If such regions are found 

they are filled with the information from the monocular depth 

estimation map.  Following this step, we perform the fusion 

of the disparity maps obtained using the two reconstruction 

methods (monocular depth estimation and stereo), and use the 

semantic segmentation image of the left frame to aid the 

fusion process. The fusion is performed on the consideration 

that the monocular depth estimation method is able to provide 

a good reconstruction for some surfaces, like the road or 

walls, or object that are close to the ego vehicle, however as 

the disparity values get smaller, i.e. the objects from the scene 

get farther from the camera the disparity image is getting 

more blurry and the objects are not reconstructed as well as 

in the stereo vision case. Before combining the disparity 

values, we first check if the absolute value of the difference 

between the disparity value from the stereo and mono are 

below an error threshold (which has been empirically set to 

10 in our case). Only if the condition holds true the two values 

are combined. Furthermore, we only use the disparity values 

from the monocular depth estimation which are above 60, 

because smaller values are unreliable. The fusion is 

performed using a set of weights for each semantic class. The 

combination between the values is computed using equation 

(10), where 𝑑𝑖𝑠𝑝  represents the disparity taken from the 

disparity map obtained using stereo reconstruction, 𝑤𝑐𝑙𝑎𝑠𝑠 is 

a weight selected experimentally for each class of interest, 

maxDisp represents the maximum number of disparities. The 

semantic classes weights for some of the classes of interest 

are the following  𝑤𝑟𝑜𝑎𝑑  = 0.8, 𝑤𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 0.3, 𝑤𝑐𝑎𝑟 =  0.4, 

𝑤𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡  = 0.6, 𝑤𝑠𝑖𝑔𝑛 = 0.3, 𝑤𝑏𝑖𝑐𝑖𝑐𝑙𝑒 = 0.1, 𝑤𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 =

0.1 . The other classes that appear in the KITTI semantic 

segmentation are not assigned any weights, their values 

remaining the same ones from the stereo reconstruction since 

the disparity values from the monocular depth estimation are 

unreliable for these classes. Such classes include grass, sky, 

fence, tree or discard class.  

𝑤𝑚 = 𝑤𝑐𝑙𝑎𝑠𝑠 ∗
𝑑𝑖𝑠𝑝

𝑚𝑎𝑥𝐷𝑖𝑠𝑝
      (10) 

   The final result for a disparity value of coordinates i and j 

is computed as presented in (11), where for ∆𝑖,𝑗 is the final 

disparity value, 𝑑𝛼𝑖,𝑗 is the disparity value obtained using the 

local stereo algorithm and 𝑑𝛽𝑖,𝑗  is the disparity value 

obtained using the monocular depth estimation. 

∆𝑖,𝑗= (1 − 𝑤𝑚𝑖,𝑗
) 𝑑𝛼𝑖,𝑗 + 𝑤𝑚𝑖,𝑗

𝑑𝛽𝑖,𝑗     (11) 

IV. EVALUATION AND EXPERIMENTAL RESULTS 

For evaluating the proposed solution, we have used the 

KITTI benchmark [41]. This dataset contains images of 

different driving scenarios, and it also provides ground truth 

files for depth estimation applications, taken using LIDAR 

sensors. Furthermore, the semantic and instance-based 

segmentation images are also provided for some of the traffic 

scenarios.  The system on which we implemented our method 

contains an Intel(R) Core (TM) i5-7300HQ CPU, having 8GB 

of DDR RAM memory and an NVIDIA GeForce GTX 1050 

4GB GDDR5 GPU. The neural network was trained using the 

GPU and the inference was also done on the GPU. Open MP 

has been used to parallelize some part of the code that runs on 

the CPU. The programming languages used are C++, Python 

and the frameworks used are OpenCV, TensorFlow and Point 

Cloud Library. The error threshold used in the error maps of 

our evaluation is 2 pixels. We evaluate the disparity images 

using the Out-All metric, which means that all pixels for 

which ground truth information exists will be evaluated even 

if they are occluded. In Figure 2 we can observe the results of 

the stereo algorithm, the MDE approach used and the 

proposed fusion solution, on a traffic scene from the KITTI 

dataset. We can also observe the error maps for each disparity 

image. The white pixels represent disparity values for which 

the difference with the ground truth data was greater than 2 

pixels. In Table I the performance of the proposed solution is 

illustrated with respect to the used stereo and monocular depth 

estimation approaches. The methods are evaluated on the 

KITTI 2012 training set and the results are shown for error 

thresholds of 2,3 and 4 pixels.  

TABLE I.  COMPARISON OF THE PROPOSED FUSION WITH EACH 

INDIVIDUAL ALGORITHM USED 

 It is worth mentioning that the majority of errors 

encountered were at object borders and for semantic classes 

such as vegetation (especially at bushes) and fences. We can 

observe that the fusion of the information from the two 

disparity maps obtained using different approaches leads to 

better quality results incorporating the advantages of both 

methods. In Table II we have listed the comparison of the 

proposed solution with other state of the art methods. The 

evaluation is done using the Out-All error metric with an error 

threshold of 2 pixels. The running time of our solution is 100 

ms, with the algorithms running on the CPU and GPU. The 

stereo reconstruction approach runs exclusively on the CPU, 

and the monocular depth estimation is running on the GPU.  

TABLE II.  COMPARISON WITH STATE OF THE ART ON KITTI 

Position Method Density Out-All 

Error 

129 FD-Fusion [42] 100% 5.73 % 

130 Proposed Fusion 100% 5.75% 

131 OSF [43] 99.98 % 5.79 % 

132 CoR [44] 100% 5.88% 

133 SPS-St [45] 100% 6.28% 

Method 
Disparity Evaluation Error 

2px 3px 4px Density 

Mono 18.202 13.940 9.649 100% 

Stereo 7.324 6.168 4.888 100% 

Proposed 
Fusion 

5.756 4.446 3.000 100% 



Other disparity images and the corresponding error maps 
obtained using the proposed fusion solution are displayed in 
Figure 3 and Figure 4. For visual analysis the Figure 3 
corresponds to RGB image 38 and Figure 4 corresponds to 
RGB image 3 from the KITTI training dataset. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented an original pipeline that 
combines monocular with stereo depth estimation in order to 
produce high quality disparity maps. We have applied a tree-
based refinement solution, which was originally used for 
stereo reconstruction, to the problem of monocular depth 
estimation in order to improve the resulted disparity map and 
proposed a speckle removal approach to eliminate small 

inconsistent values from the disparity maps. The proposed 
system is fault tolerant, meaning that if the stereo cameras fail 
to capture one image, the system will still provide a good 
quality disparity map using the monocular depth estimation 
method. Finally, if no image is acquired correctly a warning 
message is displayed. The proposed solution has been 
validated on the KITTI dataset and we have shown that the 
fusion approach is able to reconstruct scenes better than either 
the stereo or monocular depth estimation algorithms.  

In future work we will investigate and create more 
efficient methods of mono and local stereo reconstruction that 
have a low resource consumption. Furthermore, we will also 
focus on improving the fusion approach using automatically 

a  b  

c  d  

e  f   

g  h  
Figure 2. Comparison between the mono, stereo and proposed solution disparity maps. Figure a, presents the semantic segmentation, b is the original color image, 
c is the error map obtained for mono algorithm, d is the disparity map of the monocular depth estimation approach, f is the disparity map and e represents the 

error map of the local stereo algorithm, h represents the fused disparity map and g is the error map. 

 

 

 

Figure 3. Disparity map of the proposed fusion and its error map using a 2-
pixel threshold of a KITTI image 

 

 

Figure 4. Disparity and error map of the proposed method applied on an image 
illustrating a parking lot. 



learned weights and try to solve the issue of 3D reconstruction 
at the border of the objects. 
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