
978-1-6654-0976-6/21/$31.00 ©2021 IEEE

Stereo and Mono Depth Estimation Fusion for an

Improved and Fault Tolerant 3D Reconstruction

Mircea Paul Muresan, Marchis Raul, Sergiu Nedevschi, Radu Danescu

Technical University of Cluj-Napoca

Computer Science Department, Cluj-Napoca Romania

 {Mircea.Muresan, Raul.Marchis, Sergiu.Nedevschi, Radu.Danescu} at cs.utcluj.ro

Abstract—Depth estimation approaches are crucial for

environment perception in applications like autonomous driving

or driving assistance systems. Solutions using cameras have

always been preferred to other depth estimation methods, due

to low sensor prices and their ability to extract rich semantic

information from the scene. Monocular depth estimation

algorithms using CNNs may fail to reconstruct due to unknown

geometric properties of certain objects or scenes, which may not

be present during the training stage. Furthermore, stereo

reconstruction methods, may also fail to reconstruct some

regions for various other reasons, like repetitive surfaces,

untextured areas or solar flares to name a few. To mitigate the

reconstruction issues that may appear, in this paper we propose

two refinement approaches that eliminate regions which are not

correctly reconstructed. Moreover, we propose an original

architecture for combining the mono and stereo results in order

to obtain improved disparity maps. The proposed solution is

designed to be fault tolerant such that if an image is not correctly

acquired or is corrupted, the system is still able to reconstruct

the environment. The proposed approach has been tested on the

KITTI dataset in order to illustrate its performance.

Keywords— fault tolerance, monocular depth estimation,

stereo reconstruction, CNN, fusion, automated driving.

I. INTRODUCTION

 The future of transportation is driven by the development
of autonomous vehicles and advanced driver assistance
systems, in order to reduce driving failures and enable a safer
and more comfortable way of transportation.
 The general pipeline of an autonomous system is built of
four components: the sensing field, the perception module
[1], the path planning module [2] and the control module [3].
Environment perception is one of the most fundamental and
challenging problems of autonomous driving. Using this
module, the autonomous system has to reliably detect all the
traffic participants in various weather conditions like snow,
rain, fog etc. and predict their future states. In order to get a
3D representation of the surrounding environments, accurate
depth measurement is an essential task. In the case of
autonomous systems, for gathering 3D data, a complex
network of multiple sensors is needed for the perception of
the environment to fully replace the human driver, such as
LiDARs [4], RADARs [5], stereo-cameras [6] or mono-
cameras [7]. To accurately represent the environment, in
autonomous cars, multiple sensors are fused [8] to combine
the redundant and complementary information from all
sensors. Even so, for ensuring high quality results, the fusion
system should not be centred around a single sensor and the
output coming from each sensor should be as good as
possible. Not centering the whole system around a single
sensor will ensure robustness against individual sensor
failure. 3D LiDARs provide very accurate geometric
information of the driving scene, which can be useful to
support a close object detection [4] or a SLAM [9] system.
However, because of the sparsity of the acquired point

clouds, LiDARs can offer a poor representation of the scene
topology, and can have difficulties in detecting objects at far
distances. Furthermore, the costs of LiDARs are very high
and they have accuracy problems in adverse weather
conditions. RADARs have an advantage over other
technologies due to their ability to measure objects that are
not in their direct line of sight, as a result of the ability of
electromagnetic waves to bounce off hard surfaces [10].
Moreover, RADAR technology can be used to measure the
speed of objects and they can work in adverse weather
conditions. A downside of RADARs is that they discard
objects in order to avoid over-reporting. Such a feature may
be useful when omitting the road surface, however it can be
very risky for object detection applications because it may
fail to detect static objects. In addition, RADARs have a small
vertical field of view and are unable to reconstruct the whole
scene in detail.
 Stereo vision-based 3D reconstruction is a much cheaper
method of representing the environment. Such solutions have
attracted a lot of interest from the research community due to
the fact that cameras can also extract semantic information
from a scene. Multiple types of methods have been developed
for various applications. For instance, applications which
require low resource consumption and real time execution,
use local stereo algorithms [4]. For improving the quality of
the 3D reconstruction, semi-global methods are used [11].
These solutions usually perform a semi-global matching
aggregation on the cost volume in order to produce better
quality results. Semi-global approaches can run in real time
if they are tailored to run on a GPU or if CPU hardware
acceleration methods are used. Global stereo reconstruction
approaches produce high quality depth maps, however they
are not suitable for real time automotive applications because
of the high power and resource consumption when they are
hardware accelerated [12].
 Monocular depth estimation (MDE) uses a single camera
to infer a depth map of the environment [7]. The papers
published in the literature in the past 50 years regarding
monocular depth perception can be split into three categories:
structure from motion-based methods [13], handcrafted
features methods [14] and state of the art deep-learning based
methods [15]. The recent progresses in neural network-based
solutions have made monocular depth estimation more
reliable and desirable for advanced driver assistance systems
and autonomous systems applications. There are many
advantages of MDE solutions with respect to the stereo
camera-based approaches. First of all, the costs of acquisition
are smaller since there is a need only for one camera instead
of two. Secondly, there is no need for complex cross
calibration and temporal alignment approaches for obtaining
accurate results. Even though humans appear good at judging
depth from a single image, because of their common sense,
life experience and exploitation of certain features like
perspective or scale of known objects, it is impossible for a

computer vision system to learn all prior knowledge about the
geometric structures of all the objects in a scene. Certain
structures from the environment may be incorrectly
reconstructed and some may be unreconstructed at all. This
issue makes current monocular depth perception solutions
less reliable for critical applications. In this paper we propose
an original fusion approach between monocular and stereo
depth estimation in order to obtain better quality disparity
maps. Furthermore, two refinement solutions are proposed
for improving the disparity maps obtained using the two
reconstruction methods. The main contributions of this work
are enumerated below:

• An original pipeline for combining monocular depth

estimation with local stereo algorithms in order to obtain

a more reliable and fault tolerant approach for depth

estimation.

• An original algorithm for eliminating speckles of wrong

disparities.

• An adaptation to monocular depth estimation of a

refinement algorithm, previously applied in stereo.

• A fusion scheme that combines disparity values from

monocular and stereo depth estimation using semantic

segmentation, resulting in an improved disparity map.

 The rest of the paper is structured as follows: in section II
we will review the state of the art in the field of monocular
depth perception. In section III the proposed solution will be
presented and in section IV we discuss the results obtained
with our refinement approach. Finally, we conclude the paper
in section V.

II. RELATED WORK

A. Monocular Depth Estimation

 Inferring depth from single images is not a straightforward

task because of the loss of the 3D information in the process

of capturing images with a single camera. Early monocular

depth estimation algorithms mainly relied on texture

variations, occlusion boundaries, defocus, surface layout and

size of known objects as indices for predicting the dense

depth maps. In the pioneering work of Horn et. al. [16] the

color gradients of an acquired image are exploited to estimate

depth information of objects. Following the feature

engineering approach Kong and Black [17] formulate depth

estimation as an intrinsic image estimation problem. The

intrinsic images correspond to physical properties of the

scene such as shadows, surface shape or reflectance. The

authors train a contour detector to predict surface boundaries

from shading. The predicted contour is used for enhancing

the quality of depth maps.

 The author in [18] proposes a depth estimation from mono

approach that uses a learning mechanism which incorporates

the size of the known objects in the image. The absolute scene

depth is derived from the image structure represented as a set

of features from Fourier and wavelet transforms. As the

recognition of objects in unconstrained conditions is prone to

errors, the authors in [19] combine texture features, geometric

context and motion boundary based monocular features with

co-planarity spatio-temporal constraints to infer depth from

monocular videos. In [20] the authors categorize the objects

in four types: sky, ground, cubic and plane. Based on the type

of object and using the perspective information, a relative

depth value is assigned to each object model.

 Compared to the feature engineering approaches the deep

learning solutions have achieved much greater reconstruction

accuracy in the field of dense depth estimation. In the work

of Laina et. al. [21] the authors propose a fully convolutional

network, having an encoder decoder architecture, for the task

of depth estimation. The encoder consists of a modified

ResNet-50 [22] architecture after removing the FC layers and

the last pooling layer. The decoder guides the network to

efficiently upscale the results via a series of convolutional

layers. By having the depth of the network increase, the

accuracy of the model also increases because the large

receptive fields capture more context information. By using

this idea CNNs with more than 100 layers have been applied

for the task of MDE [23, 24]. To further improve the quality

of depth maps, Mancini et al. [25] has concatenated optical

flow and the current RGB image. The stacked images are fed

to an encoder-decoder network to learn depth from fused

information. Alhashim and Wonka build upon the state of the

art of MDE and design a connected encoder-decoder

architecture [26]. The decoder used consists of a bilinear up-

sampling and two convolutional layers. With the deep

network architecture and elaborate training strategies the

designed model obtains more accurate results on international

datasets. Yin et al. [27] proposes the use of a geometric

constraint in the 3D space, by designing a loss term. The

designed loss function fuses the pixel-wise depth

supervisions with geometric information which enables the

depth estimation network to generate an accurate depth map.
Another semi-supervised depth estimation framework is

presented in [28]. The proposed architecture consists of two
networks: the first one is a pose estimation network and the
second is a symmetric depth estimation network. The model
is fed the RGB and semantic segmentation image to produce
two results, an initial depth map and a semantic weight map.
The two maps are combined to generate the final refined depth
map.

B. Stereo Vision Depth Estimation and Fault Tolerance

 Feature engineered based stereo matching methods can

lead to ambiguous associations among the patches from the

left and right images, as wrong matches can easily have lower

association cost than the correct ones because of occlusions,

reflections, noise etc. To overcome this issue, many cost-

aggregation approaches have been developed to achieve more

accurate depth estimations [29, 30].

 Even though, recently, stereo reconstruction solutions

which occupy the top positions in international benchmarks

use deep learning methods, such approaches need vast

amounts of training data to produce high quality results [31,

32]. Moreover, a GPU is needed to run deep learning models

in real time. Furthermore, when a network is presented a

scenario which was not available in the dataset, the method

might not reconstruct the scene accurately. Feature

engineering-based approaches like the ones presented in [29]

and [30] can run in real time on the CPU without hardware

acceleration methods, which makes them suitable

applications on low-cost single board computers.

 The most common descriptors used for stereo matching are

intensity based (SAD, NCC) [33], binary (census, daisy) [29],

non-parametric (Rank Transform) or other custom ones [6].

An aggregation step improves the robustness against noise or

surfaces which are not fronto-parallel [29]. An additional

semi-global [34] or global [35] optimization step is used for

refining the results and finally a smoothing is performed

using a median or bilateral filter.
One common issue when dealing with stereo methods is

that a frame may not be acquired correctly or the image may
be corrupted. One of the reference approaches from the
literature that deals with error mitigation in the context of
stereo vision is presented in [36]. The key steps for recovering
the missing stereoscopic video frames are temporal change
detection from two successive left images, disparity
estimation and frame difference projection. This proposed
disparity-based frame difference projection solution, manages
to offer good results in case there is a frame drop issue. In his
work, Chung et al. [37], exploits the motion vectors of each
color image for concealing the right color frame. Furthermore,
the authors use a 3D image warping technique to determine
matching pixels between inter-views, and use the motion
vectors and the intensity differences of matching pixels to
reconstruct the image. Miclea et. al. [38] identifies three points
of failure in the stereo reconstruction pipeline and uses a
neural network to resolve the failure. The proposed network is
modelled as a regression and uses the previous correctly
acquired RGB image, the previous disparity image and the
semantic segmentation image to output the final disparity
map.

III. PROPOSED SOLUTION

The proposed solution section is split in four sub-sections.
In the first three sections, the contributions regarding the
disparity refinement approaches are displayed. The fourth
section is dedicated to the fusion of monocular and stereo
disparity maps with the aim of creating an improved result.
The system is built such that it can also be fault tolerant in case
of individual camera failure. In Figure 1, a block diagram of
the proposed solution is displayed. Once the left and right
frames are captured, they are verified to see if they are valid
(if the frame contains information, and is not just noise). If
both frames are validated, they are used in the stereo and
monocular reconstruction modules and after the refinement
stages, the results are fused to obtain a higher quality depth
map. In case only one frame is correctly captured, that frame
is used by the MDE approach, regardless which frame it is.
Finally, if no frame is captured correctly a warning message is
displayed.

A. Monocular Depth Estimation

The monocular depth estimation approach used for
generating the disparity map is based on the Convolutional
Neural Network(CNN) presented in [39].

The neural network was built on an encoder decoder

architecture having a total of 14 layers. The base architecture

of the neural network and the distribution of layers is given

by a slightly modified version of the VGG-16. At the same

time, the whole architecture can be seen as an encoder-

decoder type architecture, where the encoder part represents

the down-sampling of the feature maps, and the decoder part

represents the reverse up-sampling operation. The encoder

contains 7 blocks, and in each of them the application of

convolutional filters is first performed using stride 1 and the

necessary padding in keep the image size because their rapid

decrease would lead to a considerable loss of image

information. Following this operation, we perform a strided

convolution using a stride of 2 in order to halve the height

and width of the image. The encoder contains 7 convolutional

layers having ELU activation. The architectural structure of

the encoder is the following: we first use a convolutional

layer having 7x7 kernel and 32 filters, the second

convolutional layer has a kernel of 5x5 and 64 filters, the third

one has 128 filters and a kernel size of 3x3, the fourth has 256

filters and the convolution kernel size of 3x3, the fifth, sixth

and seventh convolutional layers all use 512 filters and kernel

size of 3x3.

The CNN's decoder also consists of 7 blocks, and each

block consists of two parts: the operation of multiplying the

dimensions of the feature maps received as input by a factor

equal to 2, together with the unification of the new feature

map obtained in the previous step with the corresponding

block (having the same dimensions) in the encoder and

applying a new convolution using stride 1 to obtain even

more features or to recover information lost during

dimensional reduction. Unification is performed using skip-

connections with the encoders blocks. The reconstruction can

be performed by a bilinear sampler using in turn the original

left images together with the right disparity maps, and then

the original right images together with the left disparity maps.

For accurately computing the disparity map we store the

original image as well as 3 other images obtained by dividing

the original to 3 different scaling factors (2,4 and 8). The final

disparity image is obtained by uniting the individual disparity

images obtained for the four scales mentioned above with the

help of a cost function. The whole cost function is composed

of: the cost that compares the reconstructed images with the

original images (both for the left image and for the right

image), the cost that forces the disparities to be smooth

locally and the cost that forces the obtained disparity maps

(left and right) to be equal to each other. As for the cost

function that forces the disparity maps to be locally smooth,

L1 norm will be applied on the disparity gradients, and as

discontinuities often occur at color changes in the image, the

comparison terms applied on the disparity gradients and the

image gradients.

The model has been implemented in TensorFlow and the

architecture used has approximately 30 million parameters,

which are modified during the learning process. The CNN

was trained using the Adam optimizer, for 50 epochs

applying different learning rates. The first 30 epochs have

been trained using a learning rate equal to 1e-4. The learning

rate was halved for the following 10 epochs, and then halved

again for the last 10 epochs. The input data was augmented

using the following transformations: horizontal flip, random

color changes and gamma change with a random value

Figure 1. Pipeline of the fault tolerant approach that combines the refined stereo and
mono disparity maps.

between 0.8 and 1.2, the color intensities in each channel

(RGB) were also be changed with a random value, after

which the values of all pixels were normalized. It is worth

noting the fact that we did not create the architecture

described above. However, we have mentioned the most

relevant details of its design for the manuscript completeness

and because we use it in our main processing pipeline.

B. Tree based refinement

The monocular and stereo disparity maps obtained are

refined in order to obtain better quality results and eliminate

regions which are not correctly reconstructed. The refinement

algorithm has three steps: the creation of minimum spanning

trees based on disparity values, the process of linking the

trees and a final aggregation step. The tree-based refinement

is an adaptation of the algorithm presented for stereo in [40],

for the monocular depth estimation problem. The disparity

map resulted by taking the left image as reference can be

thought of as an undirected graph, in which each pixel will

form a node in the graph, and possible edges exist in 4

directions (up, down, left and right). Each edge will have

associated to it a weight, which is calculated according to (1)

and denotes the difference in intensity of the pixels that form

the edge in the original left image together with the difference

in disparity of the same pixels, from the left disparity map.

𝑊𝑒𝑝𝑞
=

{
max

𝑐 ∈{𝑟,𝑔,𝑏}
| 𝐼𝑐(𝑝) − 𝐼𝑐(𝑞) | ∗ 𝛼 + (1 − 𝛼) ∗ ∆𝑑 , ∆𝑑 < 𝜏

𝐶, ∆𝑑 ≥ 𝜏
 (1)

 The nodes of the neighboring pixels p and q, are linked

using an edge denoted by 𝑒𝑝𝑞. The intensity value of a pixel

in the original image is represented by 𝐼𝑐 and ∆𝑑 is the

difference in disparity while the constants used have the

following values 𝛼 = 0.8, 𝜏 = 8 and 𝐶 = 256.

It should be noted that only the edges which have a label less

than constant C will be considered for the step of the

generation of minimum spanning trees. The constant value C

will be assigned to an edge when the difference in disparity

of the pixels forming the edge is greater than a predetermined

constant value, τ, because a higher value denotes the

dissimilarity between the two pixels.

 As all possible minimum spanning trees were built

following the application of Kruskal's algorithm, it should be

noted that some of them will be considered as support regions

(stable trees) for areas with reconstruction errors. The

purpose of the second major step of the algorithm (binding)

is to find a support region for each erroneous (unstable) tree.

The classification of trees into the two categories is achieved

by taking into account both the size (number of existing nodes

in the tree) and the ratio of the tree error, as presented in (2)

and (3). If the number of nodes in the tree is less than a

predetermined threshold, it indicates that the grouping

represents a small hole. As the tree error ratio is higher than

another set threshold, an area was identified which was

present in only one of the two pictures when the network was

run. In both cases, it will not be considered a support region,

therefore it will be labelled as unstable.

 𝛿 = {
0, 𝑟 > 𝛾1 𝑠𝑎𝑢 𝑛 < 𝛾2

1, 𝑟 ≤ 𝛾1 𝑠𝑖 𝑛 ≥ 𝛾2
 (2)

 𝑟 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑑𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
 (3)

In (2) n represents the number of nodes in a tree, r is the

error ratio of the tree and 𝛾1 and 𝛾2 are two constants having

the values 𝛾1 = 0.2 and 𝛾2 = 100. In order to calculate the

error ratio, each tree must know its number of erroneous

nodes. A node (pixel) will be considered erroneous when the

difference between the disparity value at the position of that

pixel in the left disparity map and the value at the position of

the same pixel shifted to the left by the previously obtained

disparity value in the right disparity map is greater than or

equal to a threshold of 1, which indicates an inconsistency at

that position in the two disparity maps. Determining the

correctness of each node is already done when initializing the

trees.

 The first step in finding a support region for an unstable

tree is to identify all neighboring stable trees which have an

error rate lower than that of the unstable tree. Starting from

the root of the unstable tree, all neighboring trees will be

searched in 8 directions and if they comply with the condition

aforementioned regarding the error ratio will be considered

to be target regions to support the tree in question.

Having established the possible support regions for each

unstable tree, the next step is to find the most suitable of them.

If no stable tree was found in any of the neighboring region,

the whole procedure will be reiterated after all unstable trees

have been evaluated. The choice of the most favorable

support region will be made according to a new term, called

suitability that will take into account the difference in

intensity and the difference in disparity of the last pixel in the

unstable tree and the first pixel encountered of the target tree.

The formulas used for computing the value of suitability can

be observed in (4), (5), (6).

 𝑍 = 𝜆𝑅 ∗ 𝑅 + 𝜆𝐼 ∗ 𝐼 + 𝜆𝐷 ∗ 𝐷 (4)

 𝑅 = −𝑟, 𝐼 = − max

|𝐼(𝑝) − 𝐼(𝑞)| (5)

𝐷 =
𝑐𝑎𝑟𝑑|𝑡𝑟𝑒𝑒.𝐷𝑡∩𝑡𝑟𝑒𝑒.𝐷𝑇|

𝑐𝑎𝑟𝑑|𝑡𝑟𝑒𝑒.𝐷𝑡∪𝑡𝑟𝑒𝑒.𝐷𝑇|
, 𝐷𝑡 =∪ 𝑑𝑝, 𝑝 ∈ Tp (6)

 The meaning of the terms in the equations above are the

following: r is the error ratio of the target tree, the variable I

represents the difference in intensity between pixels p and q

in the left original image, by 𝑐𝑎𝑟𝑑|𝑀| we denote the total

number of elements in the collection M, 𝐷𝑡 is the collection

of disparity values of the stable nodes p in the unstable tree t,

𝐷𝑇 represents the collection of disparity values of the stable

nodes p in the target tree Tp, and finally the values of the used

constant weights are 𝜆𝑅 = 0.1 , 𝜆𝐼 = 0.8, 𝜆𝐷 = 0.1. The

support tree that will be selected will be chosen according to

the highest Z value. The linking between an unstable and a

stable tree will be achieved using a new edge between the root

node of the unstable tree and one of the nodes of the

neighboring stable tree. Since the result of the linking will be

a new tree, it is necessary to recalculate the total number of

nodes, the error ratio of the resulting tree and possibly the

new disparity interval corresponding to the tree. Following

the union, it is necessary to recalculate the total number of

nodes, the error ratio of the resulting tree and possibly the

new disparity interval corresponding to the tree. Both the

number of nodes and the error ratio will be calculated by

summing these values already calculated for each of the two

trees, before the binding step. In order to recalculate the range

of disparity values by combining the range of disparity values

corresponding to the unstable tree with that corresponding to

the target tree, one of the following three conditions should

be met. The first condition is that the total number of nodes

of the target tree is less than a threshold equal to 100 in our

case or the error ratio of the tree is greater than another

threshold empirically set to 0.6. The second condition refers

to the range of disparity values calculated for the target tree

has identical consecutive values, which indicates the

presence of a hole. The third and final condition refers to the

difference in the error ratio between the most suitable tree and

the unstable tree which should be below a threshold equal to

0.05. If none of these conditions is met, the new disparity

interval of the newly created tree will be identical to the

unmodified one of the most suitable tree found. In order to be

able to perform the last step of the algorithm, the aggregation

of the resulting trees, it is necessary to create a cost volume

based on the left image disparity map, as described by (7).

𝐶𝑑(𝑝) = {
|𝑑 − 𝐷(𝑝)|, 𝑝 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝐷(𝑝) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

The value d refers to one of the disparity interval values

(which is maximum 128 in our case) and 𝐷(𝑝) disparity

value of stable pixel p in left disparity map. The aggregation

step aims to change the disparity value of each node

according to all the other nodes contained in the tree in which

it is located. In this step the disparity values of the stable

nodes are propagated to the erroneous ones. The level of

contribution of each node depends on the distance between

the two nodes, which will be calculated by summing all the

labels of the edges that connect the two nodes in the tree,

following the shortest path between them. The greater the

distance between two nodes, the less important the

contribution will be. In each tree, starting from the leaves,

the contributions of each node will be propagated to the root

thus calculating an aggregated cost volume based on the cost

volume constructed using (8). In the second step the

algorithm will start from the root of the tree and the

contributions will propagate to the last nodes in the tree,

calculating a final cost volume based on the one built in the

previous step. The equations can be seen in (8). The term

𝐶𝑑(𝑣) is the value from the cost volume resulted by

aggregating the values in a bottom-up manner, S is a function

that computes the similarity of two values, P is the parent

node of node v.

 𝐶𝑑
𝐴(𝑣) = 𝑆(𝑃(𝑣), 𝑣)𝐶𝑑

𝐴(𝑃(𝑣)) + [1 − 𝑆2(𝑣, 𝑃(𝑣))] 𝐶𝑑(𝑣) (8)

Therefore, by inspecting the lists of possible disparity

values corresponding to each pixel, the lowest values

encountered in each interval will be retained, but they will not

represent the final values. The last step in the refining

technique using stability-based trees is the sub-pixel

interpolation, which aims to influence each minimum value

of disparity previously found by the two neighbors between

which it is located. We apply this interpolation in order to get

more accurate results. This refinement method has been

implemented on the GPU.

C. Speckle Filtering

Speckles of erroneous disparities may appear on the

resulted disparity map due to repetitive patterns on some

regions or untextured surfaces. For removing these speckles

and replacing them with a more suitable disparity values,

obtained from the region neighboring values, the speckle

removal approach was created which uses two traversals of

the original image in order to identify and remove the

unwanted values.
In the first traversal we create clusters of similar disparities

and assign a label(or ID) to each of them. The first labels will

be designed for the values of disparities encountered, with
respect to a four-neighbour vicinity (left, top left, top, top
right). However, only the disparities that meet the condition
from (9) will be considered to be part of the same cluster.

 |𝐷𝑖𝑗 − 𝑓𝑖𝑟𝑠𝑡(𝐷𝑖𝑗
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

)| < 𝑇 (9)

 In equation (9) the term 𝐷𝑖𝑗 refers to the disparity value

of the unlabeled pixel, 𝑓𝑖𝑟𝑠𝑡(𝐷𝑖𝑗
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

) is the first disparity

value found for a certain cluster which has been labeled, T is

a threshold which was chosen empirically and has the value

15 and finally | x | refers to the absolute value of x. If no

neighboring pixel complies with (9) a new ID will be

assigned to the unlabeled pixel in question. In case a pixel has

a neighbor, which was previously identified, and the pixel

respects (9) the unlabeled pixel will receive the same ID as

its neighbor. When there are two or more neighboring pixels

that have been visited and they all respect (9), the current

pixel will be labeled using the minimum cluster ID and all the

clusters that neighbor that specific pixel will be considered

equivalent. After creating the equivalence classes between

the disparity clusters, in the next step we apply a breadth first

search (BFS) algorithm to identify all the connected

component clusters and reassign to each one a new label. The

new label received by the new clusters resulted after the BFS

operation is selected as the minimal label ID of the clusters

that have been combined. After re-labelling we also have the

size in pixels of each disparity cluster as a biproduct. We

make a second pass through the image and nullify all

disparity values belonging to clusters having an area smaller

than 30x30 pixels.
For filling the zeroed regions, we are using the

semantically segmented and instance level segmentation
images. Going from left to right and from top to bottom in the
entire disparity map, for each incorrectly reconstructed value,
we search for the closest neighbouring pixel that is correctly
reconstructed provided that both pixels are part of the same
instance or in case the instance is not available (for example
for the road, or vegetation scenarios) the search will be
validated using the semantic image. The process will be
repeated over the entire disparity image each time a new pixel
with an incorrectly reconstructed disparity value has been
identified. The final result will be filtered using a 3x3 median
filter.

D. Mono and Stereo Disparity Map Fusion

The stereo and monocular fusion is useful because in

case one of the cameras from the stereo rig fails to capture

images or breaks for any reason, the system should still be

able to reconstruct the scene, even though the quality might

not be as good as when both cameras are functioning.

Furthermore, the stereo vision system may fail to reconstruct

certain regions due to issues like repetitive patterns,

untextured areas, occlusions and so on. For such scenarios the

monocular depth estimation approach might provide useful

information, and help fill in the unreconstructed regions.

For creating a solution that does not consume many

resources and is therefore portable on embedded devices, we

have used a stereo solution based on local stereo

reconstruction algorithms with a configuration similar to the

one presented in [29]. In the first step, we are checking if the

image received from the camera is correct. For this the

histogram of the grey level image is computed in a region of

interest in the lower part of the image. If more than 70% of

all the pixels from the histogram are below the threshold

value 10 or above 230, the image is labelled incorrect and it

is not used in the reconstruction process. In the case only one

image is acquired correctly, the scene is reconstructed using

the monocular depth estimation algorithm. If both images are

correctly acquired the block matching approach is applied on

both images, as well as the monocular depth estimation

method on each individual image. It is worth noting the fact

that if both images are acquired correctly the left image is

taken as reference and the fusion is performed using the left

disparity image from the monocular depth estimation

procedure. The next step in our algorithm is verifying if in

the disparity image obtained via stereo reconstruction there

are any unreconstructed regions. If such regions are found

they are filled with the information from the monocular depth

estimation map. Following this step, we perform the fusion

of the disparity maps obtained using the two reconstruction

methods (monocular depth estimation and stereo), and use the

semantic segmentation image of the left frame to aid the

fusion process. The fusion is performed on the consideration

that the monocular depth estimation method is able to provide

a good reconstruction for some surfaces, like the road or

walls, or object that are close to the ego vehicle, however as

the disparity values get smaller, i.e. the objects from the scene

get farther from the camera the disparity image is getting

more blurry and the objects are not reconstructed as well as

in the stereo vision case. Before combining the disparity

values, we first check if the absolute value of the difference

between the disparity value from the stereo and mono are

below an error threshold (which has been empirically set to

10 in our case). Only if the condition holds true the two values

are combined. Furthermore, we only use the disparity values

from the monocular depth estimation which are above 60,

because smaller values are unreliable. The fusion is

performed using a set of weights for each semantic class. The

combination between the values is computed using equation

(10), where 𝑑𝑖𝑠𝑝 represents the disparity taken from the

disparity map obtained using stereo reconstruction, 𝑤𝑐𝑙𝑎𝑠𝑠 is

a weight selected experimentally for each class of interest,

maxDisp represents the maximum number of disparities. The

semantic classes weights for some of the classes of interest

are the following 𝑤𝑟𝑜𝑎𝑑 = 0.8, 𝑤𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 0.3, 𝑤𝑐𝑎𝑟 = 0.4,

𝑤𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 = 0.6, 𝑤𝑠𝑖𝑔𝑛 = 0.3, 𝑤𝑏𝑖𝑐𝑖𝑐𝑙𝑒 = 0.1, 𝑤𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 =

0.1 . The other classes that appear in the KITTI semantic

segmentation are not assigned any weights, their values

remaining the same ones from the stereo reconstruction since

the disparity values from the monocular depth estimation are

unreliable for these classes. Such classes include grass, sky,

fence, tree or discard class.

𝑤𝑚 = 𝑤𝑐𝑙𝑎𝑠𝑠 ∗
𝑑𝑖𝑠𝑝

𝑚𝑎𝑥𝐷𝑖𝑠𝑝
 (10)

 The final result for a disparity value of coordinates i and j

is computed as presented in (11), where for ∆𝑖,𝑗 is the final

disparity value, 𝑑𝛼𝑖,𝑗 is the disparity value obtained using the

local stereo algorithm and 𝑑𝛽𝑖,𝑗 is the disparity value

obtained using the monocular depth estimation.

∆𝑖,𝑗= (1 − 𝑤𝑚𝑖,𝑗
) 𝑑𝛼𝑖,𝑗 + 𝑤𝑚𝑖,𝑗

𝑑𝛽𝑖,𝑗 (11)

IV. EVALUATION AND EXPERIMENTAL RESULTS

For evaluating the proposed solution, we have used the

KITTI benchmark [41]. This dataset contains images of

different driving scenarios, and it also provides ground truth

files for depth estimation applications, taken using LIDAR

sensors. Furthermore, the semantic and instance-based

segmentation images are also provided for some of the traffic

scenarios. The system on which we implemented our method

contains an Intel(R) Core (TM) i5-7300HQ CPU, having 8GB

of DDR RAM memory and an NVIDIA GeForce GTX 1050

4GB GDDR5 GPU. The neural network was trained using the

GPU and the inference was also done on the GPU. Open MP

has been used to parallelize some part of the code that runs on

the CPU. The programming languages used are C++, Python

and the frameworks used are OpenCV, TensorFlow and Point

Cloud Library. The error threshold used in the error maps of

our evaluation is 2 pixels. We evaluate the disparity images

using the Out-All metric, which means that all pixels for

which ground truth information exists will be evaluated even

if they are occluded. In Figure 2 we can observe the results of

the stereo algorithm, the MDE approach used and the

proposed fusion solution, on a traffic scene from the KITTI

dataset. We can also observe the error maps for each disparity

image. The white pixels represent disparity values for which

the difference with the ground truth data was greater than 2

pixels. In Table I the performance of the proposed solution is

illustrated with respect to the used stereo and monocular depth

estimation approaches. The methods are evaluated on the

KITTI 2012 training set and the results are shown for error

thresholds of 2,3 and 4 pixels.

TABLE I. COMPARISON OF THE PROPOSED FUSION WITH EACH

INDIVIDUAL ALGORITHM USED

 It is worth mentioning that the majority of errors

encountered were at object borders and for semantic classes

such as vegetation (especially at bushes) and fences. We can

observe that the fusion of the information from the two

disparity maps obtained using different approaches leads to

better quality results incorporating the advantages of both

methods. In Table II we have listed the comparison of the

proposed solution with other state of the art methods. The

evaluation is done using the Out-All error metric with an error

threshold of 2 pixels. The running time of our solution is 100

ms, with the algorithms running on the CPU and GPU. The

stereo reconstruction approach runs exclusively on the CPU,

and the monocular depth estimation is running on the GPU.

TABLE II. COMPARISON WITH STATE OF THE ART ON KITTI

Position Method Density Out-All

Error

129 FD-Fusion [42] 100% 5.73 %

130 Proposed Fusion 100% 5.75%

131 OSF [43] 99.98 % 5.79 %

132 CoR [44] 100% 5.88%

133 SPS-St [45] 100% 6.28%

Method
Disparity Evaluation Error

2px 3px 4px Density

Mono 18.202 13.940 9.649 100%

Stereo 7.324 6.168 4.888 100%

Proposed
Fusion

5.756 4.446 3.000 100%

Other disparity images and the corresponding error maps
obtained using the proposed fusion solution are displayed in
Figure 3 and Figure 4. For visual analysis the Figure 3
corresponds to RGB image 38 and Figure 4 corresponds to
RGB image 3 from the KITTI training dataset.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an original pipeline that
combines monocular with stereo depth estimation in order to
produce high quality disparity maps. We have applied a tree-
based refinement solution, which was originally used for
stereo reconstruction, to the problem of monocular depth
estimation in order to improve the resulted disparity map and
proposed a speckle removal approach to eliminate small

inconsistent values from the disparity maps. The proposed
system is fault tolerant, meaning that if the stereo cameras fail
to capture one image, the system will still provide a good
quality disparity map using the monocular depth estimation
method. Finally, if no image is acquired correctly a warning
message is displayed. The proposed solution has been
validated on the KITTI dataset and we have shown that the
fusion approach is able to reconstruct scenes better than either
the stereo or monocular depth estimation algorithms.

In future work we will investigate and create more
efficient methods of mono and local stereo reconstruction that
have a low resource consumption. Furthermore, we will also
focus on improving the fusion approach using automatically

a b

c d

e f

g h
Figure 2. Comparison between the mono, stereo and proposed solution disparity maps. Figure a, presents the semantic segmentation, b is the original color image,
c is the error map obtained for mono algorithm, d is the disparity map of the monocular depth estimation approach, f is the disparity map and e represents the

error map of the local stereo algorithm, h represents the fused disparity map and g is the error map.

Figure 3. Disparity map of the proposed fusion and its error map using a 2-
pixel threshold of a KITTI image

Figure 4. Disparity and error map of the proposed method applied on an image
illustrating a parking lot.

learned weights and try to solve the issue of 3D reconstruction
at the border of the objects.

ACKNOWLEDGMENT

 This work was supported by the Romanian Ministry of Education

and Research, through the CNCS UEFISCDI grant, Integrated

Semantic Visual Perception and Control for Autonomous Systems

(SEPCA), code PN-III-P4-ID-PCCF-2016-0180, grant no. 9/2018

and CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2020-

1700, within PNCDI III.

REFERENCES

[1] M. P. Muresan and S. Nedevschi, "Multi-Object Tracking of 3D
Cuboids Using Aggregated Features," 2019 IEEE 15th International
Conference on Intelligent Computer Communication and Processing
(ICCP), 2019, pp. 11-18

[2] H. Kim, J. Cho, D. Kim, and K. Huh, “Intervention minimized semi-
autonomous control using decoupled model predictive control,” in
Proc. IV, Jun. 2017, pp. 618–623

[3] A. Arıkan, A. Kayaduman, S. Polat, Y. S i̧ms¸ek, ˙I. C. Dikmen, H. G.
Bakır, T. Karadag, and T. Abbasov, “Control method simulation and ˘
application for autonomous vehicles,” in Proc. IDAP, Sep. 2018, pp.
1–4

[4] M. Sualeh and G. -W. Kim, "Visual-LiDAR Based 3D Object
Detection and Tracking for Embedded Systems," in IEEE Access, vol.
8, pp. 156285-156298, 2020

[5] A. Danzer, T. Griebel, M. Bach, and K. Dietmayer, "2d car detection
in radar data with pointnets," in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019, pp. 61-66: IEEE

[6] M. P. Muresan, M. Negru and S. Nedevschi, "Improving local stereo
algorithms using binary shifted windows, fusion and smoothness
constraint," 2015 IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), 2015, pp. 179-185

[7] A. Bhoi, “Monocular depth estimation: a survey,” arXiv preprint
arXiv:1901.09402, 2019

[8] M. P. Muresan, I. Giosan, and S. Nedevschi, “Stabilization and
validation of 3d object position using multimodal sensor fusion and
semantic segmentation,” Sensors, vol. 20, no. 4, p. 1110, 2020

[9] D. V. Nam and K. Gon-Woo, "Solid-State LiDAR based-SLAM: A
Concise Review and Application," 2021 IEEE International
Conference on Big Data and Smart Computing (BigComp), 2021, pp.
302-305

[10] S. Crowe. (2019, Apr.). Researchers back Tesla’s non-LiDAR
approach to self-driving cars.

[11] R. Spangenberg, T. Langner, S. Adfeldt and R. Rojas, "Large scale
Semi-Global Matching on the CPU," 2014 IEEE Intelligent Vehicles
Symposium Proceedings, 2014, pp. 195-201

[12] Hailong Pan, Tao Guan, Keyang Luo, Yawei Luo, Junqing Yu, A
visibility-based surface reconstruction method on the GPU, Computer
Aided Geometric Design, Volume 84, 2021, 101956, ISSN 0167-8396

[13] H. Javidnia and P. Corcoran, “Accurate depth map estimation from
small motions,” in ICCV, 2017, pp. 2453–2461

[14] S. H. Raza, O. Javed, A. Das, H. Sawhney, H. Cheng, and I. Essa,
“Depth extraction from videos using geometric context and occlusion
boundaries,” arXiv preprint arXiv:1510.07317, 2015

[15] V. Prasad and B. Bhowmick, “SfMLearner++: Learning monocular
depth & ego-motion using meaningful geometric constraints,” in
WACV, 2019, pp. 2087–2096

[16] B. K. Horn, “Shape from shading: A method for obtaining the shape of
a smooth opaque object from one view,” 1970

[17] N. Kong and M. J. Black, “Intrinsic depth: Improving depth transfer
with intrinsic images,” in ICCV, 2015, pp. 3514–3522

[18] A. Torralba and A. Oliva, “Depth estimation from image structure,”
IEEE TPAMI, vol. 24, no. 9, pp. 1226–1238, 2002.

[19] S. H. Raza, O. Javed, A. Das, H. Sawhney, H. Cheng, and I. Essa,
“Depth extraction from videos using geometric context and occlusion
boundaries,” arXiv preprint arXiv:1510.07317, 2015.

[20] J.-I. Jung and Y.-S. Ho, “Depth map estimation from single-view image
using object classification based on bayesian learning,” in 3DTV
Conference, 2010, pp. 1–4

[21] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3DV, 2016, pp. 239–248

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778

[23] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018, pp. 7132–7141

[24] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to small:
Multi-scale local planar guidance for monocular depth estimation,”
arXiv preprint arXiv:1907.10326, 2019

[25] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia, “Fast robust
monocular depth estimation for obstacle detection with fully
convolutional networks,” in IROS, 2016, pp. 4296–4303

[26] I. Alhashim and P. Wonka, “High quality monocular depth estimation
152 via transfer learning,” arXiv preprint arXiv:1812.11941, 2018

[27] W. Yin, Y. Liu, C. Shen, and Y. Yan, “Enforcing geometric constraints
of virtual normal for depth prediction,” in ICCV, 2019, pp. 5684–5693

[28] M. Yue, G. Fu, M. Wu, and H. Wang, “Semi-supervised monocular
depth estimation based on semantic supervision,” JIRS, 2020

[29] M. P. Muresan, S. Nedevschi, and R. Danescu, “A multi patch warping
approach for improved stereo block matching,” in Proc. Int. Conf.
Comput. Vis. Theory App., 2017, pp. 459–466

[30] N. Einecke and J. Eggert, "A multi-block-matching approach for
stereo," 2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp.
585-592, doi: 10.1109/IVS.2015.7225748

[31] Zhang, Y., Chen, Y., Bai, X., Yu, S., Yu, K., Li, Z., & Yang, K. (2020).
Adaptive Unimodal Cost Volume Filtering for Deep Stereo
Matching. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(07), 12926-12934

[32] H. Wang, R. Fan, P. Cai and M. Liu, "PVStereo: Pyramid Voting
Module for End-to-End Self-Supervised Stereo Matching," in IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4353-4360, July
2021, doi: 10.1109/LRA.2021.3068108

[33] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1, p. 742, May 2002

[34] F. Zhang and B. W. Wah, "Fundamental Principles on Learning New
Features for Effective Dense Matching," in IEEE Transactions on
Image Processing, vol. 27, no. 2, pp. 822-836, Feb. 2018, doi:
10.1109/TIP.2017.2752370

[35] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief
propagation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7,
pp. 787–800, Jul. 2003

[36] Y. Chen, C. Cai, and K.-K. Ma, “Stereoscopic video error concealment
for missing frame recovery using disparity-based frame difference
projection,” in 2009 16th IEEE International Conference on Image
Processing (ICIP), Nov 2009, pp. 4289–4292

[37] T. Y. Chung, S. Sull, and C. S. Kim, “Frame loss concealment for
stereoscopic video plus depth sequences,” IEEE Transactions on
Consumer Electronics, vol. 57, no. 3, pp. 1336–1344, August 2011

[38] V. Miclea, L. Miclea and S. Nedevschi, "Real-time Stereo
Reconstruction Failure Detection and Correction using Deep
Learning," 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), 2018, pp. 1095-1102, doi:
10.1109/ITSC.2018.8569928

[39] C. Godard, O. M. Aodha and G. J. Brostow, "Unsupervised Monocular
Depth Estimation with Left-Right Consistency," 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6602-6611.

[40] Y. Ji, Q. Zhang, K. Sugimoto and S. Kamata, "Disparity refinement
with stability-based tree for stereo matching," 2015 IEEE Intelligent
Vehicles Symposium (IV), 2015, pp. 469-474.

[41] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[42] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics:
The KITTI dataset," Int. J. Rob. Res., vol. 32, pp. 1231-1237, 2013

[43] M. Ferrera, A. Boulch and J. Moras, "Fast Stereo Disparity Maps
Refinement By Fusion of Data-Based And Model-Based
Estimations," 2019 International Conference on 3D Vision (3DV),
2019, pp. 9-17

[44] M. Menze and A. Geiger, "Object scene flow for autonomous
vehicles," 2015 IEEE Confderence on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 3061-3070

[45] A. Chakrabarti, Y. Xiong, S. J. Gortler and T. Zickler, "Low-level
vision by consensus in a spatial hierarchy of regions," 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 4009-4017

[46] Yamaguchi K., McAllester D., Urtasun R. (2014) Efficient Joint
Segmentation, Occlusion Labeling, Stereo and Flow Estimation.
In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer
Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer
Science, vol 8693. Springer, Cham

