Pattern Recognition
Lecture
Curricula:
Introduction
Probability Review
Bayesian Decision Theory 1
Bayesian Decision Theory 2
Maximum Likelihood and K Nearest Neighbors
Estimation
Kernel Density Estimation
Linear Discriminant Functions, Perceptron
Multilayer Perceptron
Kernel Methods
Support Vector Machines
Ensemble Methods
Clustering Methods
Feature Selection and Performance Estimation
Textbooks and
references:
1. R. O. Duda, E. Hart, D. G. Stork, “Pattern Classification”, John
Wiley & Sons, 2001
2. S. Theodoridis, K. Koutroumbas, “Pattern
Recognition”, 4th edition, Academic Press, 2008.
3. C.M. Bishop, “Pattern
Recognition and Machine Learning”, Springer, 2006
4. Murphy, “Machine
Learning: A Probabilistic Perspective”, The MIT
Press, 2012
5. I. Goodfellow, Y. Bengio,
A. Courville, “Deep
Learning”, The MIT Press, 2016
6. Convolutional Neural Networks for
Visual Recognition, http://cs231n.stanford.edu/, 2019