
978-1-5386-8445-0/18/$31.00 ©2018 IEEE

A Fast Ransac Based Approach for Computing the

Orientation of Obstacles in Traffic Scenes

Florin Oniga and Sergiu Nedevschi
Computer Science Department, Technical University of Cluj-Napoca, Romania

Florin.Oniga@cs.utcluj.ro, Sergiu.Nedevschi@cs.utcluj.ro

Abstract — A low complexity approach for computing the
orientation of 3D obstacles, detected from lidar data, is proposed
in this paper. The proposed method takes as input obstacles
represented as cuboids without orientation (aligned with the
reference frame). Each cuboid contains a cluster of obstacle
locations (discrete grid cells). First, for each obstacle, the
boundaries that are visible for the perception system are selected.
A model consisting of two perpendicular lines is fitted to the set of
boundary cells, one for each presumed visible side. The main
dominant line is computed with a RANSAC approach. Then, the
second line is searched, using a constraint of perpendicularity on
the dominant line. The existence of the second line is used to
validate the orientation. Finally, additional criteria are proposed
to select the best orientation based on the free area of the cuboid
(on top view) that is visible to the perception system.

Keywords— obstacle detection; oriented cuboids; autonomous
driving; lidars

I. INTRODUCTION AND RELATED WORK
In the field of autonomous driving, the sensorial perception

system is one of the key elements. Common sensors used are
cameras, mono or stereo, radars, or lidars, often in combination
to sum up the strengths of each sensor type.

Lidar sensors have one or multiple layers used for scanning
the surrounding environment. A number of accurate 3D
measurements are provided for each layer, with a certain
angular resolution. Recently, lidar sensors with 16 or 32 layers
have been introduced, as an intermediate solution between the
common 1-, 2-, 4- layer and the expensive 64-layer lidar.

Various obstacle models are proposed in the literature, the
cuboid (parallelepiped) being the most common one. It allows
a compact representation and fast higher level processing (such
as tracking). Other potential models are simplifications of the
cuboid model, such as lines or rectangles (on the bird’s eye view
of the environment), or more complex such as poly-lines and
clusters of grid cells/voxels. The cuboid is a good compromise
for autonomous driving applications, as the interest obstacles
(vehicles, urban structures, pedestrians etc.) can be delimited
with this simple geometric shape. The cuboid model is less

appropriate for obstacles with irregular shape, and, when the
obstacle axes are not aligned with the reference system. For the
latter issue, the solution is to find the right orientation of the
cuboid in order to align the cuboid sides with the obstacle
boundaries.

Most lidar obstacle detection systems rely on the L-shape
model for detection, and this model is usually applied in the
polar coordinates representation, along the same layer of a lidar.
In [1], lidar 3D measurements are first clustered by scanning
along the same layer and grouping points in the same cluster, if
they are close in angular distance. Then, for each cluster the L-
shape is extracted by initially fitting a line to the extreme points
of the cluster. Iteratively, the line is split until an L-shape is
obtained, which provides both the location and the orientation
of the obstacle. Tracking is further employed to smooth the
results and to estimate dynamic features. 4-layer lidars are used,
that are placed in the front bumper, and oriented quasi parallel
with the road.

The approach from [2] proposes the fitting of the L-shape
as an optimization problem, without using the polar
representation. A measure is proposed, in a least-squares sense,
for how good the L shape fits a cluster of points representing an
obstacle. The best fit of the L-shape is then searched by
computing the fitness measure for each possible orientation.
The method required about 4 ms of processing time for each
obstacle, mainly due to the exhaustive search needed.

Points are clustered in potential obstacles in [3] by using
angular and range thresholds, directly in polar coordinates.
Each cluster is fragmented into edges by applying the iterative
end point algorithm, initially proposed in [4]. For each segment,
the line is computed with generalized least-squares fitting and
used as primitives for tracking.

Either a line or a rectangle is fit to the cluster of points from
an obstacle, with least-squares, in [5]. The rectangle fit is
preferred if available. Tracking is then used for temporal
filtering and smoothing. 1-layer lidars are used.

In [6] the lidar scan data, from one layer, is first segmented
into obstacle clusters using the adaptive point break algorithm

209

proposed earlier [7]. For each cluster, two perpendicular lines
are computed with least-squares minimization. Each point from
the cluster is considered as pivot (the common point of the two
lines) and the best pair of lines is found. The point scan order
must be known, and the average processing time is 1.5 ms for
each obstacle cluster.

A low complexity approach for computing the orientation
of cuboidal obstacles will be presented in this paper. The
proposed contributions are as follows: a model consisting of
two perpendicular lines representing the two potential visible
sides of rectangular (or quasi-rectangular obstacles), model that
is fitted to the obstacle boundaries using a RANdom Sample
Consensus approach (RANSAC, [9]); a strategy to
validate/choose the best orientation based on the occupied area
of the cuboid in the bird’s eye view (top view).

The method that will be presented does not require the
original scan order of the points and the processing of each lidar
layer individually for computing the orientation. Thus, it is a
more general approach, suitable for lidars with many layers.
Instead of fitting the two line model with least squares,
iteratively for each pivot point, as in [6], a random consensus
approach will be used: the first line is computed, and then, the
second line is searched on the perpendicular direction. This
allows a lower computational complexity for the method, as it
will be later discussed in the results section.

In the next sections, an overview of the proposed approach
will be presented, the main steps will be detailed, and, finally,
results and evaluation of the performance are presented and
analyzed.

Fig. 1. Input of the proposed approach: a set of detected obstacles, with un-

oriented cuboids (green). Top image: a camera view in front of the ego vehicle
(yellow in the top view), with four relevant obstacles marked, 1,2,3 - vehicles,

4 - bicyclist. Bottom-left: the result of obstacle detection (red areas), a bird-
eye view, bottom-right: occupied grid cells are shown with a medium grey

shade.

II. OVERVIEW OF THE PROPOSED APPROACH
The perception system is similar to the one described in [8]

consisting of multiple lidars of 32 layers, each placed close to
one of the four corners of the ego vehicle roof. Obstacle are
detected using a grid based approach derived from [10].

The approach for computing the orientation of the obstacles
starts from a set of un-oriented cuboids, each cuboid having its
set of occupied grid locations in the horizontal plane (top view
of the 3D environment, Fig. 1). A grid location/cell represents
a square of 10 x 10 cm in the horizontal plane.

A. The model for computing the orientation
The reference system used to represent the top view will

have Z as longitudinal axis and X as lateral axis (relative to the
ego vehicle). For all the images in this paper that show a top
view of the scene, or the occupancy grid, the vertical axis
corresponds to Z, and the horizontal to X.

The model consists of two perpendicular lines, as in Fig. 2.
The first line L (without any relation with the L-shaped model,
just a notation) is considered the dominant orientation (on the
side with the most boundary cells), while the second line LP is
used to validate that the obstacle has two visible sides for the
perception system.

Fig. 2. The two lines used to model oriented objects: L will be fitted to the
dominant visible side (the longest visible side of the obstacle), while LP will

model the other visible side, if any.

B. Main steps
Each step of the approach was designed having in mind the

need for low computational complexity, and most of the
computation is done in the discrete grid representation where
the obstacles were initially detected. The main steps of the
approach for computing the orientation of each obstacle are:

� Computing the visible boundaries: the idea of visibility
refers to those obstacle cells that are directly observable
from the ego vehicle (for example, in Fig. 1, for vehicles 1,
2, and 3, only sides perceived directly by the perception
system are representative for the rectangular shape of these
obstacles). Only these cells will be used for fitting the two
line model.

� Fitting the two-line model to the boundaries: a random
sample consensus approach will be applied, initially for the
first line, and then for the second line on the remaining
visible cells.

� Validation/selection of the best orientation: based on the
strength (consensus score from RANSAC) of the two lines
and additional criteria, the best orientation will be selected.

210

III. DETAILED METHOD STEPS

A. Computing the visible boundaries
First, the boundary cells of the obstacle are selected by

labelling all obstacle cell that are adjacent to at least one grid
cell that is not obstacle.

 a. b.
Fig. 3. a. Scenario from Fig. 1 with different labels for each obstacle, the ego
vehicle is the white rectangle and the red dot represents the reference point for

the perception system, b. Each obstacle patch has its boundary cells marked
(white points), and an example of line of sight from the perception system to a

boundary cell is shown as the green line.

Next, the visible cells are selected. The condition for
visibility is checked with ray tracing. For each boundary cell,
the line of sight is computed from the ego vehicle. The center
of the car is considered the origin of the perception system
(view point), as it is equally distanced in the horizontal plane
from the four lidars that perceive the obstacle (depending on the
obstacle position, it is likely that only some of the four lidars
provide 3D measurements). A more accurate (but more costly)
verification would be to consider each lidar as view point.

Fig. 4. Each obstacle patch has its visible boundary cells marked (white

cells).

Normally, a boundary cell is visible if its line of sight does
not intersect any other (current) obstacle cell. Given the discrete
representation of the obstacle locations (grid cells), the line of
sight for each boundary cell is approximated in the grid space

using a Bresenham interpolation (between the perception
system origin and the boundary cell). For obstacle sides that
have a relative angle with the line of sight lower than 45
degrees, the discrete line of sight of some boundaries cells will
likely intersect other boundary cells (such an example is shown
in Fig. 3.b, the green line). Therefore, a boundary cell is
considered visible (results in Fig. 4) if no obstacle cells are
present on its line of sight, or if its line of sight intersects only
some boundary cells from the obstacle. In this way, most of the
visible sides of each obstacle are selected.

B. Fitting the two-line model to the boundaries
The first line, L, is represented with the general line model

with 3 free parameters, as this allows representation of all
possible orientations:

 0ax bz c� � � (1)

Given two points (x1, z1) and (x2, z2), the line parameters are
computed as follows:

1 2 2 1 1 2 2 1() () () 0z z x x x z x z x z� � � � � � (2)

The second line, Lp, given the perpendicularity constraint
with L, will have the following equation:

 0Pbx az c� � � (3)

Once the main line L is computed, the direction of Lp will
be perpendicular and only the free parameter cP has to be
estimated. If a point (x3, z3) belongs to Lp then:

 3 3Pc az bx� � (4)

Computing the two lines for each obstacle, on the set of
visible boundary cells, is described next.

The first line is computed in a RANSAC standard fashion:
k samples of two random cells are selected from the set of
visible boundary cells.

The number of samples k=log(1-p)/log(1-wS)=52 was
computed by considering a success probability p=0.9999 and
the ratio of good data of w=0.4, sample size s=2. The percentage
of good data is a conservative value: assuming a vehicle with
two of its sides visible, the side corresponding to the length will
contain more than half of the visible boundary cells.

For each sample, the parameters of L are estimated as in
equation (2). The consensus set is computed for each sample:
the visible boundary cells that verify the line are counted
(within a maximum distance threshold Td=0.75 cells, this
allows a band of 1.5 cells width around the line position). The
line having the largest consensus score (number of inliers) is
considered as solution for L if its number of inliers is at least
the number of expected good cells (w times the number of
visible boundary cells). If selected as solution, the parameters
of L are recomputed with least squares fitting on the consensus
set.

211

Fig. 5. The two lines computed for the vehicle 2 are shown (the scenario

presented in Fig. 1).

The outliers, those cells that do not belong to the dominant
line L, are selected for computing the second line Lp. In this
case, one point is enough to compute the free term cP. The
approach is also based on selecting random samples: each
sample consists of one cell, and the line with the largest number
of inliers is selected. In this case, a larger ratio of good data is
assumed (cells from the first line are not taken into account)
w=0.6. As a consequence, the number of random samples is
reduced to k=10 (beside a greater w, the sample size is s=1).
The results for L and Lp for one of the vehicles from Fig. 1 are
shown in Fig. 5.

Fig. 6. The oriented cuboids for the scenario presented in Fig. 1 are show
with bright green, in top-view (left) and a perspective view of the scene (on

the right).

Based on the dominant line, the oriented cuboid is computed
for each obstacle. This is done by projecting the obstacle cells
onto the two lines and finding the extreme projections on each
line as the limits for the oriented cuboid. The scenario presented
in Fig. 1 is a typical example where the proposed approach is
efficient, with the oriented cuboids shown in Fig. 6. However,
there are many situations where additional validation is
required for the orientation, and this issue will be discussed
next.

C. Validation/selection of the best orientation
First of all, the orientation is not validated for obstacles that

have a small top view print, such as poles or pedestrians (normal
standing pose). This is done by imposing a small absolute
threshold (=8 cells) on the number of inliers of the first line L.

When dealing with obstacles that have two sides visible to
the perception system, both lines are computed and the
orientation is computed reliably (details in the Results section).

In real scenarios, obstacles have various positions and
orientations, and often only one obstacle side is visible. This
can apply not only for rectangular obstacles such as vehicles,
but also for structures that exhibit only one visible side for the
perception system: building, fences (see next figure) etc.

 a. b.

Fig. 7. a. Scene with a large fence + building on the right side of the road, b.
Top-view of the oriented (bright green) and un-oriented obstacle (dark green)

detected from the 3D data of the fence and nearby vegetation.

Two different situations must be distinguished. The first one
is when the dominant line L has a strong support and the
orientation can be considered valid (example in Fig. 7),
regardless of the second line. The second situation is when L is
computed, but its score is not sufficient to rely only upon one
side. These two situations are solved with hysteresis (double
thresholding) and reasoning based on the strength of the second
line Lp.

Fig. 8. Small passenger cars that are viewed from the rear (or front), without

perceiving one of the lateral sides, often present curved visible boundaries that
are less reliable to fit lines.

For the first situation, a strong threshold TS is imposed upon
the consensus score of L. If the consensus score is above TS then
the orientation is validated. The value of TS was established by
considering the width of common vehicles (passenger cars). If
such a vehicle is seen only from the rear or from the front, then
its visible side has a width of 1.6 to 2+ meters. If the dominant
line locks onto the rear or the front of a small vehicle, then in
order to have a reliable fit, TS is set to 15 cells (recall that a grid
cell has a size of 10x10 cm). This threshold is set rather high
with the following justification: if the dominant line fits the rear
or the front of a small passenger car, then a good support is

212

required for the line because this vehicle’s side usually presents
a curved profile (more or less depending on the model and
shape of the bumpers, see Fig. 8).

If the consensus score of L is below TS then the second line
is considered. It might be either a vehicle with partially
obstructed visible sides, or a smaller obstacle that can be
represented with oriented cuboids. If line LP has a consensus
score of at least TSP (= 10 cells), then the orientation is
validated.

If both L and LP have consensus scores below TS, and TSP
respectively, then there are several ways to deal with the
situation:

� Validate the orientation but assume it has a lower
accuracy (it can be estimated from the consensus score
of L), and rely on higher level processing (tracking) to
get a better orientation through temporal filtering.
From our experiments, for situations similar to Fig. 8,
the orientation error is typically around several
degrees (with extreme values of 10-12 degrees rarely
observed), and tracking can smooth out these
deviations.

� Use the context for reasoning: if only L was computed
and with a poor score, then it’s likely that the obstacle
is (1) a vehicle without any lateral sides visible or (2)
another obstacle that has only one significant
dimension (example: a bicyclist, obstacle 4 in Fig. 1).

Fig. 9. When the dominant line L is less reliable, the line of sight can be used
to infer the obstacle orientation, as the yellow cuboid. The un-oriented cuboid
is shown with red, and the cuboid given by L with green. The line of sight to
the obstacle center is shown. The white arrow depicts the free area, visible to

the perception system, which is computed for each cuboid.

For the second way, the position of the obstacle relative to
the ego can be used to infer its orientation: if only one side is
visible for a vehicle, then its orientation is likely along the line
of sight with a certain freedom. However, if the obstacle is not
a vehicle, but a thinner obstacle, then this “line of sight”
orientation might be less accurate than the one given by L. To
solve this issue, three possible orientations are considered: the
one given by L, the orientation given by the line of sight of the
center of the obstacle, and the default null orientation (un-
oriented). For each cuboid hypothesis, the free area of the
cuboid that is visible to the perception system is computed and

used as a measure of how well the cuboid envelopes the
obstacle. The cuboid with the smallest unoccupied area is
selected.

IV. RESULTS
The method for computing the orientation was implemented

in C/C++ and integrated in the detection framework [8]. The
approach is very fast: the running time for one obstacle (average
vehicle sized) is 0.15-0.2 milliseconds. The processing speed is
several times higher compared with existing methods. The
processor used for testing was a Core I5, 2.5 Ghz. As
comparison, for one obstacle, the processing time in [6] is about
1.5 ms on a similar processor (Core I7, C++ implementation).

The precision and accuracy of the orientation were
measured on several scenarios were the real orientation of the
vehicles in the scene could be estimated with a reasonable error.

The first scenario involved a sequence of several tens of
frames where the ego vehicle was standing still, yielding the
right of way to incoming traffic. The ego vehicle was positioned
at an angle relative to the road axis, as it was leaving the main
road. The angle between the ego vehicle reference frame and
the road longitudinal axis was estimated manually to 14.4
degrees. The fixed road infrastructure (curbs) that is visible in
the 3D lidar data was used to evaluate this angle.

Fig. 10. Scenario 1 used for evaluation. Incoming traffic (the direction of

motion shown with the white arrow) at an angle of 14.4 degrees.

A total of 226 vehicle orientations, from 9 distinct vehicles,
were kept for evaluation (some measurements were removed –
vehicles that changed the lane, or small obstacles). The distance
to the vehicles was up to 24 meters from the ego. The angle for
each orientation was computed relative to the Z axis of the ego
vehicle. The mean value obtained was 14.53 degrees, very close
to the manual estimation of 14.4 degrees between the road axis
and the ego vehicle. The standard deviation was 1.4 degrees,
proving a robust evaluation of the orientation. The histogram of
the angle values is shown in Fig. 11.

213

The second scenario used for evaluation was a sequence
where the ego was driving straight on a multi-lane straight road,
overpassed slower vehicles, and incoming vehicles were also
present. A total of 375 orientations were computed for the
vehicles (some up to 45 meters) that were moving straight (this
was established from the video data). The mean angle value was
0.4 degrees (versus the expected value of 0 degrees) and the
standard deviation 2.5 degrees.

 Fig. 11. Histogram of the angle values obtained for Scenario 1, mean value

of 14.53 and standard deviation of 1.4 degrees.
Evaluation was also performed on vehicles that were visible

strictly from the rear or front, here the standard deviation was
larger (4-6 degrees), when using the dominant line L. Tracking
can be employed to increase accuracy.

Other results are shown in Fig. 12. Limitations of the
cuboid model can be seen in one of the scenes: some obstacles
are less suitable for a cuboid representation (curved fences).

V. CONCLUSIONS
A low complexity method for estimating the orientation of

3D obstacles, detected with multiple lidars, was presented. The
method is very fast and it has high precision and accuracy, as
proven by the quantitative evaluation performed.

A potential future improvement is to use the semantic
information provided by the target system [8] to have
knowledge about the type of the obstacle. This would make the
step of validation/selection of the best orientation more robust.

ACKNOWLEDGMENT

 This work has been supported by the UP-Drive project
(Automated Urban Parking and Driving), Horizon 2020 EU
funded, Grant Agreement Number 688652.

REFERENCES
[1] D. Kim, et al., “L-shape model switching-based precise motion tracking

of moving vehicles using laser scanners,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 2, pp. 598–612, 2018.

[2] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient L-shape fitting
for vehicle detection using laser scanners,” in Proc. IEEE Intell. Vehicles
Symp. (IV 2017), Jun. 2017, pp. 54–59.

[3] M. Munz, K. Dietmayer, and M. Mahlisch, “A sensor independent
probabilistic fusion system for driver assistance systems,” in Intelligent
Transportation Systems, ITSC’09, 12th International IEEE Conference
on, 2009.

[4] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, “An
Optimized Segmentation Method for a 2D Laser-Scanner Applied to

Mobile Robot Navigation,” Proceedings of the 3rd IFAC Symposium on
Intelligent Components and Instruments for Control Applications, 1997

[5] R. MacLachlan and C. Mertz, “Tracking of moving objects from a moving
vehicle using a scanning laser rangefinder,” in IEEE Intelligent
Transportation Systems Conference, 2006, Canada, pp. 301–306.

[6] X. Shen, S. Pendleton, and M. H. Ang, “Efficient L-shape fitting of laser
scanner data for vehicle pose estimation,” in IEEE Conference on
Robotics, Automation and Mechatronics, 2015, Cambodia, pp. 173–178.

[7] G. A. Borges and M.-J. Aldon, “Line extraction in 2d range images for
mobile robotics,” Journal of Intelligent and Robotic Systems, vol. 40, no.
3, pp. 267–297, 2004.

[8] R. Varga, A. Costea, H. Florea, I. Giosan, and S. Nedevschi, “Supersensor
for 360-degree environment perception: Point cloud segmentation using
image features,” in IEEE Intelligent Transportation Systems Conference,
2017, pp. 126–132.

[9] M. Fischler, R. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated
cartography”, Graphics and Image Processing 24(6) (1981), pp. 381–395.

[10] F. Oniga and S. Nedevschi, “Processing dense stereo data using elevation
maps: Road surface, traffic isle, and obstacle detection,” IEEE Trans.
Veh. Technol., vol. 59, no. 3, pp. 1172–1182, Mar. 2010.

Fig. 12. Other results, including obstacles with small curvatures (fences). Top
image shows the scene from the right top-view, bottom image shows the scene

from the left top-view. The ego is drawn with yellow.

214

