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Abstract — A low complexity approach for computing the 
orientation of 3D obstacles, detected from lidar data, is proposed 
in this paper. The proposed method takes as input obstacles 
represented as cuboids without orientation (aligned with the 
reference frame). Each cuboid contains a cluster of obstacle 
locations (discrete grid cells). First, for each obstacle, the 
boundaries that are visible for the perception system are selected. 
A model consisting of two perpendicular lines is fitted to the set of 
boundary cells, one for each presumed visible side. The main 
dominant line is computed with a RANSAC approach. Then, the 
second line is searched, using a constraint of perpendicularity on 
the dominant line. The existence of the second line is used to 
validate the orientation. Finally, additional criteria are proposed 
to select the best orientation based on the free area of the cuboid 
(on top view) that is visible to the perception system. 

Keywords— obstacle detection; oriented cuboids; autonomous 
driving; lidars 

 

I. INTRODUCTION AND RELATED WORK 
In the field of autonomous driving, the sensorial perception 

system is one of the key elements. Common sensors used are 
cameras, mono or stereo, radars, or lidars, often in combination 
to sum up the strengths of each sensor type. 

Lidar sensors have one or multiple layers used for scanning 
the surrounding environment. A number of accurate 3D 
measurements are provided for each layer, with a certain 
angular resolution. Recently, lidar sensors with 16 or 32 layers 
have been introduced, as an intermediate solution between the 
common 1-, 2-, 4- layer and the expensive 64-layer lidar.  

Various obstacle models are proposed in the literature, the 
cuboid (parallelepiped) being the most common one. It allows 
a compact representation and fast higher level processing (such 
as tracking). Other potential models are simplifications of the 
cuboid model, such as lines or rectangles (on the bird’s eye view 
of the environment), or more complex such as poly-lines and 
clusters of grid cells/voxels. The cuboid is a good compromise 
for autonomous driving applications, as the interest obstacles 
(vehicles, urban structures, pedestrians etc.) can be delimited 
with  this  simple  geometric  shape. The  cuboid  model is less  

 

appropriate for obstacles with irregular shape, and, when the 
obstacle axes are not aligned with the reference system. For the 
latter issue, the solution is to find the right orientation of the 
cuboid in order to align the cuboid sides with the obstacle 
boundaries.  

Most lidar obstacle detection systems rely on the L-shape 
model for detection, and this model is usually applied in the 
polar coordinates representation, along the same layer of a lidar. 
In [1], lidar 3D measurements are first clustered by scanning 
along the same layer and grouping points in the same cluster, if 
they are close in angular distance. Then, for each cluster the L-
shape is extracted by initially fitting a line to the extreme points 
of the cluster. Iteratively, the line is split until an L-shape is 
obtained, which provides both the location and the orientation 
of the obstacle. Tracking is further employed to smooth the 
results and to estimate dynamic features. 4-layer lidars are used, 
that are placed in the front bumper, and oriented quasi parallel 
with the road. 

The approach from [2] proposes the fitting of the L-shape 
as an optimization problem, without using the polar 
representation. A measure is proposed, in a least-squares sense, 
for how good the L shape fits a cluster of points representing an 
obstacle. The best fit of the L-shape is then searched by 
computing the fitness measure for each possible orientation. 
The method required about 4 ms of processing time for each 
obstacle, mainly due to the exhaustive search needed. 

Points are clustered in potential obstacles in [3] by using 
angular and range thresholds, directly in polar coordinates. 
Each cluster is fragmented into edges by applying the iterative 
end point algorithm, initially proposed in [4]. For each segment, 
the line is computed with generalized least-squares fitting and 
used as primitives for tracking. 

Either a line or a rectangle is fit to the cluster of points from 
an obstacle, with least-squares, in [5]. The rectangle fit is 
preferred if available. Tracking is then used for temporal 
filtering and smoothing. 1-layer lidars are used.  

In [6] the lidar scan data, from one layer, is first segmented 
into obstacle clusters using the adaptive point  break  algorithm  
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proposed earlier [7]. For each cluster, two perpendicular lines 
are computed with least-squares minimization. Each point from 
the cluster is considered as pivot (the common point of the two 
lines) and the best pair of lines is found. The  point  scan  order 
must be known, and the average processing time is 1.5 ms for 
each obstacle cluster. 

A low complexity approach for computing the orientation 
of cuboidal obstacles will be presented in this paper. The 
proposed contributions are as follows: a model consisting of 
two perpendicular lines representing the two potential visible 
sides of rectangular (or quasi-rectangular obstacles), model that 
is fitted to the obstacle boundaries using a RANdom Sample 
Consensus approach (RANSAC, [9]); a strategy to 
validate/choose the best orientation based on the occupied area 
of the cuboid in the bird’s eye view (top view). 

The method that will be presented does not require the 
original scan order of the points and the processing of each lidar 
layer individually for computing the orientation. Thus, it is a 
more general approach, suitable for lidars with many layers. 
Instead of fitting the two line model with least squares, 
iteratively for each pivot point, as in [6], a random consensus 
approach will be used: the first line is computed, and then, the 
second line is searched on the perpendicular direction. This 
allows a lower computational complexity for the method, as it 
will be later discussed in the results section. 

In the next sections, an overview of the proposed approach 
will be presented, the main steps will be detailed, and, finally, 
results and evaluation of the performance are presented and 
analyzed. 

 

 

   
Fig.  1. Input of the proposed approach: a set of detected obstacles, with un-

oriented cuboids (green). Top image: a camera view in front of the ego vehicle 
(yellow in the top view), with four relevant obstacles marked, 1,2,3 - vehicles, 

4 - bicyclist. Bottom-left: the result of obstacle detection (red areas), a bird-
eye view, bottom-right: occupied grid cells are shown with a medium grey 

shade. 

II. OVERVIEW OF THE PROPOSED APPROACH 
The perception system is similar to the one described in [8] 

consisting of multiple lidars of 32 layers, each placed close to 
one of the four corners of the ego vehicle roof. Obstacle are 
detected using a grid based approach derived from [10].  

The approach for computing the orientation of the obstacles 
starts from a set of un-oriented cuboids, each cuboid having its 
set of occupied grid locations in the horizontal plane (top view 
of the 3D environment, Fig.  1). A grid location/cell represents 
a square of 10 x 10 cm in the horizontal plane. 

A. The model for computing the orientation 
The reference system used to represent the top view will 

have Z as longitudinal axis and X as lateral axis (relative to the 
ego vehicle). For all the images in this paper that show a top 
view of the scene, or the occupancy grid, the vertical axis 
corresponds to Z, and the horizontal to X. 

The model consists of two perpendicular lines, as in Fig.  2. 
The first line L (without any relation with the L-shaped model, 
just a notation) is considered the dominant orientation (on the 
side with the most boundary cells), while the second line LP is 
used to validate that the obstacle has two visible sides for the 
perception system. 

 
Fig.  2. The two lines used to model oriented objects: L will be fitted to the 
dominant visible side (the longest visible side of the obstacle), while LP will 

model the other visible side, if any.  

B. Main steps 
Each step of the approach was designed having in mind the 

need for low computational complexity, and most of the 
computation is done in the discrete grid representation where 
the obstacles were initially detected. The main steps of the 
approach for computing the orientation of each obstacle are: 

� Computing the visible boundaries: the idea of visibility 
refers to those obstacle cells that are directly observable 
from the ego vehicle (for example, in Fig. 1, for vehicles 1, 
2, and 3, only sides perceived directly by the perception 
system are representative for the rectangular shape of these 
obstacles). Only these cells will be used for fitting the two 
line model. 

�  Fitting the two-line model to the boundaries: a random 
sample consensus approach will be applied, initially for the 
first line, and then for the second line on the remaining 
visible cells. 

�  Validation/selection of the best orientation: based on the 
strength (consensus score from RANSAC) of the two lines 
and additional criteria, the best orientation will be selected. 
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III. DETAILED METHOD STEPS 

A. Computing the visible boundaries 
First, the boundary cells of the obstacle are selected by 

labelling all obstacle cell that are adjacent to at least one grid 
cell that is not obstacle.  

 

  
                           a.                                                              b. 
Fig.  3. a. Scenario from Fig.  1 with different labels for each obstacle, the ego 
vehicle is the white rectangle and the red dot represents the reference point for 

the perception system, b. Each obstacle patch has its boundary cells marked 
(white points), and an example of line of sight from the perception system to a 

boundary cell is shown as the green line.  
 

Next, the visible cells are selected. The condition for 
visibility is checked with ray tracing. For each boundary cell, 
the line of sight is computed from the ego vehicle. The center 
of the car is considered the origin of the perception system 
(view point), as it is equally distanced in the horizontal plane 
from the four lidars that perceive the obstacle (depending on the 
obstacle position, it is likely that only some of the four lidars 
provide 3D measurements). A more accurate (but more costly) 
verification would be to consider each lidar as view point.  

 
Fig.  4. Each obstacle patch has its visible boundary cells marked (white 

cells).  
 

Normally, a boundary cell is visible if its line of sight does 
not intersect any other (current) obstacle cell. Given the discrete 
representation of the obstacle locations (grid cells), the line of 
sight for each boundary cell is approximated in the grid space 

using a Bresenham interpolation (between the perception 
system origin and the boundary cell). For obstacle sides that 
have a relative angle with the line of sight lower than 45 
degrees, the discrete line of sight of some boundaries cells will 
likely intersect other boundary cells (such an example is shown 
in Fig.  3.b, the green line). Therefore, a boundary cell is 
considered visible (results in Fig.  4) if no obstacle cells are 
present on its line of sight, or if its line of sight intersects only 
some boundary cells from the obstacle. In this way, most of the 
visible sides of each obstacle are selected. 

 

B. Fitting the two-line model to the boundaries 
The first line, L, is represented with the general line model 

with 3 free parameters, as this allows representation of all 
possible orientations: 

  0ax bz c� � �    (1) 

Given two points (x1, z1) and (x2, z2), the line parameters are 
computed as follows: 

1 2 2 1 1 2 2 1( ) ( ) ( ) 0z z x x x z x z x z� � � � � �  (2) 

The second line, Lp, given the perpendicularity constraint 
with L, will have the following equation: 

  0Pbx az c� � �   (3) 

Once the main line L is computed, the direction of Lp will 
be perpendicular and only the free parameter cP has to be 
estimated. If a point (x3, z3) belongs to Lp then: 

   3 3Pc az bx� �    (4) 

Computing the two lines for each obstacle, on the set of 
visible boundary cells, is described next.  

The first line is computed in a RANSAC standard fashion: 
k samples of two random cells are selected from the set of 
visible boundary cells.  

The number of samples k=log(1-p)/log(1-wS)=52 was 
computed by considering a success probability p=0.9999 and 
the ratio of good data of w=0.4, sample size s=2. The percentage 
of good data is a conservative value: assuming a vehicle with 
two of its sides visible, the side corresponding to the length will 
contain more than half of the visible boundary cells. 

For each sample, the parameters of L are estimated as in 
equation (2). The consensus set is computed for each sample: 
the visible boundary cells that verify the line are counted 
(within a maximum distance threshold Td=0.75 cells, this 
allows a band of 1.5 cells width around the line position). The 
line having the largest consensus score (number of inliers) is 
considered as solution for L if its number of inliers is at least 
the number of expected good cells (w times the number of 
visible boundary cells). If selected as solution, the parameters 
of L are recomputed with least squares fitting on the consensus 
set.  
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Fig.  5. The two lines computed for the vehicle 2 are shown (the scenario 

presented in Fig.  1).  
 

The outliers, those cells that do not belong to the dominant 
line L, are selected for computing the second line Lp. In this 
case, one point is enough to compute the free term cP. The 
approach is also based on selecting random samples: each 
sample consists of one cell, and the line with the largest number 
of inliers is selected. In this case, a larger ratio of good data is 
assumed (cells from the first line are not taken into account) 
w=0.6. As a consequence, the number of random samples is 
reduced to k=10 (beside a greater w, the sample size is s=1). 
The results for L and Lp for one of the vehicles from Fig.  1 are 
shown in Fig.  5.  

  
Fig.  6. The oriented cuboids for the scenario presented in Fig.  1 are show 
with bright green, in top-view (left) and a perspective view of the scene (on 

the right).  
 

Based on the dominant line, the oriented cuboid is computed 
for each obstacle. This is done by projecting the obstacle cells 
onto the two lines and finding the extreme projections on each 
line as the limits for the oriented cuboid. The scenario presented 
in Fig.  1 is a typical example where the proposed approach is 
efficient, with the oriented cuboids shown in Fig.  6. However, 
there are many situations where additional validation is 
required for the orientation, and this issue will be discussed 
next. 

C. Validation/selection of the best orientation 
First of all, the orientation is not validated for obstacles that 

have a small top view print, such as poles or pedestrians (normal 
standing pose). This is done by imposing a small absolute 
threshold (=8 cells) on the number of inliers of the first line L.  

When dealing with obstacles that have two sides visible to 
the perception system, both lines are computed and the 
orientation is computed reliably (details in the Results section).  

In real scenarios, obstacles have various positions and 
orientations, and often only one obstacle side is visible. This 
can apply not only for rectangular obstacles such as vehicles, 
but also for structures that exhibit only one visible side for the 
perception system: building, fences (see next figure) etc.  

  
          a.                                                b. 

Fig.  7. a. Scene with a large fence + building on the right side of the road, b. 
Top-view of the oriented (bright green) and un-oriented obstacle (dark green) 

detected from the 3D data of the fence and nearby vegetation. 
 

Two different situations must be distinguished. The first one 
is when the dominant line L has a strong support and the 
orientation can be considered valid (example in Fig.  7), 
regardless of the second line. The second situation is when L is 
computed, but its score is not sufficient to rely only upon one 
side. These two situations are solved with hysteresis (double 
thresholding) and reasoning based on the strength of the second 
line Lp. 

             

             
Fig.  8. Small passenger cars that are viewed from the rear (or front), without 

perceiving one of the lateral sides, often present curved visible boundaries that 
are less reliable to fit lines.  

 

For the first situation, a strong threshold TS is imposed upon 
the consensus score of L. If the consensus score is above TS then 
the orientation is validated. The value of TS was established by 
considering the width of common vehicles (passenger cars). If 
such a vehicle is seen only from the rear or from the front, then 
its visible side has a width of 1.6 to 2+ meters. If the dominant 
line locks onto the rear or the front of a small vehicle, then in 
order to have a reliable fit, TS is set to 15 cells (recall that a grid 
cell has a size of 10x10 cm). This threshold is set rather high 
with the following justification: if the dominant line fits the rear 
or the front of a small passenger car, then a good support is 
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required for the line because this vehicle’s side usually presents 
a curved profile (more or less depending on the model and 
shape of the bumpers, see Fig.  8). 

If the consensus score of L is below TS then the second line 
is considered. It might be either a vehicle with partially 
obstructed visible sides, or a smaller obstacle that can be 
represented with oriented cuboids. If line LP has a consensus 
score of at least TSP (= 10 cells), then the orientation is 
validated. 

If both L and LP have consensus scores below TS, and TSP 
respectively, then there are several ways to deal with the 
situation: 

� Validate the orientation but assume it has a lower 
accuracy (it can be estimated from the consensus score 
of L), and rely on higher level processing (tracking) to 
get a better orientation through temporal filtering. 
From our experiments, for situations similar to Fig.  8, 
the orientation error is typically around several 
degrees (with extreme values of 10-12 degrees rarely 
observed), and tracking can smooth out these 
deviations.    

� Use the context for reasoning: if only L was computed 
and with a poor score, then it’s likely that the obstacle 
is (1) a vehicle without any lateral sides visible or (2) 
another obstacle that has only one significant 
dimension (example: a bicyclist, obstacle 4 in Fig.  1). 

 
Fig.  9. When the dominant line L is less reliable, the line of sight can be used 
to infer the obstacle orientation, as the yellow cuboid. The un-oriented cuboid   
is shown with red, and the cuboid given by L with green. The line of sight to 
the obstacle center is shown. The white arrow depicts the free area, visible to 

the perception system, which is computed for each cuboid. 
 

For the second way, the position of the obstacle relative to 
the ego can be used to infer its orientation: if only one side is 
visible for a vehicle, then its orientation is likely along the line 
of sight with a certain freedom. However, if the obstacle is not 
a vehicle, but a thinner obstacle, then this “line of sight” 
orientation might be less accurate than the one given by L. To 
solve this issue, three possible orientations are considered: the 
one given by L, the orientation given by the line of sight of the 
center of the obstacle, and the default null orientation (un-
oriented). For each cuboid hypothesis, the free area of the 
cuboid that is visible to the perception system is computed and 

used as a measure of how well the cuboid envelopes the 
obstacle. The cuboid with the smallest unoccupied area is 
selected. 

IV. RESULTS 
The method for computing the orientation was implemented 

in C/C++ and integrated in the detection framework [8]. The 
approach is very fast: the running time for one obstacle (average 
vehicle sized) is 0.15-0.2 milliseconds. The processing speed is 
several times higher compared with existing methods. The 
processor used for testing was a Core I5, 2.5 Ghz. As 
comparison, for one obstacle, the processing time in [6] is about 
1.5 ms on a similar processor (Core I7, C++ implementation). 

The precision and accuracy of the orientation were 
measured on several scenarios were the real orientation of the 
vehicles in the scene could be estimated with a reasonable error. 

The first scenario involved a sequence of several tens of 
frames where the ego vehicle was standing still, yielding the 
right of way to incoming traffic. The ego vehicle was positioned 
at an angle relative to the road axis, as it was leaving the main 
road. The angle between the ego vehicle reference frame and 
the road longitudinal axis was estimated manually to 14.4 
degrees. The fixed road infrastructure (curbs) that is visible in 
the 3D lidar data was used to evaluate this angle.  

   
Fig.  10. Scenario 1 used for evaluation. Incoming traffic (the direction of 

motion shown with the white arrow) at an angle of 14.4 degrees. 
 

A total of 226 vehicle orientations, from 9 distinct vehicles, 
were kept for evaluation (some measurements were removed – 
vehicles that changed the lane, or small obstacles).  The distance 
to the vehicles was up to 24 meters from the ego. The angle for 
each orientation was computed relative to the Z axis of the ego 
vehicle. The mean value obtained was 14.53 degrees, very close 
to the manual estimation of 14.4 degrees between the road axis 
and the ego vehicle. The standard deviation was 1.4 degrees, 
proving a robust evaluation of the orientation. The histogram of 
the angle values is shown in Fig.  11. 
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The second scenario used for evaluation was a sequence 
where the ego was driving straight on a multi-lane straight road, 
overpassed slower vehicles, and incoming vehicles were also 
present. A total of 375 orientations were computed for the 
vehicles (some up to 45 meters) that were moving straight (this 
was established from the video data). The mean angle value was 
0.4 degrees (versus the expected value of 0 degrees) and the 
standard deviation 2.5 degrees.  

 
 Fig.  11. Histogram of the angle values obtained for Scenario 1, mean value 

of 14.53 and standard deviation of 1.4 degrees.  
Evaluation was also performed on vehicles that were visible 

strictly from the rear or front, here the standard deviation was 
larger (4-6 degrees), when using the dominant line L. Tracking 
can be employed to increase accuracy. 

Other results are shown in Fig.  12. Limitations of the 
cuboid model can be seen in one of the scenes: some obstacles 
are less suitable for a cuboid representation (curved fences).  

 

V. CONCLUSIONS 
A low complexity method for estimating the orientation of 

3D obstacles, detected with multiple lidars, was presented. The 
method is very fast and it has high precision and accuracy, as 
proven by the quantitative evaluation performed.  

A potential future improvement is to use the semantic 
information provided by the target system [8] to have 
knowledge about the type of the obstacle. This would make the 
step of validation/selection of the best orientation more robust.  
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Fig.  12. Other results, including obstacles with small curvatures (fences). Top 
image shows the scene from the right top-view, bottom image shows the scene 

from the left top-view. The ego is drawn with yellow. 
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