
  

  

Abstract—A real-time algorithm for curb detection in traffic 

scenes, based on dense stereovision, is proposed. Curbs are 

modeled as cubic polynomial curves. 3D points from stereovision 

are transformed into a Digital Elevation Map (DEM), in order 

to have a compact representation of the 3D space. Curb points 

are detected as the cells of the DEM that present a specific 

height variation. Only curb points that are temporally 

persistent and non-occluded are considered. Relevant cubic 

polynomials are computed from the set of curb points by a 

RANdom SAmple Consensus (RANSAC) approach. For each 

relevant polynomial, the curb patch is extracted by analyzing 

the DEM along the polynomial curve. Finally, the vertical 

location and height of each curb are computed based on the 

local elevation data.  

I. INTRODUCTION 

URBS are important delimiters of the drivable area: they 

must be taken into account for navigation, together with 

relevant obstacles. Urban lanes often have curbs on sides 

(without lane markings), therefore curbs can be used as 

features for lane detection algorithms. Curbs frequently 

separate the road from the sidewalk: they can be used for 

focusing attention in pedestrian detection algorithms. 

Because curbs have heights much smaller than obstacles, 

dedicated approaches must be used for curb detection. The 

sensors used for curb detection are based on stereovision [1]-

[4], lidar [5]-[8], time-of-flight camera [9] or a laser line 

stripper [10] combined with a camera [11]. 

One of the earliest approaches for curb detection is [1], 

based on stereovision. Candidate curbs are extracted as 

clusters of at least three parallel lines in the image space, by 

applying the Hough transform. Two planes are computed on 

the 3D data of the surrounding regions, and the height of the 

curb is estimated. 

The approach presented in [2] is based on both range and 

photometry data. Image edge points are detected and the 

Hough accumulator is built. The scalar product of the 

elevation and brightness gradients of each edge point is used 

for voting in the Hough accumulator. One dominant straight 

curb (per scene) is extracted as the line with the maximum 

score in the accumulator. This method is improved later in 

[3]. The Hough accumulator is built from edge segments 
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close to the ground plane, and the vote is weighted with the 

curvature index (based on the principal curvatures). Peaks of 

the Hough transform are considered candidate curb lines, 

which are further refined: regression is performed to the 3D 

points of the candidate line, and the ends of the curb are 

searched.  

The 3D points, from dense stereo, are transformed into a 

Digital Elevation Map (DEM) in [4]. Edges are detected on 

the DEM. Candidate curb points are those edges that are 

persistent along successive frames. The Hough accumulator is 

built from the curb points. Curb segments are located along 

linear curbs (Hough peaks): the largest segment with specific 

height variation (orthogonal to the curb) is selected for each 

curb line. A scheme is proposed to extend iteratively each 

curb segment with additional segments, in order to provide a 

better representation for curved curbs (as chain of segments). 

In [5], road curbs are extracted using a planar two-

dimensional laser measurement system. Authors propose a 

robust filtering and segmentation of the laser range data 

using an Extended Kalman Filtering. Lines are then fitted to 

the segmented data by minimizing the sum of squared errors. 

The pair of lines oriented similar to the ego car that fits best 

the width of the road is selected as the pair of curbs 

delimiting the road. The method fails if the road does not 

have curbs on both sides or if one of the curbs is occluded by 

obstacles. In [6] the detection is improved by using a mixture 

of two-dimensional scanning laser radar (LADAR) and a 

charge-coupled device (CCD) monocular camera.  

The method presented in [7] uses a four-layer laser radar 

sensor for range computation. A multi-stage curb detection 

algorithm is proposed: the initial curbs (beginning segments 

of curbs, having an orientation similar to the ego vehicle) are 

extracted from the range data; the initial curbs are extended 

using an extended Kalman filtering technique; curbs are 

tracked between frames in order to stabilize the results.  

Curbs are detected based on a derivative approach, using a 

64-beam lidar sensor [8] mounted on top of the car. The 

authors avoid the sparseness of the 3D Cartesian 

representation by processing the data in a sensor-centric 

Cartesian system (as a grid). Then, curbs are detected based 

on a filtering process: the grid edges are considered 

measurements and the curbs position estimation is performed 

based on the local road network available with the offline 

map. Ridges in the edge strength map, having the appropriate 

orientation and placed in the predicted locations, are 

considered curbs.  
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A Time-Of-Flight camera is used in [9] for curb detection. 

The authors propose a modified variant of the RANSAC 

algorithm called Connected Component-RANSAC (CC-

RANSAC). The improvement is that the fitting score for a 

random sample is the largest number of inliers that fit the 

model and are connected to each other. CC-RANSAC is used 

to compute relevant planes in the scene and their sets of 

connected inliers (planar patches). Curbs are located at the 

boundary between the planar patches. 

Curb detection was performed in [10] using a laser line 

striper (composed of a camera and a laser), and the system 

was integrated on a bus. The acquisition system is mounted in 

the front bumper, oriented laterally towards the curb. The 

bus-curb distance is detected for each frame. This system is 

simple and efficient, but it has a limited space of interest and 

field of view. Later in [11] the laser striper is augmented with 

a video camera, for extending the curb detection in front of 

the ego vehicle. Using information about the dynamics of the 

vehicle, past curb measurements are mapped into the current 

reference system. In this way, the shape of the curb is 

recovered, up to the current measurement. The curb is then 

extended in front of the ego vehicle, using the images from 

the forward-looking camera.  

In this paper, we propose an algorithm based on 

stereovision that uses a DEM representation of the 3D data. 

We propose a polynomial curve model for curb, which is 

more realistic than the line or poly-line models used in 

existing stereovision based solutions. The steps necessary to 

extract the polynomial curbs in real-time are presented.  

An overview of the proposed algorithm is presented in 

section II. The polynomial curve model used for curbs is 

presented in section III. Sections IV and V present the main 

steps of our algorithm. Results and future work are discussed 

in section VI. 

II. OVERVIEW OF THE ALGORITHM 

The curb detection algorithm (see Fig. 1) proposed in this 

paper takes as input 3D points computed with a dense 

stereovision system.  

A DEM is generated from the set of 3D points and all the 

processing steps are performed on the DEM.  The DEM is 

suitable for real-time processing: it provides explicit 

connectivity between adjacent 3D locations, and it reduces the 

processing space (only one relevant height is stored for 

multiple 3D points).  

Edge detection is applied on the DEM to detect candidate 

curb points. A temporal/occlusion filtering is employed to 

filter out false/background curb points. 

The map of curb points is processed using a RANSAC 

approach to extract the cubic polynomial that most likely 

contains a curb. Then, the curb extremities and additional 

curb features are searched for in the DEM. This will localize 

the curb patch in the bird-eye view (depth and lateral offset). 

The final step is the vertical localization of the curb patch 

based on the features extracted at the previous step. 

.    

Fig. 1. Overview of the proposed algorithm 

III. CUBIC POLYNOMIAL CURB MODEL 

Most of the stereovision-based methods for curb detection 

rely on a linear curb model [1]-[3] or a poly-line model [4] 

(chain of line segments). Curved curbs often appear in urban 

scenarios, and, even if they are estimated as poly-lines, the 

localization is less accurate (see Fig. 2). 

 
Fig. 2. Modeling of curved curbs (black) by poly-lines (red) is less 

accurate, especially near the poly-line vertexes. 
 

A better model for curved curbs is a cubic polynomial. This 

model allows curbs to have curvatures and variation of 

curvatures, and it is in accordance to the widely accepted 

clothoidal model for the road (lane) boundaries.  

The algebraic form of a cubic polynomial is: 
 

3 2y ax bx cx d= + + + .          (1) 
 

Fitting the cubic polynomial to n points, (xi, yi), i=1..n, is 

done by solving the system of n equations and 4 unknowns a, 
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The system can be written as a matrix equation: 
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When the polynomial is fitted to a set of four points, the 

coefficients are computed by solving (3) (Cramer’s rule, 

Gaussian elimination, etc). If the number of points is above 

four then the system is overdetermined and must be solved in 

a least square fashion. The solution that minimizes the sum 

of quadratic errors can be computed by solving the normal 

equation system: 
 

( )T TA A X A B= .              (5) 
 

Multiplying AT by A during runtime is computationally 

intensive. It involves n multiplications and n-1 additions for 

each element of the output matrix. Considering the particular 

form of the matrix A, by performing explicitly the matrix 

multiplications, the system becomes: 
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This representation has a lower computational cost, 

because of two reasons:  

• Powers of xi can be computed apriori once for each 

point, therefore reducing the cost per matrix 

element to n-1 additions. 

• Of the sixteen elements of the matrix ATA only 

seven are distinct.  

The numerical stability of the polynomial is influenced by 

the set of points. Removal of the mean and variance 

normalization can be employed to improve stability. If the set 

of points is quasi-vertical (similar values of the x coordinate) 

then the polynomial cannot be computed (undetermined 

system). This can be avoided by rotating the reference frame 

by 90 degrees, or, in other words, by expressing x as a cubic 

polynomial in y. Therefore, for a given set of points two 

polynomials are computed, one for y=P1(x) and the other one 

for x=P2(y), and both are analyzed to select the optimal one 

(this will be explained in section V.A). 

IV. DETECTION OF CANDIDATE CURB POINTS 

Building the DEM, detection of curb points and the 

temporal filtering are similar to the method described in [4]. 

For each DEM cell, the elevation of the highest point (within 

the cell) is stored, or the cell is marked empty (see Fig. 3). A 

DEM cell covers a 10x10 cm patch in the horizontal plane. 

Median filtering (5x5 window) is applied to reduce noise. 

Singular empty cells are filled with the neighbors’ elevation, 

in order to improve the connectivity in the DEM.    

                    Depth 

  
a.             b. 

Fig. 3.  a. A turn left scenario in the urban environment, b. The 

DEM covering an area of 13x12 meters (bird-eye view): empty cells 

are marked with color, while valid cells store the elevation. 
 

Edge detection (Canny) is applied to the valid cells of the 

DEM and only edges having the magnitude of the gradient 

(computed with a 3x3 Sobel filter) in an interval specific to 

curbs are considered candidate curb points (5..30 cm). 

Temporal filtering is performed by compensating the ego 

motion along successive frames and only persistent curb 

points are allowed for further processing (see Fig. 4.a). 

 

 
a.             b. 

Fig. 4. a. Candidate curb points with a temporal persistence of at 

least four frames, b. Persistent curb points that are not occluded by 

other curb points are drawn with red on the DEM. 
 

We propose an additional filtering condition to the 

temporal filtering: occlusions removal. This condition is 

necessary in order to reduce the number of samples needed in 

the RANSAC polynomial fitting.  Considering the geometry 

of the stereo system, a curb point C is most likely false if it is 



  

occluded by another curb point. The line segment between C 

and the stereo system is computed. C is considered occluded 

if the line segment intersects at least one curb point that is not 

part of the chain of curb points containing C. Only relevant 

curb points remain after filtering (see Fig. 4.b). 

V. POLYNOMIAL CURB DETECTION 

A. RANSAC Extraction of the Best Polynomial 

The RANSAC approach requires the computation of the 

polynomial model for a number of K random samples from 

the data set, and chooses the model with the highest fitting 

score. The data set consists of the candidate curb points. A 

random sample is made of s=4 points, the minimum size 

required to compute the parameters of the cubic polynomial. 

The percentage w of curb inliers from the data set must be 

estimated. Considering that the data set contains only 

persistent and non-occluded points, a conservative value for w 

is 40% (although a normal value is around 70-80%). The 

number of samples required [12], assuming a success 

probability p=0.9999, is 355 samples. 

The standard RANSAC approach involves selecting a 

number of K random samples of four candidate curb points. 

Two cubic polynomials are estimated for each sample 

(y=P1(x) and the other one x=P2(y)), by solving the system of 

equations (3). The fitting score (the size of the consensus set / 

number of inliers for each polynomial) is computed for each 

estimated polynomial, and the polynomial having the best 

score SB is selected. The best polynomial is validated if SB>t 

(=10 inliers). Then, it is recomputed using a least square fit 

on its consensus set (see Fig. 6.a). 

We enhanced the standard RANSAC approach with two 

improvements: the detection of bad samples in an early phase 

(thus reducing the computational complexity), and a different 

way of computing the fitting score.  

 
         a.            b. 

Fig. 5. a. Two samples of four points, along with their lines of sight. 

The red sample has a sharp angle (α2) and is not processed further, 

while the blue sample has only obtuse angles and is analyzed 

further. b. Noisy curb points (blue) can cause a false curvature for a 

straight curb (red points). 
 

For each sample, four random points are selected. Some 

samples will have an undesired configuration of points, 

causing the polynomial curb to have high curvatures. These 

samples are less likely to represent a curb, and they can be 

rejected without the additional cost of computing the 

polynomial and its fitting score. More than half of the 

samples should be rejected on average scenarios. The 

criterion for rejection is estimated with the following steps 

(see Fig. 5.a): 

1. The four points of the sample are ordered based on 

their lines of sight to the stereo system, 

counterclockwise. 

2. Line segments are computed between adjacent points 

in the ordered set. 

3. The angles between the associated segments are 

computed for each of the two inner points from the 

ordered set. If at least one of the angles is sharp, then 

the sample is considered bad. 

The standard RANSAC approach computes the fitting 

score as the number of data points that verify the model 

(residuals below a threshold). This can cause an incorrect 

fitting when a straight curb is present together with some 

false curb points (see Fig. 5.b). For such a scenario, the cubic 

and quadratic terms of the best polynomial will allow it to 

“steer” towards outliers while still maintaining a good fit for 

the straight curb patch. The desired polynomial, that fits only 

the curb patch, has a smaller consensus set. To overcome this, 

we consider the consensus set C to be the largest sequence of 

inliers that have similar local orientations of the polynomial 

curve. The local orientation is estimated for each inlier, based 

on the first derivative.  
 

 
      a.            b. 

Fig. 6. a. The best polynomial curve (green) detected on the DEM. 

b. The gradient is drawn for each point of the curve (orientation and 

magnitude). 

B. Extraction of the Curb Patch 

If a polynomial is computed successfully, then the 

extremities of the curb must be located. Additional features 

are computed from the DEM for each curb point: DEM 

gradient (magnitude) and the elevation of the roadside of the 

curb.  

One way to detect the extremities of the curb on the 

polynomial curve is to find the extremes of the consensus set. 

However, we must take into account that the consensus set 

contains only curb points persistent along several frames. Due 

to lack of texture in previous frames, it is possible to have 



  

additional curb points on the current DEM that are not 

included in the consensus set. 

The current DEM is reanalyzed along the polynomial curve 

in order to find the curb patch: 

1. The DEM gradient is computed for each point of the 

curve (see Fig. 6.b). 

2. Curve points having the magnitude in the curb 

expected interval [5..30] cm are considered potential 

curb points (see Fig. 7.a). Small gaps (1-2 points) of 

non-curb points are filled and small intervals of curb 

points are discarded. This is a compensatory measure 

for the lack of data and/or false elevations from dense 

stereo. 

3. Intervals of consecutive curb points are extracted.  

4. Adjacent intervals separated by a gap smaller than T 

(1 meter) are merged. 

5. The largest interval is considered the curb patch (see 

Fig. 7.b). 

  
      a.             b. 

Fig. 7. a. Potential curb points are marked (red) along the 

polynomial curve. b. The curb patch (red), and example of 

neighborhoods (blue) used to extract the roadside elevation for each 

curb point. 

In order to locate the curb vertically, the roadside elevation 

is computed for each point of the curb patch. The road is the 

lower side of the curb. Thus, computing the road elevation for 

a curb point involves finding the minimum valid elevation 

inside a neighborhood around the point. A good choice for 

this neighborhood is a segment, orthogonal to the curb and 

centered on the curb point. A size of 5-7 DEM cells is 

acceptable, since it will contain several nearby road cells (see 

Fig. 7.b).  

C. Vertical Localization of Curbs 

Two features must be computed in order to describe 

completely the curb in the 3D reference system: the height of 

the curb and its vertical profile. 

The height of the curb is computed as the mean value of 

the magnitude of the DEM gradients along the curb. A mean 

filter robust to outliers and to noisy measurements (see Fig. 8, 

top) is the Alpha-Trimmed mean filter. Gradient magnitudes 

are ordered, top α% and bottom α% (α=10) are discarded, 

and the mean of the remaining values is computed. 

The vertical profile is estimated from the roadside 

elevations associated with the curb. This profile has both 

vertical slope and curvature for uphill/downhill roads. In 

order to model these features, a quadratic polynomial is fitted 

to the set of elevations, using a RANSAC approach (see Fig. 

8, bottom). Then, the roadside elevation of each curb point is 

re-computed with the quadratic polynomial. This ensures that 

noise is filtered out, and that the roadside elevation is 

computed even for those curb points with no roadside 

elevation available in the DEM. 
 

 

 
Fig. 8. Top: The noisy gradient magnitudes (blue) and the alpha-

trimmed mean value (red) equal to 86 mm (the real curb height is 

around 90 mm). Bottom: The raw roadside elevations (blue) along 

the curb and the vertical profile of the curb (red, filtered elevations). 

Now the curb patch is completely located in the 3D space. 

The curb is projected back onto the left image (Fig. 9), 

providing a first, visual way, to evaluate how robust the 

results are. This curb’s inliers are removed from the set of 

candidate curb points and the whole process is repeated until 

no more polynomials are extracted. 
 

 
Fig. 9. The 3D curb patch is projected onto the left image. 

VI. RESULTS AND FUTURE WORK 

The algorithm was tested both offline and online with an 

onboard dense stereo system. It runs in real-time, in less than 

10 ms per frame. Implementation was done in C++, and the 

tests were carried out on a Pentium Dual-Core processor.  

Curbs are robustly detected (see Fig. 11, on the next page) 

as long as 3D data is generally available along the curb, on 

each side.   

The curb’s height accuracy was evaluated on three 

different scenarios, with curbs having real heights of 7, 11 

and 14 centimeters. The estimated curb height had an error of 

less than 5%. The curb vertical localization is accurate. Curbs 

were detected on a 10% uphill scenario (see Fig. 11, second 

from the top) and the slope of the curbs estimated with the 



  

proposed algorithm was 9.4%.  

Future work is required for scenarios with poor 3D dense 

data. If sparse elevation data is available or the quality is 

poor, the polynomial curve is unstable. One such scenario can 

be seen in Fig. 10. A possible solution that will be 

investigated is the tracking of the results, in order to stabilize 

the detection along successive frames. False curbs might 

rarely appear. They can be removed by tracking or by 

increasing some of the internal thresholds from RANSAC 

(the minimum number of inliers, or the minimum segment 

length).  

 
Fig. 10. Example of unstable polynomial curve caused by bad 3D 

data. Even though the real 3D curb is straight, the DEM curb 

“looks” undulated.  
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Fig. 11. Results of the proposed polynomial curb detection 

algorithm. Various road geometries are present, including a 10% 

uphill (second image from the top). 


