
 

 

 

  

Abstract— A new approach for the detection of the road 

surface and obstacles is presented. The 3D data from dense 

stereo is transformed into a rectangular elevation map. A 

quadratic road surface model is first fitted, by a RANSAC 

approach, to the region in front of the ego vehicle. This primary 

solution is then refined by a region growing-like process, driven 

by the 3D resolution and uncertainty model of the stereo sensor. 

An optimal global solution for the road surface is obtained. The 

road surface is used for a rough discrimination between road 

and above-road points. Above-road points are grouped based on 

vicinity and false areas are rejected. Each above-road area is 

classified into obstacles (cars, pedestrians etc.) or traffic isles 

(road-parallel patches) by using criteria related to the density of 

the 3D points.  The proposed real-time algorithm was evaluated 

in an urban scenario and can be used in complex applications, 

from ego-pose estimation to path planning. 

I. INTRODUCTION 

ROCESSING  3D data from stereo (dense or sparse) is a 

challenging task. A robust approach can prove of great 

value for a variety of applications in urban driving 

assistance.  

There are two main algorithm classes, depending on the 

space where processing is performed: disparity space-based 

and 3D space-based. 

Disparity space-based algorithms are more popular 

because they work directly on the result of stereo 

reconstruction: the disparity map. The “v-disparity” [1] 

approach is well known and used to detect the road surface 

in a variety of applications [2]. Unfortunately, it is not a 

natural way to represent 3D data and has some drawbacks: it 

assumes that the road should occupy most of the image, and 

it is sensitive to roll angle changes.  If the roll angle of the 

ego car changes from the initial calibration, than the road 

profile becomes blurry and harder to detect on the “v-

disparity” image. 

3D space-based algorithms are mainly used for ego-pose 

estimation [3], [4], but also for lane and obstacle detection 

[5], [6].  

In [3] the ego-pose is estimated with respect to the road 
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plane. The road plane is fitted (not in real-time) by a 

RANSAC-approach to the whole set of dense 3D points 

(after filtering non-road points). A constant band around the 

road is used to select inliers and outliers, even though this is 

against the fact that the 3D uncertainty from stereo increases 

with the depth. The assumption that most of the 3D points 

are road points is made again (if the ego car is close to a 

sidewalk with more 3D points that the road, it is likely to 

fail).  

A planar road surface is estimated from tracking in [4]. 

The method provides robust numerical results, but fails if 

occlusions (obstacles) are in front of the ego car. Lack of 

high-gradient road features also leads to failure (lane 

markings, borders, etc.). 

Obstacles are detected as clusters of image edge points 

reconstructed in the 3D space ([5]). Road features as lane-

markings can also be detected as obstacles. Later in [6] a 3D 

lane model is proposed and used for obstacle/road points’ 

separation. Again the method requires high-gradient road 

features (edges) to be present and uses a constant band to 

select road inliers and outliers. 

The algorithm that will be presented in this paper manages 

to solve most of the drawbacks presented above.  

It takes as input dense 3D reconstructed points, 

overcoming the lack of road edge features (high-gradient). 

To achieve real-time processing, the 3D set of points is 

transformed into a digital elevation map. The road is 

modeled as a quadratic surface to allow vertical curvatures, 

often present in urban scenarios. The road surface is fitted in 

a way which does not require road points to occupy most of 

the image. The 3D uncertainty increasing with the depth is 

taken into account. 

First we will present the basic math needed to model and 

fit the quadratic road surface. The depth resolution and 

uncertainty are also modeled from the stereo system’s 

geometry. After that the algorithm will be presented and 

evaluated.  

II. THE QUADRATIC ROAD SURFACE MODEL 

The planar road model was first tested. This model proved 

to be less robust for obstacle/road separation, especially for 

the detection of road delimiters such as curbs (ex. border of a 

sidewalk). This happens because the road surface usually 

presents small longitudinal and lateral curvatures, and the 

planar assumption cannot cope with these curvatures.   

We used a different model that allows quadratic variations 
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of the height (the Y coordinate) with the horizontal 

displacement (the lateral X coordinate) and the depth (the 

longitudinal Z coordinate). Figure 1 emphasizes the 

differences between the planar geometry and the quadratic 

one. 

 

 
Fig. 1. Planar vs quadratic geometry for the road surface. 

 

Equation (1) shows the algebraic form of the road model, 

by defining the height value Y with respect to the depth Z 

and the horizontal displacement X. 
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Fitting the quadratic surface to a set of 3D points involves 

minimizing an error function. The error function S represents 

the sum of squared errors along the height: 
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Where Yi is the height of the 3D point i and Y
i

 is the 

height of the surface at coordinates (Xi, Zi). Minimizing only 

along the Y-axis is enough because, even for curved roads, 

the normal of the surface is close to the Y-axis (only few 

degrees difference). The computational complexity is highly 

reduced by avoiding minimization against the normal of the 

surface. 

By replacing (1) into (2) the following equation is 

obtained, where the unknowns are a, a’, b, b’, and c: 
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The minimum of this function is 0 for perfect fitting. For S 

to have a minimum value, its partial derivatives with respect 

to the unknowns must be 0. The following system of 

equations must be solved: 
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After writing explicitly each equation, the system (4) 

becomes (matrix form): 
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Where n is the number of points, and generically 
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This system has 5 linear equation and 5 unknowns, 

therefore solving it is a trivial algebra problem. 

III. MODELING THE DEPTH RESOLUTION AND UNCERTAINTY 

In order to keep road points connected in the Euclidian 3D 

space, the depth (or range) resolution must be modeled. 

Connectivity is required by the step of road surface growing.  

The 3D surface fitting will involve selection of inliers and 

outliers of the road surface (road/non-road points). Because 

the 3D uncertainty increases with the depth, using a constant 

band is quite inefficient when working with a large range of 

depths (false inliers close and outliers far). 

A. The depth resolution from stereo 

The set of 3D points from dense stereo will be 

transformed into a rectangular elevation map, each cell 

containing a height value. Due to the perspective projection, 

3D points reconstructed by stereovision are sparser with the 

depth. This effect is more visible for the road surface, 

because it is quasi-parallel to the optical axis of the camera. 

A 3D space compressed with the depth was used in [5] to 

achieve connectivity for obstacle points in order to detect 

obstacles. We will use the opposite approach, by applying a 

morphological dilation of heights on the elevation map. The 

amplitude of dilation will be computed for each cell from the 

stereo geometry.  

The effect of decreasing depth resolution for road points is 

shown in figure 2. The distance between image-adjacent 3D 

road points increases with the depth.  

 
Fig. 2. A lateral view of the depth resolution problem (F - focal length, H - 

height of the camera relative to the road level). Image-adjacent road points 

are not always adjacent in the elevation map. Points from vertical objects 

have higher densities in cells. 

 

 



 

 

 

Considering the canonical geometry of the stereo system 

and a planar road, the Z-value of a road point placed at the 

vertical coordinate Yim (in pixels) in the image can be 

computed using (7). H is the height of the camera in the 

world reference frame, F the focal length of the stereo 

system, and α is the pitch angle of the camera. 
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Furthermore the depth resolution ∆Z can be computed at 

any depth Z by (8). 

 

( ) ( 1)
im im

Z Z Y Z Y∆ = − + .           (8) 

 

Later in this paper it will be explained how to use this 

basic model for computing the depth resolution even for non-

planar road surfaces. 

B. The depth uncertainty from stereo 

The 3D (localization) uncertainty is caused by a low 

accuracy computation of the disparity value and is mainly 

visible in the depth value. The height is also influenced and 

modeling the uncertainty will help for a robust detection of 

the road.  

In [7] a simple model for the uncertainty of the depth was 

proposed for a canonical stereo system. The depth 

uncertainty Zerr, for a point at depth Z, was modeled as a 

function (9) of the system’s parameters (baseline B and focal 

F known from calibration) and of the disparity uncertainty 

Derr.  
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By using the standard canonical stereo equations, we 

extended this model to compute the uncertainty Yerr of a 

point with height Y and depth Z (10). H is the height of the 

camera in the world reference frame.  
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Figure 3 shows an example: the region for inliers 

computed for a simple planar road surface assuming a 

disparity uncertainty Derr of 1 pixel. This value is not 

exaggerated because the road surface usually presents poor 

texture (except for markings), resulting in a larger disparity 

uncertainty compared to good-textured objects.  

 

 

 

 
Fig. 3. Lateral view of the inliers (darker gray) region around a planar road. 

The region is computed using the proposed model for the height 

uncertainty. 

IV. ALGORITHM DESCRIPTION 

The road and obstacles detection algorithm presented in 

this paper takes as input dense 3D reconstructed points. The 

output is multiple: the quadratic surface of the road in 

parametric form, 3D points classified as road/traffic 

isles/obstacles, and cell clusters representing individual 

traffic isles or obstacles. Traffic isles (elevated surfaces 

parallel to the road, such as sidewalks) are classified 

distinctly because they should have a different significance 

for higher-level applications, compared to relevant obstacles 

(cars, pedestrians, buildings, etc.).  

To achieve real-time processing, the 3D set of points is 

transformed into a digital elevation map. All processing steps 

will be performed on the elevation map. The road surface is 

fitted using a RANSAC approach to a small patch in front of 

the ego vehicle. This primary solution is then refined through 

a region growing-like process to insure the optimality of the 

global solution. 

A. Building the elevation map 

The elevation map representation is usually used for relief 

representation. An intensity map (image) is superimposed, 

from the top, to the 3D environment. Each pixel has a gray 

value proportional to the height of the underlying 3D 

location.  

Computing the elevation map (Fig. 4) from the set of 

dense 3D points is straightforward. A 3D space of interest 

(40m x 12m from bird-eye view) in front of the car is 

considered. The longitudinal Z and lateral X coordinates of 

each 3D point are scaled into the (image) coordinates space 

of the elevation map. The elevation map image has the same 

aspect ratio as the 3D space of interest. A cell has a size of 

7.5 cm x 7.5 cm in the XZ world plane. 

Each cell (32 bits) of the elevation map will contain the 

highest height of the 3D points contained in the cell, with a 

resolution of 4 mm. We centered the world zero level (road 

level at system calibration) at 128 in the elevation map for a 

better visualization. For all the images in this paper only 

heights around the road (1 m band) are displayed correctly 

due to a limited number of gray values (256).  

3D points higher than 2 meters from the ground (zero 

level from calibration) will not be stored because they are 

out of interest. Empty cells are flagged and not used further.  

 



 

 

 

 
Fig. 4. The elevation map (b) for the scene in a. In c valid cells (non-

empty, with 3D data) are highlighted.  

 

 As seen in fig. 4, the elevation map presents poor 

connectivity between road points at far depths. The amount 

of dilation needed for each cell is computed by applying (8) 

in the cells space. To compensate for possible vertical road 

curvatures the amount of dilation obtained will be increased 

by 50%. This is necessary to avoid under-connectivity. 

Figure 5.a shows the dilated elevation map. 

 
Fig. 5. The dilated elevation map in a. The averaged measured density of 

3D points per cell is shown in b. The road expected density of 3D points 

per cell in c. 

 

Another two features, related to the density of 3D points, 

are computed for each cell: expected road density and 

average measured density. These two features can be used 

for a rough discrimination between road and non-road 

features. 

By using the depth resolution model presented above, the 

expected density of road points in each cell can be computed 

(Fig. 5.c). This density has a large range of values from 

about 200 3D points/cell near the ego-vehicle, down to  0.1 

points/cell at 35 meters depth.  

When the elevation map is formed, a counter is stored for 

each cell. This counter shows how many 3D points are 

contained in each cell. For road points at far depths this 

counter is not equivalent with the local measured density. 

This happens because of the decrease in depth resolution. 

The local measured density can be estimated by averaging 

the map of counters with an adaptive mask, with a size equal 

to the amount of dilation used for connectivity. The average 

measured density is obtained (Fig. 5.b).  

As a conclusion, instead of a set of 3D points without 

explicit connectivity, we obtained a discrete 3D space as an 

elevation map. Full connectivity of road points is available. 

For the sake of simplicity, in the next subsections (B to F) 

we will use the term point (described 3-dimensionally as the 

map coordinates and height) for a cell of the elevation map. 

All formulas presented in section II and III can be applied in 

the elevation map space (it is still a 3D space, but with 

discrete locations). 

B. Selection of points for initial surface fitting 

The RANSAC approach [8] is a robust method for fitting 

a model to a data set containing noise. Instead of fitting the 

model to the whole set in a least square fashion (due to noise 

the solution will not be optimal), the RANSAC approach 

chooses a number of samples (subsets of the data set). For 

each sample the model is fitted and a score is computed. The 

sample with the highest score is selected. 

A rectangular patch from the elevation map is selected in 

front of the ego car. Valid points from this patch will 

represent the data set. Not all the points should be selected 

because there are two situations when even RANSAC will 

fail (Fig. 6): when traffic isles or obstacles are dominant in 

the selected patch. 

 

 
Fig. 6. Two situations where RANSAC can fail. The patch selected for 

initial fitting is shown as a white rectangle. 

 

Two constraints are used to filter (result shown in Fig. 7.d) 

the data set before applying RANSAC: 

• Curbs are detected in the rectangular patch. Only 

points placed on the same side as the ego car, 

relative to the detected curbs, are considered. 

• Each considered point must have a computed 

density no more than 150% of the estimated road 

density for that point (most of object points should 

be discarded). 

To detected curbs in the interest patch, edge points are 

detected on the elevation image, and the Hough transform 

[9] is used to select relevant lines. Five lines are selected, 

having the highest Hough score. Each line is analyzed by 



 

 

 

counting how many of its points have a height variation 

between 5 cm and 35 cm (normal range for curbs). Lines 

with a score higher than 40% of the total number of line 

points are considered valid. Two of the valid lines, with the 

highest scores, are selected as curbs. This method for 

detecting nearby curbs has a good detection rate of about 1% 

false positives (evaluated on 120 urban scenes with curbs). 

 

 
Fig. 7. One curb is detected on the elevation map in b and projected onto 

the left image in a. From the valid points in c only highly probable road 

points are selected in d for RANSAC. 

 

The RANSAC method is applied to the filtered set of 

points. We used a number of 200 samples of 5 points each. 

The quadratic surface was computed for each sample. The 

score for each sample was considered as the number of 

inliers from the whole set. The uncertainty model from 

section III.B was used to classify a point as part of the road 

surface. The sample with the highest number of inliers is 

selected as the primary road surface. If the total surface of 

inliers is less than (equivalent in 3D) 1 m
2
, then the detection 

of the road surface is aborted and only the density-based 

method proposed in section IV.E is used for obstacle 

detection.  

C. Uncertainty model-driven surface growing 

The primary road surface is detected optimally for the 

points in front of the vehicle. Optimality is not granted for 

the whole scene because vertical curvatures of the road 

surface can be computed correctly only using large road 

patches. 

The primary solution can be refined through a region 

growing process (Fig. 8) where the initial region is the set of 

inliers from the initial rectangular patch. A new point can be 

added to the current region if it fulfills the following 

conditions: 

• To be adjacent to inliers from the current region, 

• To verify the current road surface equation 

according to the uncertainty model described by 

equations (8) and (9) with Derr=1 pixel. 

The surface is re-computed, in a least square-fashion, each 

time the region has expanded its border with 1-2 pixels 

(about 100 new points). This insures that the surface is 

refined gradually. On average the surface is recomputed 

about 150-200 times. This can be very time consuming since 

it involves computing the sums defined by (6).  A real-time 

implementation is possible by using the partial sums between 

two consecutive re-computations (only the amounts for the 

new points are added).  
 

 
Fig. 8. Road inliers detected in the initial patch (as white). Intermediate 

regions, growing from left to right. 

 

A global optimal solution for the road surface is obtained 

after this step. 

D. Rough classification of points  

Elevation map points are roughly classified (Fig. 9.c), with 

respect to the road surface, considering the following rules: 

• If the height of the point P relative to the road is 

below the estimated height uncertainty (according to 

the defined model, with Derr=1.5 pixels) the point is 

considered Road, 

• Otherwise, let us consider Quotient = 

ExpectedDensity(P) / MeasuredDensity(P): 

o If Quotient is higher than 1 and the height of P 

from the road is below 45 cm, the point is 

considered Traffic Isle, 

o Otherwise (Quotient less than 1): 

�  P is considered Obstacle if its height 

from the road is higher than Quotient 

*60 cm (in other words the lower its 

density is, the higher it should be from 

the road in order to be object point), 

� Otherwise P is considered Traffic Isle. 

The rough classification provides good positives but also 

some false positives and negatives (fig. 9.c).  

 

 
Fig. 9. The elevation map (b) of a scene (a) is roughly classified (c) (dark 

gray - road, gray - traffic isle, white - obstacles). The result of the density-

based classification is shown in d (dark gray - road, white - obstacles). 



 

 

 

E. Density-based obstacle classification 

When the elevation map is built, two features are also 

computed for each point (cell): the expected road density 

(the theoretical density of 3D points in the cell) and the 

measured density (what actually exists).  

The expected road density is computed for a planar road 

surface but it can be easily used for vertically curved roads 

(curvatures are small). This is done by simply using a larger 

value for the expected density (50% more than computed).  

Obstacles points will have much larger densities than the 

road for the same depth. We use a standard approach called 

double thresholding, which is frequently used in edge 

detection [10]. 

The following steps are performed to detect obstacle 

points on the elevation map (result shown in Fig. 9.d): 

• Points are flagged as Obstacle if the measured 

density of the point is higher by TH (=6) times than 

the estimated road density, 

• Other points are flagged (recursively) as Obstacle if 

they are adjacent to an Obstacle point and the 

measured density of the point is higher by TL (=3) 

times than the estimated road density. 

The threshold values TH and TL were chosen 

experimentally, considering the following constraints: 

• The rate of false positives is below 1%, 

• Small obstacles such as near road poles (7-8 cm 

thin and 20 cm tall) should also be detected. 

This detector has a very low rate of false positives, but 

some objects (about 10%) are only partially detected due to 

poor dense reconstruction. The method is used as a stand-

alone detector (if the road surface cannot be computed) or it 

is robustly combined with the rough classification described 

previously. 

F. Obstacle filtering and classification 

This step performs fusion between the result of rough 

classification (Fig. 9.c) and the density-based obstacle 

classification (Fig. 9.d).  

The fusion and error filtering are performed using the 

following rules: 

• Small Traffic Isle areas from the rough 

classification are discarded (less than 0.5 m
2
), 

• Obstacles areas from the rough classification are  

rejected if they do not overlap obstacle points from 

the more robust density-based classification, 

• Our experiments shown that for depths higher than 

25 meters, Traffic Isle detection is less reliable and 

provides lots of false positives. For depths higher 

than 25 meters only the result of the density-based 

classification is used. 

False elevations (dark gray spikes in Fig. 10.a) due to 

wrong dense 3D data are correctly classified as drivable 

(road).  

 

 
Fig. 10. The final result after error filtering and classification is shown on 

the left image (a) for the classified elevation map (b). Cells from the 

elevation map are the vertexes of the image projected grid (dark gray - road, 

gray - traffic isle, white - obstacles). 

V. RESULTS 

The algorithm was implemented in C++. The dense 3D 

information was generated using a calibrated stereo rig with 

grayscale cameras and a commercial dense stereo board [11].  

Due to the use of software-specific C optimizations and 

the elevation map representation, a processing time of 20 ms 

was achieved for the algorithm itself (on Pentium 4 at 2.6 

Ghz). Overall, with the image acquisition and the dense 

hardware reconstruction, a sustained processing frame-rate 

of 23 fps is obtained.  By using a more recent processor 

(Pentium Dual Core) a processing frame-rate of 35 fps can 

be achieved (for our system the cameras have a limited 

acquisition frame-rate of 25 fps).  

Regarding the robustness of the algorithm we performed 

only a simple evaluation which will be extended in the 

future:  

• A number of 40 stereo images of different 

(random) scenes were selected (out of several 

hours of stored stereo images, recorded while 

driving the ego-car). 

• Results were analyzed for each frame in terms of: 

missed obstacles, partially detected obstacles, 

missed traffic isles, false traffic isles. 

The numbers obtained proved the robustness of the 

algorithm: 

• Missed obstacles: 3 out of 153  - very small 

objects, 

• Partial obstacles: 8 out of 153 - due to the lack of 

dense 3D data, 

• Missed traffic isles: 2 out of 28 - the height was 

too small (4-6 cm), 

• False traffic isles: 1 - on one of the scenes (road 

junction) the quadratic road model was not good 

because the road surface was made of 2 main 

quadratic surfaces with different parameters.  

 



 

 

 

 

 

 

 

 
Fig. 11. Results for various scenes. The algorithm performs well even for 

scenes with sparse 3D road reconstruction and noisy 3d data (the grid is 

projected only where dense 3D data is provided by the dense stereo engine). 

The result for the first scene is displayed using a virtual camera. Grid colors 

represent dark gray - road, gray - traffic isle, and white - obstacles. 

VI. CONCLUSIONS 

A new road and obstacle detection algorithm was 

presented. It transforms the 3D dense data from stereovision 

into an elevation map. The depth uncertainty and resolution 

are modeled and used to fit the road quadratic model to the 

elevation map. An RANSAC-approach, combined with 

region growing, is used for the detection of the optimal road 

surface. Obstacles and traffic isles are detected by using the 

road surface and the density of points.  

The algorithm proved to be robust. Most of the erroneous 

detections are caused by bad 3D data from dense stereo. The 

current version copes well with most (but not all) types of 

errors in the 3D data set. 

The proposed algorithm works in real-time and provides 

robust results. It can be used in a variety of applications, 

from ego-pose estimation to complex 3D path planning.  

Future development and evaluation are required: 

• Further and more complex evaluation of the 

proposed algorithm, 

• Using tracking can greatly improved the 

robustness of the method, 

• A more complex road model will be proposed 

and tested (cubic or 4
th

 degree, or a cubic-spline 

surface - might be robust even for off-road 

driving), 

• Using MMX/SSE processor features can reduce 

the processing time to half, 

• Enhancing the algorithm to cope better with 

various types of noise in the 3D data set. 
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