

Abstract — Recent market deployment of smart mobile

devices which feature synchronous stereo image acquisition has

raised the question whether such devices can be used for real-

time 3D environment reconstruction by stereovision. In this

paper, we propose a stereovision approach that can run in real-

time on smart mobile devices, and we evaluate its potential for

developing driving assistance functions. The stereo approach is

a sparse approach: edges are detected in the left image,

correspondent right image points are determined using area-

based matching, and each left-right pair of points is mapped in

3D by triangulation. Our experiments have proved that despite

the limitations imposed by the mobile device, both

reconstruction accuracy at short-medium distances and real-

time processing can be achieved. Thus, developing driving

assistance functions with such devices is possible for low vehicle

speeds / short range scenarios, which often occur in urban

environments.

I. INTRODUCTION

Depth information about the objects in the environment is
of a great importance in driving assistance applications, and
more specifically in obstacle detection. Moreover, the
algorithm needs to be efficiently implemented in order to
meet the high speed and low power consumption
requirements of mobile applications. In order to achieve
widespread deployment of a stereovision based system, a
tradeoff must be made between the accuracy and maximum
depth performance of the stereo-reconstruction algorithm and
the required hardware complexity (power, stereo system size,
etc.) of the cameras and the processing unit.

Many stereovision approaches have been proposed in the
last decade, and next, we will briefly revisit some of the most
relevant ones. In [1] Hirschmüller et al. present a real-time
correlation-based stereovision system, by analyzing and
comparing the results of various matching cost functions.
They propose two methods of reducing the number of
matching errors and also a solution to improve matching at
object borders. In [2] an edge-based stereo-reconstruction
system is presented, with focus on obstacle detection at far
distances with high accuracy. A dense stereo solution with
sub-pixel accuracy is described in [3], based on the Semi-
Global Matching (SGM) method [4] and using the Census
transform as the matching metric. The SGM was introduced
in 2005 by Hirschmüller, and it was proved to provide
accurate stereo-matching results in real time, by searching for

A. Trif, F. Oniga and S. Nedevschi are with the Computer Science

Department, Technical University of Cluj-Napoca, Romania (corresponding

author phone: +40-264-401457, e-mail florin.oniga@cs.utcluj.ro).

This work was supported by the Romanian Executive Agency for Higher

Education, Research, Development and Innovation Funding (UEFISCDI),

project number PNII – PCCA 18/2012.

pixel correspondences based on Mutual Information and also
approximating a global cost [4]. In [5] Stefano proposes
another area-based matching approach, the Single-Matching
Phase (SMP) local algorithm, which eliminates redundant
differences and sums while computing the Sum of Absolute
Differences matching cost. Even though extensive work has
been done in the stereovision domain, none of these
previously mentioned solutions were intended to run on smart
mobile devices.

Recently some research has been directed towards the
implementation on smart mobile devices of some computer
vision algorithms, 3D reconstruction being an example. A
very good analysis of the advantages and limitations of
mobile devices regarding computer vision and augmented
reality applications is presented in [9]. In [10], Langguth and
Goesele describe a solution for sparse 3D reconstruction of
objects using structure from motion. Multiple pictures of the
scene are captured from different view angles using the
camera of a mobile phone, the user being guided by the
application to move the device in the best position for a better
reconstruction. In [11] another approach is presented, in
which two smart phones are used to create a master-slave
photometric stereo system. Thus, both devices capture
images, but the slave device also uses its flash to illuminate
the scene, while the master applies the photometric
reconstruction algorithm. In [12], Pan et al. describe their
solution of generating a 3D model of the scene from
panoramic images in real time. An application for fast 3D
reconstruction of house plans is described in [13]. The user is
guided to capture data needed for the later creation of a
virtual tour of the indoor environment.

As already noted in [9] and [12], there are very few
mobile device applications that perform the entire processing
on the device. The majority of the solutions are either client-
server applications, in which most of the processing is done
on a server [9], or they perform an offline reconstruction
from a set of previously captured images, without taking into
consideration the computational requirements [12].

In the last years, there has been a significant progress in
terms of technical capabilities and processing power on the
market of smart mobile devices (phones and tablets). Pushed
forward by the entertainment industry, some manufacturers
(so far LG and HTC, to our knowledge) have released smart
mobile devices that have two forward-facing cameras, which
can acquire synchronous stereo images.

In this paper we investigate whether such a smart device
can be used as both acquisition and processing platform for
stereovision based driving assistance. We propose a solution
for edge-based stereo-reconstruction tailored for mobile
devices, and, after the experimental evaluation of the system,

Stereovision for Obstacle Detection on Smart Mobile Devices: First

Results

Florin Oniga, Alexandra Trif and Sergiu Nedevschi

we discuss the possibility of using such devices for driving
assistance.

In section II an overview of the entire stereovision
algorithm is presented. In section III the stereo-matching
function is described in more detail. The choice of the
correlation cost function, the constraints applied on the
discovered matches and the method used for sub-pixel
accuracy are explained in further subsections. Experimental
results are then given in section IV. Finally, a critical
discussion about the system benefits and limits is presented
in section V.

II. ALGORITHM OVERVIEW

The major steps of the stereovision algorithm are depicted
in Fig. 1 and are further detailed in what follows. The
algorithm is more or less based on the standard steps, with an
additional measure for reducing the search space for the right
image correspondent.

First of all, we calibrated the cameras in order to obtain
the intrinsic and relative extrinsic camera parameters. The left
camera was considered to be the world reference frame.
These parameters are later needed for the image rectification
and 3D reconstruction steps. The calibration was performed
using the Caltech Camera Calibration Toolbox for Matlab.

Although the built-in cameras of the device are almost
canonical, rectification is needed on the acquired images in
order to simplify the correspondence searching step and to
reduce the amount of computations required for 3D
reconstruction, thus improving the processing speed. We
chose to implement the rectification approach presented in
[6], which divides the algorithm in two steps: an offline step,
performed only once, and an online step applied to each
frame. In the offline step, the new parameters of the
canonical system and the rectifying matrix are computed, and
four look-up tables are built, two for each image, having the
size of the image. For each image, one look-up table will
store the integer coordinates of the correspondent pixel in the
original image, the actual coordinates being computed with
sub-pixel accuracy, and the other will store the interpolation
coefficients that will be used in the online step. Thus, the
online step is reduced to the computation of the rectified
pixel intensities using bilinear interpolation of the four
neighboring pixels in the original image with the values
stored in the look-up tables.

Together with the rectification step, a un-distortion
operation is applied on the images, which is needed to correct
the distortions introduced by the camera lenses. This
operation is included in the offline computation of the look-
up tables, and thus no overhead is added to the online
processing of the frames.

The next step consists of selecting the relevant left image
features for 3D reconstruction. Considering the need for low
computational complexity, we use an idea already present in
literature, which is to select edges as relevant features.
Extracting edges in the left image was done using the Canny
edge detection algorithm. The left image will be then used as
reference in the correspondence searching step. For every
edge point in the left image, its homologous point in the right
image is searched on the horizontal epipolar line, and then an
interpolation function is applied on the matching costs in
order to achieve sub-pixel accuracy. Stereo matching will be
described in more detail in the next section.

The last step of the algorithm is represented by the 3D
reconstruction operation. Because the images are rectified,
we can use the well-known formulas for 3D reconstruction in
a canonical configuration, which are widely available in
literature [7]:

� �
� � �

�
 (1)

where d is the disparity, b is the baseline and f is the focal
distance.

III. STEREO MATCHING

As previous research has shown [1][3-5], stereo matching
is the most important and computationally intensive step of
the stereo-reconstruction algorithm. Therefore, a series of
constraints need to be applied in order to reduce the search
space and also ensure that the number of false matches is
reduced without affecting the number of good matches. A
pseudo-code of the stereo matching function is the following:

Function Stereo-matching

1: for each edge-point in the left image do
2: compute the gradient magnitude mL
3: set gradient threshold t ← mL/2
4: for each point p in the disparity range in the right

image do
5: compute the gradient magnitude mR
6: if mR > t then
7: compute SADp
8: add SADp to SAD-list
9: if SADp < SADmin then SADmin ← SADp end if
10: end if
11: end for
12: apply constraint for repetitive patterns
13: if not repetitive pattern then
14: apply sub-pixel interpolation
15: end if
16: add current match to matches-list
17: end for
18: return matches-list

The presented pseudo-code is explained in more detail in

what follows.

A. The matching cost function

Many correlation metrics exist in literature: the
normalized cross-correlation (NCC), the sum of squared
differences (SSD), the sum of absolute differences (SAD)
and so on. According to [1], SAD is the fastest and also
provides better results compared to SSD or NCC. Therefore,

Figure 1. Algorithm overview

we considered SAD as being more appropriate for a fast
implementation. The function is applied on a window of size
n x n around the pixels to be matched. For every pixel, the
differences between the intensities of the corresponding pixel
positions in the window in the left IL and right IR images are
added to a matching cost variable. The best matching pixel in
the right image is chosen to be the one which minimizes this
cost.

The choice of the window size is very important: a small
window (e.g. 3x3) implies a smaller number of computations
for the matching cost, but it will yield less accurate results
and a lot of false matches [1], whereas a larger window (e.g.
7x7) will affect the processing speed but will provide more
accurate results. We chose to use a 7x7 window for matching.

B. Constraints

In some cases, due to differences in illumination or
repetitive patterns, the pixel in the right image which
minimizes the correlation function might not be the
correspondent of the edge point detected in the left image.
Therefore, a series of constraints need to be applied to reduce
the number of false matches. Moreover, these constraints also
have the benefit of reducing the computational time by
eliminating from the search space those points which will
most likely not be a valid correspondent.

Firstly, we reduce the search space by looking for the
correspondent in a limited range of disparities from the
current point. As the baseline is 4.5 cm and the obtained
(calibration) focal distance is approximately 404 pixels, our
chosen disparity range of 13 pixels ensures matching of
objects at distances greater than 1.5 m from the mobile
device. This minimum distance is sufficient for driving
assistance applications, as the objects in the environment are
usually located at greater distances (if the mobile device is
placed on the dashboard, near the windshield, while the
closest objects can be located near the front bumper).

Secondly, the left image features are edge points,
therefore exhibiting a significant value of the gradient
magnitude. The right image correspondent should present a
similar gradient value, slightly different (if any) due to
contrast differences between the stereo pair. Thus a condition
based on the gradient magnitude is applied. We first compute
the gradient in the x and y directions of the pixel in the left
image by convolving the rows and columns with the mask:

[1 0 −1].

Then we compute the gradient magnitude mL using the
Manhattan metric (faster than the Euclidian metric):

 mL = |gxL| + |gyL|, (2)

where gxL and gyL are the gradients in the x and y directions,
respectively. We then set a threshold value at half of the
previously computed magnitude and we choose to match
only those points in the right image which have the gradient
magnitude greater than this threshold. This constraint is
graphically represented in Fig. 2.

The next constraint tries to eliminate the ambiguous
matches of repetitive patterns. We compare the matching cost

of the best match with all the other costs in the disparity
range. If the global minimum is not smaller with at least 20%
than all local minimums, the match is rejected.

C. Sub-pixel accuracy

Because the matching point in the right image might not
always be located on an integer pixel, but rather between two
pixels, we perform a sub-pixel interpolation to achieve a
better accuracy. We chose to implement the parabola
interpolation, in which a parabola is fitted on the values of
the correlation cost function corresponding to the best-
matching pixel and its left and right neighbors. The
displacement ds from the integer coordinate of the best match
is computed as:

min2(2)

left right

s

left right

SAD SAD
d

SAD SAD SAD

−
=

+ −

(3)

Another interpolation function that can be used is the
symmetric “V”, presented in [8].

Our experiments have
shown that the two interpolation methods provide almost
similar results on the short-medium depth range perceived by
the system.

IV. EXPERIMENTAL RESULTS

The application was tested on an LG V900 Optimus Pad
device, which has an Nvidia Tegra 2 chipset including a dual-
core ARM Cortex A9 CPU, 1 GHz. The baseline of the
stereo camera system is 4.5 cm. The operating system of the
tablet is Android 3.1 Honeycomb. For performance reasons,
the entire stereo-reconstruction algorithm was implemented
in native code using Android NDK.

In order to test the reconstruction accuracy of the system,
we acquired a sequence of left-right pairs of images of a car

Figure 2. Gradient-based constraint for search space reduction. The

red point in the middle-left picture is the detected edge point. In the

middle-right image, the green points represent the search space for

the correspondent, and the red points are those pixels that pass the

gradient magnitude constraint. The diagram depicts a comparison

between the gradient magnitude of the left edge point and the

gradient magnitudes of all the points in the disparity search range in

the right image. Only pixels 5, 6 and 7 have a gradient greater than

the threshold.

located at measured distances in the range 2 m – 9 m. The 3D
coordinates were computed in the left camera reference
frame, and the mobile device was mounted horizontally using
a laser level (to ensure alignment with the ground plane) and
aligned with the test vehicle longitudinal axis. First of all, we
checked if the 3D points are re-projected back on the edge
points that were used in their reconstruction. The re-
projection result in the left image can be seen in Fig. 3.

Furthermore, in order to test the depth estimation
accuracy, we selected only the points that lay on the car and
computed their mean and standard deviation on the z-axis.
Some obtained results can be seen in Table I. We observe
that up to a distance of 6 m the mean distance is accurately
determined, at 7 m we have an error of only 30 cm, at 8 m the
error is 50 cm and at 9 m the error increases to 1.3 m. The
reconstruction results and the images used in our experiments
can also be seen in Fig. 5.

 In Table I the standard deviation of the points
reconstructed in our experiments is also represented, which
describes how far away from the mean they are scattered. We
can see that as the distance grows, the points are more spread
out on the z-axis. This phenomenon is more visible in Fig. 5,
where at 2 m the reconstructed points are very close to the
mean, while at 8 m the points are in the range [6.5 m, 9 m].
However, when the distance gets larger, the standard
deviation becomes less reliable due to the decreasing number
of edge points, as seen in Table I for distances greater than 7
m.

TABLE I. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE

384X216

Measured

distance (m)

Mean

(mm)

Standard

deviation (mm)

Number of

edge points

2 2051 94 769

3 2923 188 557

4 3968 375 360

5 4997 534 296

6 5942 828 194

7 6778 996 204

8 7530 508 131

9 7717 626 90

 There are more causes for these deviations from the real
distance. First of all, the small resolution of the images does
not allow an accurate reconstruction at far distances. The size
of the images is limited by the device and operating system.

Even though the stereo imager of the device has 5 MPixel
cameras, so far the Camera API provides only a small set of
supported sizes for the acquired images. The sizes supported
by the camera are the following: 720x408, 720x480, 720x576
and 768x432. We chose the last one, as it has the largest
horizontal size, relevant for stereo-matching. However, in the
dual-camera mode, the two left and right images are scaled
down horizontally so that both of them fit in the same picture
of size 768x432. As a consequence, the images appear
elongated on the y-axis and a further vertical resizing is
necessary to bring them back to the natural aspect ratio. Thus,
an image of size 768x216 is obtained, which contains both
left and right images placed side by side, as in Fig. 4.
Individually, the left and right images have a resolution of
384x216 pixels (the equivalent focal length of 404 pixels).

For comparison purposes, we captured a set of larger

images using a different function of the Camera API (the
takePicture method), which allows capturing pictures having
a combined size of 1200x680. However, for now, this
function does not allow sequence mode acquisition. We
applied the same reconstruction algorithm on these larger
images, which, after vertical resizing, have a size of
1200x340 pixels (each image from the pair has a size of
600x340 pixels). As expected, the reconstruction results are
much better than in the case of smaller resolution images.
These results can be seen in Table II and Fig. 6. The first
improvement worth noticing is that the depth can be
estimated with small errors up to greater distances. But more
importantly, the reconstructed points are not so spread out
around the mean, as it can be observed from the standard
deviation. For example, when the object is at 6 m, the
standard deviation is only 12.2 cm compared to a deviation of
82.8 cm in the case of smaller resolution images. Moreover,
the standard deviation when the object is at 10 m is similar to
the one obtained when the object is at 5 m, with the small
image configuration.

Another cause for the reconstruction errors is the blurring
introduced by image rectification, because the intensity value
of the new pixel is computed by interpolating the values of
the 4 neighboring pixels in the original image. This blurring
leads to inaccuracies both in edge detection and in sub-pixel
interpolation.

TABLE II. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF

SIZE 600X340

Measured

distance (m)

Mean (mm) Standard

deviation (mm)

Number of

edge points

4 4053 78 2645

6 5818 122 1197

8 7351 198 765

10 9493 465 801

15 15102 1009 337

Figure 4. Stereo-pair of images after rectification

Figure 3. The re-projection result of the 3D points in the left image of

the stereo-pair: top-left – the car is at 2 m; top-right – the car is at 4 m;

bottom-left – the car is at 6 m; bottom-right – the car is at 8 m.

Furthermore, sub-pixel interpolation performed by fitting a
parabola to a 3-valued neighborhood around the global
minimum has a limited accuracy of 1/4 to 1/6 pixels [2]. Due
to the small resolution of the images, a small sub-pixel error
leads to greater errors in 3D.

Last but not least, false matches could be another cause for
reconstruction errors. However, our experiments have shown
that pixels are generally well matched, as seen in Fig. 7. This
figure depicts the matching result when the car is at 3 m, but
this correct correlation behavior is preserved among all test
images.

The processing time depends on the number of edge
points, as it can be seen in Fig. 8. The analysis was
performed on a number of 445 different image pairs, each
image with 384x216 pixels and a window of 7x7 for the
stereo-matching function. On a scene with lots of edges
(9850 edge points, about 12% of the whole image) the whole
processing time is about 130 ms (out of which the stereo

matching takes about 81 ms). For scenes having the same
number of points, the processing time has certain
fluctuations, due to the operating system policy for allocating
the processor for various tasks. However, these fluctuations
can be minimized by proper management of the process
priority.

Concerning the speed performance of the whole system,
including the image acquisition and visualization of the
results, we managed to achieve an average frame rate of 6.5-
7.5 fps.

Currently the implementation of the stereo algorithm is
single-threaded. Most smart mobile devices feature multi-
core processors, so, as a future improvement, we intend to
split the processing on two threads in order to increase the
speed performance.

Furthermore, when the camera API will allow acquiring
larger stereo images in sequence mode, multi-resolution

Figure 5. Depth estimation results (top) and the corresponding 384x216-sized left image from the stereo-pair used for reconstruction (bottom): a) the car

is at 2 m; b) the car is at 4 m; c) the car is at 6 m; d) the car is at 8 m.

Figure 6. Depth estimation results when using 600x340-sized images and the car is at: a) 4 m; b) 6 m; c) 8 m; d) 10 m; e) 15 m;

(m
m

)

(mm)

(m
m

)

(mm)

stereo matching can be used to keep the processing time low,
while benefiting from the better accuracy of larger images.

Figure 7. Stereo-matching result (the image space) when the car is at a

distance of 3 m

Figure 8. Analysis of the processing time vs. number of edge points

V. DISCUSSION
 Several conclusions can be drawn from the conducted

experiments and evaluation.

 The current sequence aqusition mode supported by the
camera API (384x216 stereo images) limits the maximum
depth reliable for obstacle detection at about 7-8 meters.
Without the sequence mode, when using 600x340 stereo
images, the reliable depth is up to 15 meters. By reliable
depth we are refering to the maximum depth where, through
feature grouping techniques applied on the 3D points and/or
the intensity image, the obstacle can be located as a cuboid.

 The question still remains: Will this limited
range/processing time allow the development of driving
assistance functions? This obviously depends on the targeted
scenarios, and the main issue is related to the stop distance of
the ego vehicle. With the current maximum range for online
processing, the system can perceive obstacles up to 7-8
meters. The stopping distance is given by the reaction time of
the driver (usually around 1 second for undistracted drivers)
and the braking distance. The braking and stopping distances,
assuming a dry flat road, and average tires (friction
coefficient 0.7), are shown in Table III for speeds typical to
urban environments.

 In low urban speeds (5-15 km/h), warning the driver can
help avoiding accidents involving pedestrians or vehicles.
Such low speed scenarios are quite often in modern crowded
urban areas, where a lot of stop-and-go maneuvers are
performed, or the average speed is low on some road sectors
due to the high traffic volume. Even at medium urban speeds
(20-30 km/h), automatic warnings might help the driver to
mitigate potential accidents. As the reliable depth will likely
increase with the future software API, so will the range of
speeds where the system is beneficial.

TABLE III. BRAKING AND STOPPING DISTANCE FOR TYPICAL URBAN SPEEDS

Speed km/h 5 10 15 20 25 30

Speed m/s 1.3 2.7 4.1 5.5 6.9 8.3

Brake Dist. m 0.14 0.5 1.2 2.2 3.5 5.0

Stop Dist. m 1.5 3.3 5.4 7.8 10.4 13.3

 Future developments of the stereovision system based
on the mobile device include the development of obstacle
detection and tracking, finding an easy way to mount the
mobile device on the dashboard and to autocalibrate the pitch
and roll angles (the device accelerometer will help), and
further investigation of the software API for aquiring higher
resolution stereo images in continuous mode.

REFERENCES

[1] H. Hirschmüller, P. R. Innocent, J. M. Garibaldi, “Real-time

correlation-based stereo vision with reduced border errors”,

International Journal of Computer Vision, 47(1/2/3):229-246, April-

June 2002.

[2] S. Nedevschi et al., “High Accuracy Stereo Vision System for Far

Distance Obstacle Detection”, IEEE Intelligent Vehicles Symposium,

June 14-17, 2004, University of Parma, Parma, Italy, pp. 292-297.

[3] I. Haller, C. Pantilie, F. Oniga, S. Nedevschi, "Real-Time Semi-

Global Dense Stereo Solution with Improved Sub-Pixel Accuracy",

Proceedings of 2010 IEEE Intelligent Vehicles Symposium, June 21-

24, 2010, University of California, San Diego, CA, USA, pp. 369 -

376.

[4] H. Hirschmüller, “Accurate and Efficient Stereo Processing by Semi-

Global Matching and Mutual Information”, IEEE Computer Society

Conference on Computer Vision and Pattern Recognition CVPR'05,

vol. 2, pp. 807-814, June 2005.

[5] L.D. Stefano, M. Marchionni, S. Mattoccia, “A fast area-based stereo

matching algorithm”, Image and Vision Computing, vol. 22, 2004, pp.

983-1005.

[6] C. Vancea, S. Nedevschi, “Analysis on Different Image Rectification

Approaches for Binocular Stereovision Systems”, in Proceedings of

2006 IEEE ICCP, September 1-2, 2006, Cluj-Napoca, Romania, vol.

1, pp. 135-142.

[7] E. Trucco, A. Verri, “Introductory Techniques to 3D Computer

Vision”, Prentice Hall, 1998.

[8] J. Woodfill et al., “Data Processing System and Method”, U.S. Patent

6,215,898 B1, April 10, 2001.

[9] C. Arth, D. Schmalstieg, “Challenges of Large-Scale Augmented

Reality on Smartphones”, ISMAR 2011 Workshop: Enabling Large-

Scale Outdoor Mixed Reality and Augmented Reality, October 26,

2011, Basel, Switzerland.

[10] F. Langguth, M. Goesele, “Guided Capturing of Multi-view Stereo

Datasets”, Eurographics, 2013.

[11] J.H. Won, M.H. Lee, I.K. Park, “Active 3D Shape Acquisition Using

Smartphones”, IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops, June 2012.

[12] Q. Pan et al., “Rapid Scene Reconstruction on Mobile Phones from

Panoramic Images”, in Proceedings of 2011 IEEE ISMAR, 2011, pp.

55-64.

[13] A. Sankar, S. Seitz, “Capturing indoor scenes with smartphones",

in Proceedings of the 25th annual ACM symposium on User interface

software and technology (UIST '12), 2012.

