
  

  

Abstract — Recent market deployment of smart mobile 

devices which feature synchronous stereo image acquisition has 

raised the question whether such devices can be used for real-

time 3D environment reconstruction by stereovision. In this 

paper, we propose a stereovision approach that can run in real-

time on smart mobile devices, and we evaluate its potential for 

developing driving assistance functions. The stereo approach is 

a sparse approach: edges are detected in the left image, 

correspondent right image points are determined using area-

based matching, and each left-right pair of points is mapped in 

3D by triangulation. Our experiments have proved that despite 

the limitations imposed by the mobile device, both 

reconstruction accuracy at short-medium distances and real-

time processing can be achieved. Thus, developing driving 

assistance functions with such devices is possible for low vehicle 

speeds / short range scenarios, which often occur in urban 

environments. 
 

I. INTRODUCTION 

Depth information about the objects in the environment is 
of a great importance in driving assistance applications, and 
more specifically in obstacle detection. Moreover, the 
algorithm needs to be efficiently implemented in order to 
meet the high speed and low power consumption 
requirements of mobile applications. In order to achieve 
widespread deployment of a stereovision based system, a 
tradeoff must be made between the accuracy and maximum 
depth performance of the stereo-reconstruction algorithm and 
the required hardware complexity (power, stereo system size, 
etc.) of the cameras and the processing unit.  

Many stereovision approaches have been proposed in the 
last decade, and next, we will briefly revisit some of the most 
relevant ones. In [1] Hirschmüller et al. present a real-time 
correlation-based stereovision system, by analyzing and 
comparing the results of various matching cost functions. 
They propose two methods of reducing the number of 
matching errors and also a solution to improve matching at 
object borders. In [2] an edge-based stereo-reconstruction 
system is presented, with focus on obstacle detection at far 
distances with high accuracy. A dense stereo solution with 
sub-pixel accuracy is described in [3], based on the Semi-
Global Matching (SGM) method [4] and using the Census 
transform as the matching metric. The SGM was introduced 
in 2005 by Hirschmüller, and it was proved to provide 
accurate stereo-matching results in real time, by searching for 
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pixel correspondences based on Mutual Information and also 
approximating a global cost [4]. In [5] Stefano proposes 
another area-based matching approach, the Single-Matching 
Phase (SMP) local algorithm, which eliminates redundant 
differences and sums while computing the Sum of Absolute 
Differences matching cost. Even though extensive work has 
been done in the stereovision domain, none of these 
previously mentioned solutions were intended to run on smart 
mobile devices. 

Recently some research has been directed towards the 
implementation on smart mobile devices of some computer 
vision algorithms, 3D reconstruction being an example. A 
very good analysis of the advantages and limitations of 
mobile devices regarding computer vision and augmented 
reality applications is presented in [9]. In [10], Langguth and 
Goesele describe a solution for sparse 3D reconstruction of 
objects using structure from motion. Multiple pictures of the 
scene are captured from different view angles using the 
camera of a mobile phone, the user being guided by the 
application to move the device in the best position for a better 
reconstruction. In [11] another approach is presented, in 
which two smart phones are used to create a master-slave 
photometric stereo system. Thus, both devices capture 
images, but the slave device also uses its flash to illuminate 
the scene, while the master applies the photometric 
reconstruction algorithm. In [12], Pan et al. describe their 
solution of generating a 3D model of the scene from 
panoramic images in real time. An application for fast 3D 
reconstruction of house plans is described in [13]. The user is 
guided to capture data needed for the later creation of a 
virtual tour of the indoor environment. 

As already noted in [9] and [12], there are very few 
mobile device applications that perform the entire processing 
on the device. The majority of the solutions are either client-
server applications, in which most of the processing is done 
on a server [9], or they perform an offline reconstruction 
from a set of previously captured images, without taking into 
consideration the computational requirements [12]. 

In the last years, there has been a significant progress in 
terms of technical capabilities and processing power on the 
market of smart mobile devices (phones and tablets). Pushed 
forward by the entertainment industry, some manufacturers 
(so far LG and HTC, to our knowledge) have released smart 
mobile devices that have two forward-facing cameras, which 
can acquire synchronous stereo images.   

In this paper we investigate whether such a smart device 
can be used as both acquisition and processing platform for 
stereovision based driving assistance. We propose a solution 
for edge-based stereo-reconstruction tailored for mobile 
devices, and, after the experimental evaluation of the system, 
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we discuss the possibility of using such devices for driving 
assistance.  

In section II an overview of the entire stereovision 
algorithm is presented. In section III the stereo-matching 
function is described in more detail. The choice of the 
correlation cost function, the constraints applied on the 
discovered matches and the method used for sub-pixel 
accuracy are explained in further subsections. Experimental 
results are then given in section IV. Finally, a critical 
discussion about the system benefits and limits is presented 
in section V. 

II. ALGORITHM OVERVIEW 

The major steps of the stereovision algorithm are depicted 
in Fig. 1 and are further detailed in what follows. The 
algorithm is more or less based on the standard steps, with an 
additional measure for reducing the search space for the right 
image correspondent. 

 

First of all, we calibrated the cameras in order to obtain 
the intrinsic and relative extrinsic camera parameters. The left 
camera was considered to be the world reference frame. 
These parameters are later needed for the image rectification 
and 3D reconstruction steps. The calibration was performed 
using the Caltech Camera Calibration Toolbox for Matlab. 

Although the built-in cameras of the device are almost 
canonical, rectification is needed on the acquired images in 
order to simplify the correspondence searching step and to 
reduce the amount of computations required for 3D 
reconstruction, thus improving the processing speed. We 
chose to implement the rectification approach presented in 
[6], which divides the algorithm in two steps: an offline step, 
performed only once, and an online step applied to each 
frame. In the offline step, the new parameters of the 
canonical system and the rectifying matrix are computed, and 
four look-up tables are built, two for each image, having the 
size of the image. For each image, one look-up table will 
store the integer coordinates of the correspondent pixel in the 
original image, the actual coordinates being computed with 
sub-pixel accuracy, and the other will store the interpolation 
coefficients that will be used in the online step. Thus, the 
online step is reduced to the computation of the rectified 
pixel intensities using bilinear interpolation of the four 
neighboring pixels in the original image with the values 
stored in the look-up tables.  

Together with the rectification step, a un-distortion 
operation is applied on the images, which is needed to correct 
the distortions introduced by the camera lenses. This 
operation is included in the offline computation of the look-
up tables, and thus no overhead is added to the online 
processing of the frames. 

The next step consists of selecting the relevant left image 
features for 3D reconstruction. Considering the need for low 
computational complexity, we use an idea already present in 
literature, which is to select edges as relevant features. 
Extracting edges in the left image was done using the Canny 
edge detection algorithm. The left image will be then used as 
reference in the correspondence searching step. For every 
edge point in the left image, its homologous point in the right 
image is searched on the horizontal epipolar line, and then an 
interpolation function is applied on the matching costs in 
order to achieve sub-pixel accuracy. Stereo matching will be 
described in more detail in the next section. 

The last step of the algorithm is represented by the 3D 
reconstruction operation. Because the images are rectified, 
we can use the well-known formulas for 3D reconstruction in 
a canonical configuration, which are widely available in 
literature [7]: 
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where d is the disparity, b is the baseline and f is the focal 
distance. 

III. STEREO MATCHING 

As previous research has shown [1][3-5], stereo matching 
is the most important and computationally intensive step of 
the stereo-reconstruction algorithm. Therefore, a series of 
constraints need to be applied in order to reduce the search 
space and also ensure that the number of false matches is 
reduced without affecting the number of good matches. A 
pseudo-code of the stereo matching function is the following: 

Function Stereo-matching 
 
1: for each edge-point in the left image do 
2:   compute the gradient magnitude mL 
3:  set gradient threshold t ← mL/2 
4: for each point p in the disparity range in the right 

image do 
5:   compute the gradient magnitude mR 
6:   if mR  > t then 
7:    compute SADp 
8:    add SADp to SAD-list 
9:    if SADp < SADmin then SADmin ← SADp end if 
10:   end if 
11:  end for 
12:  apply constraint for repetitive patterns 
13:  if not repetitive pattern then 
14:   apply sub-pixel interpolation 
15:  end if 
16:  add current match to matches-list 
17: end for 
18: return matches-list 
 
The presented pseudo-code is explained in more detail in 

what follows. 

A. The matching cost function 

Many correlation metrics exist in literature: the 
normalized cross-correlation (NCC), the sum of squared 
differences (SSD), the sum of absolute differences (SAD) 
and so on. According to [1], SAD is the fastest and also 
provides better results compared to SSD or NCC. Therefore, 

 
Figure 1.  Algorithm overview 



  

we considered SAD as being more appropriate for a fast 
implementation. The function is applied on a window of size 
n x n around the pixels to be matched. For every pixel, the 
differences between the intensities of the corresponding pixel 
positions in the window in the left IL and right IR images are 
added to a matching cost variable. The best matching pixel in 
the right image is chosen to be the one which minimizes this 
cost. 

The choice of the window size is very important: a small 
window (e.g. 3x3) implies a smaller number of computations 
for the matching cost, but it will yield less accurate results 
and a lot of false matches [1], whereas a larger window (e.g. 
7x7) will affect the processing speed but will provide more 
accurate results. We chose to use a 7x7 window for matching. 

B. Constraints 

In some cases, due to differences in illumination or 
repetitive patterns, the pixel in the right image which 
minimizes the correlation function might not be the 
correspondent of the edge point detected in the left image. 
Therefore, a series of constraints need to be applied to reduce 
the number of false matches. Moreover, these constraints also 
have the benefit of reducing the computational time by 
eliminating from the search space those points which will 
most likely not be a valid correspondent.  

Firstly, we reduce the search space by looking for the 
correspondent in a limited range of disparities from the 
current point. As the baseline is 4.5 cm and the obtained 
(calibration) focal distance is approximately 404 pixels, our 
chosen disparity range of 13 pixels ensures matching of 
objects at distances greater than 1.5 m from the mobile 
device. This minimum distance is sufficient for driving 
assistance applications, as the objects in the environment are 
usually located at greater distances (if the mobile device is 
placed on the dashboard, near the windshield, while the 
closest objects can be located near the front bumper). 

Secondly, the left image features are edge points, 
therefore exhibiting a significant value of the gradient 
magnitude. The right image correspondent should present a 
similar gradient value, slightly different (if any) due to 
contrast differences between the stereo pair. Thus a condition 
based on the gradient magnitude is applied. We first compute 
the gradient in the x and y directions of the pixel in the left 
image by convolving the rows and columns with the mask: 

[1 0 −1]. 

Then we compute the gradient magnitude mL using the 
Manhattan metric (faster than the Euclidian metric): 

                      mL = |gxL| + |gyL|,                          (2) 

where gxL and gyL are the gradients in the x and y directions, 
respectively. We then set a threshold value at half of the 
previously computed magnitude and we choose to match 
only those points in the right image which have the gradient 
magnitude greater than this threshold. This constraint is 
graphically represented in Fig. 2. 

The next constraint tries to eliminate the ambiguous 
matches of repetitive patterns. We compare the matching cost 

of the best match with all the other costs in the disparity 
range. If the global minimum is not smaller with at least 20% 
than all local minimums, the match is rejected. 

 

C. Sub-pixel accuracy 

Because the matching point in the right image might not 
always be located on an integer pixel, but rather between two 
pixels, we perform a sub-pixel interpolation to achieve a 
better accuracy. We chose to implement the parabola 
interpolation, in which a parabola is fitted on the values of 
the correlation cost function corresponding to the best-
matching pixel and its left and right neighbors. The 
displacement ds from the integer coordinate of the best match 
is computed as:  

min2( 2 )

left right

s

left right

SAD SAD
d

SAD SAD SAD
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=
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Another interpolation function that can be used is the 
symmetric “V”, presented in [8].

 

Our experiments have 
shown that the two interpolation methods provide almost 
similar results on the short-medium depth range perceived by 
the system.  

IV. EXPERIMENTAL RESULTS 

The application was tested on an LG V900 Optimus Pad 
device, which has an Nvidia Tegra 2 chipset including a dual-
core ARM Cortex A9 CPU, 1 GHz. The baseline of the 
stereo camera system is 4.5 cm. The operating system of the 
tablet is Android 3.1 Honeycomb. For performance reasons, 
the entire stereo-reconstruction algorithm was implemented 
in native code using Android NDK.  

In order to test the reconstruction accuracy of the system, 
we acquired a sequence of left-right pairs of images of a car 

 
Figure 2. Gradient-based constraint for search space reduction. The 

red point in the middle-left picture is the detected edge point. In the 

middle-right image, the green points represent the search space for 

the correspondent, and the red points are those pixels that pass the 

gradient magnitude constraint. The diagram depicts a comparison 

between the gradient magnitude of the left edge point and the 

gradient magnitudes of all the points in the disparity search range in 

the right image. Only pixels 5, 6 and 7 have a gradient greater than 

the threshold. 



  

located at measured distances in the range 2 m – 9 m. The 3D 
coordinates were computed in the left camera reference 
frame, and the mobile device was mounted horizontally using 
a laser level (to ensure alignment with the ground plane) and 
aligned with the test vehicle longitudinal axis. First of all, we 
checked if the 3D points are re-projected back on the edge 
points that were used in their reconstruction. The re-
projection result in the left image can be seen in Fig. 3. 

 

Furthermore, in order to test the depth estimation 
accuracy, we selected only the points that lay on the car and 
computed their mean and standard deviation on the z-axis. 
Some obtained results can be seen in Table I. We observe 
that up to a distance of 6 m the mean distance is accurately 
determined, at 7 m we have an error of only 30 cm, at 8 m the 
error is 50 cm and at 9 m the error increases to 1.3 m. The 
reconstruction results and the images used in our experiments 
can also be seen in Fig. 5.  

 In Table I the standard deviation of the points 
reconstructed in our experiments is also represented, which 
describes how far away from the mean they are scattered. We 
can see that as the distance grows, the points are more spread 
out on the z-axis. This phenomenon is more visible in Fig. 5, 
where at 2 m the reconstructed points are very close to the 
mean, while at 8 m the points are in the range [6.5 m, 9 m]. 
However, when the distance gets larger, the standard 
deviation becomes less reliable due to the decreasing number 
of edge points, as seen in Table I for distances greater than 7 
m. 

TABLE I. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE 

384X216 

Measured 

distance (m) 

Mean 

(mm) 

Standard 

deviation (mm) 

Number of 

edge points 

2 2051 94 769 

3 2923 188 557 

4 3968 375 360 

5 4997 534 296 

6 5942 828 194 

7 6778 996 204 

8 7530 508 131 

9 7717 626 90 

 

 There are more causes for these deviations from the real 
distance. First of all, the small resolution of the images does 
not allow an accurate reconstruction at far distances. The size 
of the images is limited by the device and operating system. 

Even though the stereo imager of the device has 5 MPixel 
cameras, so far the Camera API provides only a small set of 
supported sizes for the acquired images. The sizes supported 
by the camera are the following: 720x408, 720x480, 720x576 
and 768x432. We chose the last one, as it has the largest 
horizontal size, relevant for stereo-matching. However, in the 
dual-camera mode, the two left and right images are scaled 
down horizontally so that both of them fit in the same picture 
of size 768x432. As a consequence, the images appear 
elongated on the y-axis and a further vertical resizing is 
necessary to bring them back to the natural aspect ratio. Thus, 
an image of size 768x216 is obtained, which contains both 
left and right images placed side by side, as in Fig. 4. 
Individually, the left and right images have a resolution of 
384x216 pixels (the equivalent focal length of 404 pixels). 

 
For comparison purposes, we captured a set of larger 

images using a different function of the Camera API (the 
takePicture method), which allows capturing pictures having 
a combined size of 1200x680. However, for now, this 
function does not allow sequence mode acquisition. We 
applied the same reconstruction algorithm on these larger 
images, which, after vertical resizing, have a size of 
1200x340 pixels (each image from the pair has a size of 
600x340 pixels). As expected, the reconstruction results are 
much better than in the case of smaller resolution images. 
These results can be seen in Table II and Fig. 6. The first 
improvement worth noticing is that the depth can be 
estimated with small errors up to greater distances. But more 
importantly, the reconstructed points are not so spread out 
around the mean, as it can be observed from the standard 
deviation. For example, when the object is at 6 m, the 
standard deviation is only 12.2 cm compared to a deviation of 
82.8 cm in the case of smaller resolution images. Moreover, 
the standard deviation when the object is at 10 m is similar to 
the one obtained when the object is at 5 m, with the small 
image configuration. 

 

Another cause for the reconstruction errors is the blurring 
introduced by image rectification, because the intensity value 
of the new pixel is computed by interpolating the values of 
the 4 neighboring pixels in the original image. This blurring 
leads to inaccuracies both in edge detection and in sub-pixel 
interpolation. 

TABLE II. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF 

SIZE 600X340 

Measured 

distance (m) 

Mean (mm) Standard 

deviation (mm) 

Number of 

edge points 

4 4053 78 2645 

6 5818 122 1197 

8 7351 198 765 

10 9493 465 801 

15 15102 1009 337 

 

 
Figure 4.  Stereo-pair of images after rectification 

 
Figure 3. The re-projection result of the 3D points in the left image of 

the stereo-pair: top-left – the car is at 2 m; top-right – the car is at 4 m; 

bottom-left – the car is at 6 m; bottom-right – the car is at 8 m. 



  

Furthermore, sub-pixel interpolation performed by fitting a 
parabola to a 3-valued neighborhood around the global 
minimum has a limited accuracy of 1/4 to 1/6 pixels [2]. Due 
to the small resolution of the images, a small sub-pixel error 
leads to greater errors in 3D. 

Last but not least, false matches could be another cause for 
reconstruction errors. However, our experiments have shown 
that pixels are generally well matched, as seen in Fig. 7. This 
figure depicts the matching result when the car is at 3 m, but 
this correct correlation behavior is preserved among all test 
images.   

The processing time depends on the number of edge 
points, as it can be seen in Fig. 8. The analysis was 
performed on a number of 445 different image pairs, each 
image with 384x216 pixels and a window of 7x7 for the 
stereo-matching function. On a scene with lots of edges 
(9850 edge points, about 12% of the whole image) the whole 
processing time is about 130 ms (out of which the stereo 

matching takes about 81 ms). For scenes having the same 
number of points, the processing time has certain 
fluctuations, due to the operating system policy for allocating 
the processor for various tasks. However, these fluctuations 
can be minimized by proper management of the process 
priority.  

Concerning the speed performance of the whole system, 
including the image acquisition and visualization of the 
results, we managed to achieve an average frame rate of 6.5-
7.5 fps. 

Currently the implementation of the stereo algorithm is 
single-threaded. Most smart mobile devices feature multi-
core processors, so, as a future improvement, we intend to 
split the processing on two threads in order to increase the 
speed performance. 

Furthermore, when the camera API will allow acquiring 
larger stereo images in sequence mode, multi-resolution 

 
Figure 5. Depth estimation results (top) and the corresponding 384x216-sized left image from the stereo-pair used for reconstruction (bottom): a) the car 

is at 2 m; b) the car is at 4 m; c) the car is at 6 m; d) the car is at 8 m. 

 
Figure 6. Depth estimation results when using 600x340-sized images and the car is at: a) 4 m; b) 6 m; c) 8 m; d) 10 m; e) 15 m; 
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stereo matching can be used to keep the processing time low, 
while benefiting from the better accuracy of larger images. 

 

 

Figure 7. Stereo-matching result (the image space) when the car is at a 

distance of 3 m 

 
 

 

Figure 8. Analysis of the processing time vs. number of edge points 
  

V. DISCUSSION 
 Several conclusions can be drawn from the conducted 

experiments and evaluation. 

 The current sequence aqusition mode supported by the 
camera API (384x216 stereo images) limits the maximum 
depth reliable for obstacle detection at about 7-8 meters. 
Without the sequence mode, when using 600x340 stereo 
images, the reliable depth is up to 15 meters. By reliable 
depth we are refering to the maximum depth where, through 
feature grouping techniques applied on the 3D points and/or 
the intensity image, the obstacle can be located as a cuboid.  

 The question still remains: Will this limited 
range/processing time allow the development of driving 
assistance functions? This obviously depends on the targeted 
scenarios, and the main issue is related to the stop distance of 
the ego vehicle. With the current maximum range for online 
processing, the system can perceive obstacles up to 7-8 
meters. The stopping distance is given by the reaction time of 
the driver (usually around 1 second for undistracted drivers) 
and the braking distance. The braking and stopping distances, 
assuming a dry flat road, and average tires (friction 
coefficient 0.7), are shown in Table III for speeds typical to 
urban environments. 

 In low urban speeds (5-15 km/h), warning the driver can 
help avoiding accidents involving pedestrians or vehicles. 
Such low speed scenarios are quite often in modern crowded 
urban areas, where a lot of stop-and-go maneuvers are 
performed, or the average speed is low on some road sectors 
due to the high  traffic volume. Even at medium urban speeds 
(20-30 km/h), automatic warnings might help the driver to 
mitigate potential accidents. As the reliable depth will likely 
increase with the future software API, so will the range of 
speeds where the system is beneficial. 

TABLE III. BRAKING AND STOPPING DISTANCE FOR TYPICAL URBAN SPEEDS 

Speed km/h 5 10 15 20 25 30 

Speed m/s 1.3 2.7 4.1 5.5 6.9 8.3 

Brake Dist. m 0.14 0.5 1.2 2.2 3.5 5.0 

Stop Dist. m 1.5 3.3 5.4 7.8 10.4 13.3 

 Future developments of the stereovision system based 
on the mobile device include the development of obstacle 
detection and tracking, finding an easy way to mount the 
mobile device on the dashboard and to autocalibrate the pitch 
and roll angles (the device accelerometer will help),  and 
further investigation of the software API for aquiring higher 
resolution stereo images in continuous mode. 
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