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Abstract—Since smart mobile devices having capabilities of 

synchronous stereo image acquisition have been released on the 
market, the topic of real-time 3D environment reconstruction by 

stereovision on such mobile platforms has become of a greater 

interest among researchers. In this paper we continue the sparse 
stereovision approach proposed in [15], while focusing on 

improving the reconstruction results by refining the disparity 
computation accuracy to a sub-pixel level and by using the 

available sensors to gain more information about the position of 
the device relative to the world. After the 3D points are 
reconstructed by triangulation, a correction is applied on them to 

compensate for a possible pitch rotation of the device. Moreover, 

we present a fast approach for detecting the obstacle on the 

estimated trajectory of the vehicle. A series of experiments have 
been conducted which proved that although mobile development 
is constrained by the available features of the device and its 

operating system, sensor information is beneficial, and more 
importantly, both reconstruction accuracy and obstacle detection 

at short-medium distances and real-time processing can be 
achieved. Thus, developing driving assistance functions with such 

devices is possible for low vehicle speeds / short range scenarios, 
which often occur in urban environments. 

I.  INTRODUCTION 

The most important issue of a driving assistance application 
is to understand the environment in which the car is moving, 
more specifically to know where various objects are and 
whether they may interfere with the vehicle on its moving 
trajectory. Thus, with the aid of the stereo-cameras and the 
sensors available on the mobile device the objects existent in 
the field of view can be reconstructed and then transposed to 
the world reference frame. Moreover, the high speed and low 
power consumption requirements of mobile applications 
impose an efficient implementation of the stereovision 
algorithm. Thus a tradeoff must be made between the 
performance of the algorithm (accuracy, maximum depth 
estimation, etc.) and the complexity of the processing (speed, 
power consumption, etc).  

Many stereovision approaches have been proposed in the 
last decade, and next, we will briefly revisit some of the most 
relevant ones. In [1] Hirschmüller et al. present a real-time 
correlation-based stereovision system, by analyzing and 
comparing the results of various matching cost functions. They 
propose two methods of reducing the number of matching 
errors and also a solution to improve matching at object 
borders. In [2] an edge-based stereo-reconstruction system is 

presented, with focus on improving the accuracy of obstacle 
detection at far distances. A dense stereo solution with sub-
pixel accuracy is described in [3], based on the Semi-Global 
Matching (SGM) method [4] and using the Census transform 
as the matching metric. The SGM was introduced in 2005 by 
Hirschmüller, and it was proved to provide accurate stereo-
matching results in real time, by searching for pixel 
correspondences based on Mutual Information and also 
approximating a global cost [4]. In [5] Stefano proposes 
another area-based matching approach, the Single-Matching 
Phase (SMP) local algorithm, which eliminates redundant 
differences and sums while computing the Sum of Absolute 
Differences matching cost. Even though extensive work has 
been done in the stereovision domain, none of these previously 
mentioned solutions were intended to run on smart mobile 
devices. 

Recently some research has been directed towards the 
implementation on smart mobile devices of some computer 
vision algorithms, 3D reconstruction being an example. A very 
good analysis of the advantages and limitations of mobile 
devices regarding computer vision and augmented reality 
applications is presented in [9]. As it was already noted in [9] 
and [12], most of the solutions either use the mobile device 
only as a client, the processing being performed on a server [9], 
or the processing is applied offline on a set of previously 
captured images, the computational complexity thus playing a 
less important role [12]. However, there are a few mobile 
applications that perform the processing entirely on the device, 
some of which are shortly described in what follows. 

In [10], Langguth and Goesele describe a solution for 
sparse 3D reconstruction of objects using structure from 
motion. Multiple pictures of the scene are captured from 
different view angles using the camera of a mobile phone, the 
user being guided by the application to move the device in the 
best position for a better reconstruction. In [11] another 
approach is presented, in which two smart phones are used to 
create a master-slave photometric stereo system. Thus, both 
devices capture images, but the slave device also uses its flash 
to illuminate the scene, while the master applies the 
photometric reconstruction algorithm. In [12], Pan et al. 
describe their solution of generating a 3D model of the scene 
from panoramic images in real time. An application for fast 3D 
reconstruction of house plans is described in [13]. The user is 
guided to capture data needed for the later creation of a virtual 
tour of the indoor environment. 



In the last years, there has been a significant progress in 
terms of technical capabilities and processing power on the 
market of smart mobile devices (phones and tablets). Pushed 
forward by the entertainment industry, some manufacturers (so 
far LG and HTC, to our knowledge) have released smart 
mobile devices that have two forward-facing cameras, which 
can acquire synchronous stereo images.   

In this paper we investigate whether such a smart device 
can be used as both acquisition and processing platform for 
stereovision based driving assistance, while also using the 
gravity sensor available on the device to improve the 
reconstruction results by eliminating the rotation applied on the 
3D points by a potential pitch angle of the device. We also 
propose a real-time obstacle detection algorithm that selects the 
maximum agglomeration of points on the vehicle’s trajectory 
and computes the mean distance towards it. 

In section II an overview of the entire stereovision 
algorithm is presented, with emphasis on the sub-pixel 
interpolation methods used in stereo-matching and on the pitch 
angle correction applied to the reconstructed points. In section 
III the algorithm used for obstacle detection is explained. 
Finally, some experimental results are given in section IV. 

II. ALGORITHM OVERVIEW 

This paper presents a continuation of the algorithm 
presented in [15]. The major steps of the algorithm are based 
on the standard stereovision approach, as depicted in Fig. 1. 
Furthermore, some constraints are imposed in order to reduce 
the search space in the stereo-matching step and to improve the 
reliability of the found matching point. Also, the disparity 
computation in the matching step is refined to sub-pixel 
accuracy. All these steps have already been detailed in [15]. 
Additionally, a correction is applied on the reconstructed points 
in order to compensate for a possible pitch rotation. Moreover, 
different sub-pixel interpolation methods have been tested and 
analyzed.  

 

Fig. 1. Algorithm overview 

A. Stereo-matching 

Due to the low computational complexity requirements of 
the application we considered an edge-based stereovision 
approach to be the most appropriate. Therefore, after the 
images are rectified using the approach described in [6], edges 
are detected in the left image using the well-known Canny 
algorithm. The left image is then used as reference in the 
stereo-matching step, and the Sum of Absolute Differences is 
used as matching metric. A pseudo-code of the stereo matching 
function is presented below, and it was detailed in [15]: 

 

 

Function Stereo-matching 
 
1: for each edge-point in the left image do 
2: compute the gradient magnitude mL 
3: set gradient threshold t ← mL/2 
4: for each point p in the disparity range in the right image 

do 
5:  compute the gradient magnitude mR 
6:  if mR>t then 
7:   compute SADp 
8:   add SADp to SAD-list 
9:   if SADp<SADmin then SADmin ← SADp end if 
10:   end if 
11:  end for 
12:  apply constraint for repetitive patterns 
13:  if not repetitive pattern then 
14:   apply sub-pixel interpolation 
15:  end if 
16:  add current match to matches-list 
17: end for 
18: return matches-list 

B. Sub-pixel accuracy 

Depth computation depends on the disparity between the 
pixels in the left and right images. Therefore, if the matching 
results are improved to reach a sub-pixel accurate level, this 
will also be reflected on the refinement degree of the depth 
estimation results. Sub-pixel accuracy is necessary because the 
matching point in the right image is not always located on an 
integer pixel, but rather between two pixels.  

Sub-pixel accuracy can be achieved by interpolating the 
matching cost of the best-matching pixel and its two left and 
right neighbors. There are a few interpolation methods 
described in literature, which have been implemented and 
tested in our solution. One of them is parabola interpolation, in 
which a parabola is fitted on the values of the correlation cost 
function corresponding to the best-matching pixel (SADmin) and 
its left (SADleft) and right (SADright) neighbors. The 
displacement ds from the integer coordinate of the previously 
found correspondent pixel is computed as: 
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Another interpolation function that can be used is the 
symmetric “V”. According to [8], the displacement ds is 
computed as: 
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Furthermore, in order to improve the accuracy of sub-pixel 
estimation, we implemented the histogram equalization 
approach presented in [14]. As already noted in [14] sub-pixel 
displacements tend to be biased towards integer values, which 
can be observed from the histogram of sub-pixel 
displacements. Thus, the histogram equalization approach tries 
to distribute the sub-pixel values on the entire interval of 
displacements [-0.5, 0.5]. Due to the fact that the histogram is 
symmetric around 0, this solution considers the sub-pixel 
displacement as a random variable x in the range [0, 0.5] and 



estimates its probability density function as a linear function 
when the histogram of sub-pixel displacements was generated 
using symmetric “V” interpolation. The transformation 
function is then given by the cumulative distribution function 
of x. With this method, the obtained function for computing the 
sub-pixel displacement is the following: 

 (3) 

where 

 

 
(4) 

The histograms we obtained can be seen in Fig. 2 and a 
comparison between the effects the different sub-pixel 
estimation methods have on the reconstructed points will be 
presented in the Experimental results section. 

 
Fig. 2. Histograms of sub-pixel displacements obtained using parabola 

interpolation, symmetric “V” interpolation and histogram equalization 

C. 3D reconstruction 

The last step of the algorithm is represented by the 3D 
reconstruction operation. Because the images are rectified, we 
can use the well-known formulas for 3D reconstruction in a 
canonical configuration, which are widely available in 
literature [7]. 

Due to the fact that the mobile device is mounted on the 
dashboard in the car every time the application is used, a 
different pitch angle may be introduced every time the device’s 
position is adjusted. Thus, considering the fact that the points 
are reconstructed relative to the camera reference frame, they 
may appear tilted in the 3D space, as it can be seen in Fig. 4b. 
As a consequence, an auto-calibration of at least the pitch angle 
is necessary in order to rotate the points back to their correct 
position in the 3D space, as in Fig. 4c. 

Although the definition of a pitch is a rotation about the y-
axis, we call a pitch a rotation about the horizontal axis of the 
device, which is the x-axis.  

In order to apply the pitch correction on the 3D points, we 
first need to know the pitch angle α. For this we make use of 

the gravity sensor available on the mobile device. This sensor 
provides the force of gravity that is applied to the device on the 
x-, y- and z-axes, in m/s

2
. Because the rotation is performed 

about the x-axis, the pitch angle is computed as: 

 (5) 

where Gz and Gy are the components of the gravity on the z- 
and y-axis, respectively, as depicted in Fig. 3. Further, once we 
know the pitch angle, the new coordinates of the points are 
computed using the following formulas: 

 

 
(6) 

 

Fig. 3. The components of the gravity G on the y- and z-axes 

 

Fig. 4. a) The left image from the stereo-pair, acquired with a 10 degree pitch 

angle. b) Left view of the reconstructed 3D points, before applying the pitch 

angle correction. c) Left view of the reconstructed 3D points, after applying 
the pitch correction. 



III. OBSTACLE DETECTION 

Once we have a better sense about the location of object 
points in the 3D space, we can eliminate those points that are 
outside the vehicle’s trajectory, and we can also determine 
whether there is an obstacle on that trajectory. Our obstacle 
detection approach is using the histogram of point depths in the 
scene to determine at what distance the maximum 
agglomeration of points is located. Thus, the algorithm can be 
split in the following steps: vehicle trajectory estimation, 
building the histogram of depths and locating the obstacle. 
These steps will be described in more detail in what follows. 

A. Trajectory estimation 

Assuming that the vehicle is moving along a curvilinear 
path, in order to estimate its trajectory we need to know the 
radius of the curve on which it is moving. Thus, from the 
physics of circular motion we know that the car has a 
centripetal acceleration, whose formula is the following: 

 (7) 

where ac is the centripetal acceleration, vt is the velocity of the 
car and R is the radius of the curve on which the car is moving. 
Therefore, if we know the acceleration ac and the velocity vt, 
from (7) we can compute R.  

The velocity vt can be determined by using the GPS 
available on the mobile device. Along with the current location 
coordinates, the GPS also provides information about the 
moving speed in m/s. The velocity could also be taken from the 
vehicle’s CAN bus via Bluetooth. Beside the speed, the yaw-
rate of the vehicle can also be obtained from the CAN bus, 
which can be used in the computation of the radius R.  

In order to find out the acceleration ac, we can use the 
linear acceleration sensor of the device. This sensor provides 
the acceleration on the three axes (x, y, z) without taking into 
consideration the acceleration due to gravity (as opposed to the 
accelerometer which does not discard the gravity from its 
results). Due to the fact that the device is placed in the car, we 
know that the centrifugal force is acting on it. The centrifugal 
and centripetal forces and also their acceleration components 
are equal in magnitude, so we can approximate the centripetal 
acceleration that we need with the lateral acceleration applied 
on the x-axis of the device.  Once we know the radius R, we 
can select all the points that lay in a tunnel along the moving 
path by computing their distance towards the center of the 
curve.  

B. The histogram of point depths 

In order to simplify the histogram computation process, all 
the points on the curved path are unrolled along a straight line. 
We consider the vehicle to be positioned in the point 
V(0,0,0).Thus, for every point P(xp, yp, zp) in the tunnel, we 
compute the angle α determined by the center of the curve, the 
point P and the point V using the law of cosines in the PCV 
triangle, as depicted in Fig. 5 on the left. Then the length of the 
arc determined by V and the projection of P on the circle is 
computed as: 

 (8) 

Further, the new position of point P along the transformed 
straight path is computed as: 

P(xp, yp, zp) →P(-δ, yp, Lα) (9) 

 

Fig. 5. Unrolling the points in the tunnel along the path of the vehicle. The 
red continuous line is the curved trajectory of the vehicle. The blue dashed 

lines are delimiters for the tunnel in which obstacles are searched for. V is the 

vehicle, C is the center of the curve, P is a point in the tunnel.  

The histogram is then computed by using windows of 10 
cm in length along the straight trajectory of the car, and 
counting the points which lay in each window. Due to the fact 
that objects which are more far away have less corresponding 
reconstructed edge points, the histogram is normalized to 
compensate for this difference in the number of reconstructed 
points. Considering that most obstacles on the road are 
vehicles, the normalization function we use depends on the 
area of the projected object in the image: 

 (10) 

Thus, assuming that the sizes of the vehicles are somewhat 
constant, the area will depend on f2/Z2 and we can use the 
inverse of this coefficient to normalize the histogram.  

C. Obstacle detection 

In order to detect the obstacle on the road, we traverse the 
normalized histogram and search for the maximum 
agglomeration of points. Moreover, based on our observations 
from the Experimental results section which state that the 
dispersion of the points around the mean increases with the 
distance towards the object, we considered using an adaptive 
window in our search for the obstacle in the histogram. Thus, 
the size of the window depends on the distance at which we are 
currently searching, and a formula for computing the window 
size at every step is given by: 

 (11) 

where ∆d is the disparity error, Z is the distance, b is the 
baseline and f is the focal length of the cameras. We considered 
∆d to be 0.25.  

IV. EXPERIMENTAL RESULTS 

The application was tested on an LG V900 Optimus Pad 
device, which has an Nvidia Tegra 2 chipset including a dual-
core ARM Cortex A9 CPU. The baseline of the stereo camera 
system is 4.5 cm. 



In order to test the reconstruction accuracy of the system, 
we acquired a sequence of left-right pairs of images of a car 
located at measured distances in the range 2 m – 9 m. The 3D 
coordinates were computed in the left camera reference frame, 
and the mobile device was mounted horizontally using a laser 
level (to ensure alignment with the ground plane) and aligned 
with the test vehicle longitudinal axis. 

Firstly, we tested the depth estimation accuracy of our 
system when using different sub-pixel interpolation methods 
and we compared the effects they have on the reconstructed 
points. For this test we selected only the points that lay on the 
car and computed their mean and standard deviation on the z-
axis. The reconstruction results and the images used in our 
experiments can be seen in Fig. 6. 

In Table I the results obtained using parabola interpolation 
are presented. The results obtained using symmetric “V” and 
histogram equalization can be found in Tables II and III, 
respectively. When analyzing the mean of the reconstructed 
points, we observe that the chosen interpolation method does 
not affect it significantly. Up to a distance of 6 m the mean 
distance is accurately determined, at 7 m we have an error of 
only 30-40 cm, at 8 m the error is 50 cm and at 9 m the error 
increases to 1.3 m. 

The standard deviation of the reconstructed points describes 
how far away from the mean they are scattered. We noted in 
[15] that as the distance grows, the points are more spread out 
on the z-axis, as it can be seen in Fig. 6. 

 

 

 

 

TABLE I. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE 

384X216 AND THE PARABOLA SUB-PIXEL INTERPOLATION FUNCTION 

Measured 

distance (m) 

Mean 

(mm) 

Standard deviation 

(mm) 

Number of edge 

points 

2 2051 94 769 

3 2923 188 557 
4 3968 375 360 

5 4997 534 296 
6 5942 828 194 

7 6778 996 204 

8 7530 508 131 
9 7717 626 90 

TABLE II. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE 

384X216 AND THE SYMMETRIC “V” SUB-PIXEL INTERPOLATION FUNCTION 

Measured 

distance (m) 

Mean (mm) Standard 

deviation (mm) 

2 2042 88 

4 3997 415 

6 5913 779 

7 6694 927 

8 7536 692 
 

TABLE III. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE 

384X216 AND THE HISTOGRAM EQUALIZATION SUB-PIXEL INTERPOLATION 

Measured 
distance (m) 

Mean (mm) Standard 
deviation (mm) 

2 2035 85 

4 4017 444 

6 5879 761 
7 6603 877 

8 7522 791 

 

Fig. 6. Depth estimation results (top) and the corresponding 384x216-sized left image from the stereo-pair used for reconstruction (bottom): a) the car 

is at 2 m; b) the car is at 4 m; c) the car is at 6 m; d) the car is at 8 m. 

 



 From the tables we observe that when we use the 
symmetric “V” interpolation function we achieve an 
approximately 6% reduction of the points’ dispersion around 
the mean, while the histogram equalization method improves 
this percentage to about 9-10%. However, in some cases, the 
standard deviation of the points worsens, the 4 m case being 
such an example. 

The main causes for this dispersion of the points around the 
mean include the blurring introduced by the rectification step, 
as the final pixel intensity is obtained by interpolation, the 
limited accuracy of the sub-pixel interpolation (1/4 to 1/6 
pixels, as noted in [2]) and the small resolution of the images. 
Thus, a small sub-pixel error could lead to greater errors in 
depth estimation. 

For testing the obstacle detection algorithm, we acquired a 
sequence of images in traffic. The results we obtained can be 
seen in Fig. 10 and Fig. 9. In Fig. 10 the estimated trajectory of 
the vehicle is drawn with a yellow line, as it was moving along 
a curved road. In Fig. 9 the obstacle detection results are 
depicted, while also measuring the distance towards the 
detected object on the vehicle’s path.   

Concerning the performance of the application, we 
managed to achieve an average speed of 6.5 frames per second 
on 384x216 grayscale images when using a window of 7x7 in 
the stereo-matching function. Our solution for detecting the 
obstacle on the vehicle’s trajectory proved not to be time-
consuming, as it only reduces the processing speed to an 
average of 6 frames per second. Taking into account that recent 
smart mobile devices (including our test device) feature dual 
core processors, we performed an analysis of a potential multi-
threaded implementation. Due to the fact that the affinity of a 
thread cannot be set to a certain processor programmatically, 
and moreover, there are a number of other services running in 
the background, the average improvement in speed that can be 
obtained by splitting the processing on two threads is 
approximately 20%. 

 

Fig. 9. Obstacle detection 
results: the yellow rectangle 

marks the slice of the tunnel 

where the obstacle was 
detected:  

a) obstacle detected at 4 m;  

b) obstacle detected at 5.3 m;  
c) obstacle detected at 7.4 m. 

 

 

 

Fig.10. The estimated trajectory of the vehicle (the yellow line) while moving 
along a curved road 
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