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Abstract 
 

Several classifier combination approaches have 
been proposed in machine learning literature in order 
to enhance the performance of simple learning 
schemes. This paper presents a new classifier fusion 
system based on the principles of the Dempster-Shafer 
theory of evidence combination. The system tackles the 
advantages of combining different sources of 
information to attain a high degree of stability across 
different problem domains. The uncertainty evaluation 
provided by the Dempster-Shafer theory also 
contributes to achieving this stability. System 
evaluation has confirmed the assumptions related to 
stability and allows us to formulate a method of 
establishing the baseline accuracy for any problem 
domain. Thus, the choice of a specific learning scheme 
for a certain problem is justified only if it’s 
performance is better than that of the system proposed 
here. 

 
 

1 Introduction 
 
In the field of data mining, one of the main 

objectives is to achieve the highest possible 
classification accuracy. A classification algorithm used 
successfully with a specific set of features may not be 
appropriate with a different set of features. In addition, 
classification algorithms are different in their theories, 
and hence they achieve different degrees of success for 
different applications. These particularities have led to 
an increasing interest towards trying to combine the 
predictions of several algorithms, in order to obtain a 
scheme that performs well in several different areas. 

The combination approach tries to overcome 
several drawbacks related to algorithms which use a 
single hypothesis: the statistical problem, the 
computational problem and the representation 
problem.  

The statistical problem, or high variance, arises 
when the hypothesis space is too large for the available 
training data. When this occurs, the learning algorithm 
may be forced to choose as output one of several 
hypotheses that achieved the same accuracy on the 
training data. However, there is a risk it will fail to 
choose the best one, therefore compromising future 
predictions. A simple and elegant solution is provided 
by the use of ensemble learning methods: a vote from 
all equally good classifiers can reduce the risk. 

The computational problem, or computational 
variance, occurs when the learning algorithm cannot 
guarantee to find the best hypothesis within the 
computational space. Such issues may appear when 
heuristic methods need to be used to address the 
computational complexity of the search problem (such 
as for decision trees, or artificial neural networks).  A 
weighted combination of several local minima can 
reduce the risk of choosing the wrong output. 

The representation problem, or high bias, arises 
when none of the hypotheses in the search space is a 
good enough approximation of the truth. In this case,  
a weighted sum of hypothesis can form a more 
accurate approximation. 

While ensemble methods can reduce both the bias 
and the variance of learning algorithms, they do not 
solve the problem of failing to choose a classifier that 
will perform best. In addition, there is also a problem 
of establishing a lower bound to the accuracy on a 
certain problem. This is one of the issues tackled in 
this paper. 

There are two main approaches to combining 
classifiers: ensemble methods and fusion methods. 
Ensemble methods combine several hypotheses 
obtained by the same base learner, and fusion methods 
are based on the data fusion principles. 

The ensemble methods run a specific learning 
algorithm (single classifier) multiple times on the same 
dataset and form a hypothesis at each run. There are 
several ways to obtain the set of hypotheses. The most 
prominent are Breiman’s Bagging and Schapire’s 
Boosting. Bagging (Bootstrap Aggregating) [1] 



constructs each hypothesis independently, by 
providing a different training set to each individual 
learner. The resulting group of hypotheses contains 
members that are accurate enough, and yet diverse 
enough, such that the accuracy of the ensemble is 
higher than the accuracy of any individual. A second 
method for constructing ensembles is Boosting [2]. In 
this additive approach, the set of hypotheses is 
obtained during several boosting phases. Each distinct 
model is built through the same learning mechanism, 
by varying the distribution of examples in the training 
set. After each boosting phase, the weights of the 
misclassified examples are increased, while those of 
the correctly classified examples are decreased. 

A second approach to combining classifiers is 
represented by the classifier fusion techniques based 
on the data fusion principles. Data fusion allows a 
more informed decision about a particular 
phenomenon by extracting complementary pieces of 
information from different sources. 

As different classifiers may offer complementary 
information about the features to be classified, 
combining classifiers in an efficient way can yield 
better classification results. The combination may or 
may not perform better than the best classifier in the 
system, but it certainly reduces the overall risk of 
making a particularly poor selection. 

One of the noticeable differences between classifier 
fusion methods and ensemble learning methods is the 
training set. While ensemble learning uses classifiers 
that have been trained on different sampling of the 
original dataset, the data fusion technique can use data 
obtained from different sources.   

Several classifier fusion approaches have been 
proposed for this purpose, including combining 
classifiers using ARTMAP [8], Learn++ [9], genetic 
algorithms [3] and other combinations of 
boosting/voting methods. 

This paper presents a new system based on a new 
classifier combination methodology, which uses the 
advantages of the Dempster-Shafer theory of evidence. 
The Dempster-Shafer theory is a powerful method for 
combining evidence from different classifiers. 

The classifier combination technique has been 
successfully applied in multi-sensor data fusion for 
domains like threat analysis in computer security [4], 
satellite image classification, colour image 
segmentation, etc. [5]. 

The system is intended to provide a reference 
accuracy value when choosing a classifier for any 
specific dataset. Due to the advantages provided by the 
fusion technique, the risk is minimized and the 
accuracy obtained by applying the combined classifier 
on any data is surely among the highest possible. Thus, 

the choice of a classifier on a specific dataset is 
justified only if the classifier shows higher accuracy 
than the combined classifier on that particular dataset.  

A powerful argument in choosing the combination 
method proposed by the Dempster-Shafer theory is 
that it takes into consideration uncertainty. Ensemble 
methods treat uncertainty as failure to classify an 
instance. The uncertainty of a classifier involved in a 
Dempster-Shafer combination scheme doesn’t qualify 
as misclassification, but demands for a more detailed 
investigation.  

The rest of the paper if organized as follows: 
Section 2 is an overview on the Dempster-Shafer 
theory and the belief combination technique. Section 3 
proposes a new system based on the formal model for 
the classifier combination methodology following the 
Dempster-Shafer theory. Section 4 is a description of 
the experimental setup, the datasets used in testing the 
system and the results obtained. Also, this section 
presents a comparison between our system and 
ensemble learning methods. Section 5 summarizes the 
results, draws the  conclusions and notes the directions 
for future work in this area. 
 
2 The Dempster-Shafer Theory  
 

The Dempster-Shafer Theory (DST) is a 
mathematical theory of evidence, based on belief 
functions and plausible reasoning. Its main feature is 
that it combines several pieces of information in order 
to compute the probability of an event. Initial efforts 
for developing the theory were made by A. Dempster 
(1967), but the theory was completed by the seminal 
work performed by G. Shafer (1976) [10]. 

In a finite discrete space, DST can be interpreted as 
a generalization of the probability theory, where 
probabilities are assigned to sets, as opposed to 
mutually exclusive singletons (in probability theory, 
evidence is associated with only one possible event, 
while in DST evidence can be associated with sets of 
events). DST becomes the classical probability theory 
when there is enough evidence to allow the assignment 
of probabilities to individual events. 

Maybe the most important feature of DST is that 
the model is designed to handle varying levels of 
information precision, without having to make any 
assumptions about how that information is “divided” 
further down. Moreover, it allows for directly 
representing the uncertainty of system responses: the 
imprecise input can be modeled by a set or an interval, 
and the output is a set or an interval. 

 
 



2.1 Basic concepts 
 

There are several basic concepts related to DST: a 
set, called the frame of discernment, and the following 
functions: basic probability assignment (bpa or m), 
belief function (Bel), commonality function (Q), doubt 
function (Dou), plausibility function, or upper 
probability function (Pla). 

Frame of discernment 
Also known as the universe of discourse, the frame 

of discernment θ is a set of mutually exclusive and 
exhaustive possibilities in a domain. If we take for 
example the roll of a dice, θ = {1, 2, 3, 4, 5, 6}. The 
elements of 2θ form the class of general propositions in 
the domain (just like in classical probability theory). 
The difference from the probability theory can be 
found in the fact that we may not know the probability 
assignments for all the elements in θ, and still be able 
to reason, without needing to assign probabilities to 
them using the principle of insufficient reasoning. 

Basic probability assignment 
Definition. A function m : 2θ → [0, 1] is called a 

basic probability assignment if it satisfies: 
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The quantity m(A) is defined as A’s basic 

probability number, and it represents the proportion of 
all relevant and available evidence that supports the 
claim that a particular element of  θ belongs to set A, 
but to no particular subset of A. The value m(A) is 
relevant only to the set A, and makes no additional 
claims about any subset of A. Any further evidence on 
the subsets of A would be represented by another bpa, 
i.e. m(B) would be the bpa for B, B  A. ⊂

Some researchers have found it useful to interpret 
the bpa as a classical probability. Although this 
interpretation has proven to be useful, it does not cover 
the full scope of the representational power of the bpa. 

Belief function 
Definition. A function Bel : 2θ → [0, 1]  is called a 

belief function if it satisfies: 
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A belief function assigns to each subset of θ a 
measure of our total belief in the proposition 
represented by the subset.  

 One, and only one bpa corresponds to each belief 
function. The relation is symmetric. They are related 
by the following two formulae: 
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Thus, a belief function and a basic probability 

assignment convey exactly the same information.  

Commonality function 
Definition. A function Q : 2θ → [0, 1] is called a 

commonality function, if there is a basic probability 
assignment, such that: 
 

∑
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If Q is a commonality function, then the function 

defined by 
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is a belief function. From this belief function, the basic 
probability assignment can be recovered using (2). If it 
is substituted in (3), the original Q results. 

Therefore, the sets of belief functions, basic 
probability assignments, and commonality functions 
are in one-to-one correspondence, and each 
representation conveys the same information as any of 
the others. 

Doubt function 
Definition. Given a belief function Bel, the doubt 

function is defined by: 
 

)()( ABelADou ¬=     

Plausibility function 
Definition. Given a belief function Bel, the upper 

probability function, or the plausibility function is 
defined by: 

 
Pla (A) = 1 − Dou(A)  



This expresses how much we should believe in A, 
if all currently unknown facts were to support A. 
Therefore, the true belief in A will be somewhere in 
the interval [Bel(A), Pla(A)] . 
 
2.2 The combination rule 
 

Consider two basic probability assignments m1(.) 
and m2(.) for belief functions Bel1(.) and Bel2(.), 
respectively.  

Let Aj and BBk  be focal elements of Bel1 and Bel2, 
respectively. Then m1(.) and m2(.) can be combined to 
obtain the belief mass committed to C, where C is a set 
of all subsets produced by A ∩ B, to the following 
combination or orthogonal sum formula (Shafer, 
1976): 
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The denominator is a normalizing factor, which 
intuitively measures how much m1(.) and m2(.) are 
conflicting. 
 
2.3 Combining several belief functions  
 

The combination rule can be easily extended to 
several belief functions by adding new beliefs in 
cascade. Thus, the pair wise orthogonal sum of n belief 
functions Bel1, Bel2,…, Beln, can be formed as: 
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3 The System 
 

The system we propose uses the Dempster-Shafer 
theory of belief to obtain the fusion of three classifiers: 
the Naïve Bayes classifier, k-Nearest Neighbour 
(kNN) and the decision tree learner.  

There are three main steps in designing the system, 
namely belief extraction from the three classifiers, 
uncertainty computation, and belief combination. 

 
3.1 Extracting beliefs from classifier outputs 

 
This step is done by taking into consideration the 

nature of each classifier. Therefore, the following 
approaches have been used: 

1) For the Bayesian classifier, basic belief 
evaluation is done using the posterior probability 
function. 

2) For k-Nearest Neighbour, a distance function is 
used to evaluate basic beliefs. 

We have evaluated the distance by: 
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Thus, the belief mass of a class is the average of 

all such distance measures voting for that class. Belief 
masses for the classes are then normalized, such that 
 

∑
=

=
K

i

im
1

1)( ,   where K is the number of 

classes 
 

3) For the decision tree, the confidence is the 
measure for evaluating beliefs. 

 
The output of a decision tree learner is a decision 

tree. Association rules can be extracted from this tree, 
of the type A → B. In addition, an association rule has 
support and confidence associated with it. 

 

recordsofnumberTotal
BandAwithrecordsofNumberSupport = , 

 
where the numerator indicates the number of records 
with A and B both true. 

 

AwithrecordsofnumberTotal
BandAwithrecordsofNumberConfidence =  

 
The confidence can also be written as 
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where P (A ∩ B) is the probability of A ∩ B. 
 

In our context, the classification process P (A ∩ B)  
forms the probability of the occurrence of feature 
values with a given class. Here A indicates a feature 
value vector, and B indicates a class. 



However,  
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If we observe that 
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we note that the confidence can be used to form basic 
beliefs of the decision tree classifier. 
 
3.2 Computing uncertainty for the classifiers 
 

The closer the values of beliefs for K classes to 
each other, the more uncertain the classifier is about its 
decision. As the beliefs start spreading apart, the 
uncertainty starts to decrease.  

The idea behind the uncertainty evaluation is if the 
number of classes is K, then the distance between the 
belief value and the value 1/K is evaluated. The 
ambiguity involved in the classifying decision is higher 
if two classes show very similar beliefs. 

Uncertainty is computed using the formula: 
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The belief is then calculated as 
 

Bel(i) = α m(i) 
 

and the uncertainty is expressed as  
 

Bel(θ) = β H(U). 
 

Previous studies [7] have shown that the predictions 
of the Bayesian classifier are biased towards the class 
having larger prior sample probability. In these cases, 
the uncertainty has to be calculated using a different 
expression. 

Let p1 be the prior sample probability of the class 
with maximum belief and p2 be the prior sample 
probability of the class with the second highest belief. 

If p1 > p2 , then the uncertainty is evaluated using 
the following expression: 

H(U) = 0.35 2

1

p
p

e  
 

The value 0.35 is the ratio of failures when highest 
belief has more prior class probability than the next 
highest belief to the total number of failures. This ratio 
indicates the percentage of uncertainty introduced in 
Bayesian classification due to such typical cases. 
 
 

3.3 Combining evidence  
 

The last step consists in combining the belief and 
the uncertainty obtained in the previous steps, such as 
to arrive at the final decision. 

Let the combined belief mass be assigned to Ck, 
where Ck is a set of all subsets produced by A∩B. The 
mathematical representation of the combination rule is 
as follows: 
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In our implementation, the Bayesian classifier is 

first combined with the kNN classifier, then the 
resulting classifier is combined with the decision tree 
learner. The combination takes advantage of the fact 
that one classifier may be more accurate in handling 
records corresponding to a certain class than the other.  

Thus after combination the overall classification 
becomes more accurate. 
 
4 Experimental work 
 

Based on the model we proposed in section 3, we 
have implemented a new system that is intended to 
provide a reference accuracy value in choosing a 
classifier for any specific dataset especially if the 
dataset has not been previously tested. 

We have implemented the system using as 
framework Weka [6]. 

The system has been tested on four datasets having 
different features and from different domains. The 
chosen datasets represent well known benchmarks and 
are available at the UCI Machine Learning Repository.  

The implementation considers three different 
categories of classifiers. The decision tree learner was 
represented by the implementation of the C4.5 
algorithm found in Weka, J4.8. For the kNN classifier, 
k was set to three, as in [7].   

Testing was carried out on all the datasets for each 
of the three classifiers separately, then the combined 
classifier was tested on the datasets. The datasets have 
been randomly split into train set and test set, in a 
proportion of 80% for training and 20% for testing. 

For a better validation of the system, comparisons 
with ensemble learning methods have been carried out. 
The algorithms tested are AdaBoost and bagging in 
combination with the three classifiers involved in the 
evaluation. 



To ensure the accuracy of the test results, we have 
performed runs on 100 different splits of a dataset for 
each classifier and the averaging was then computed.  

The combined classifier was expected to show a 
better accuracy than the average of the three classifiers 
separately. Also due to the theoretical advantages of 
the approach, the combined classifier was expected to 
show robustness, despite any possible single classifier 
accuracy gaps between different datasets. 

The datasets are presented in Table 1. 
 

Table1: Dataset features 
 

Dataset Number of 
instances 

Number 
of 

attributes 

Number 
of classes 

Cars 1728 6 4 
Cleveland 303 13 5 
Pima  768 8 2 
Wisconsin 699 9 2 
 
The test results obtained by the three classifiers are 

presented in Table 2. The individual classifiers are not 
stable with respect to the datasets. While Naïve Bayes 
seems to classify the instances in the Wisconsin dataset 
most accurately, it performs poorly on the Cars dataset, 
where it produces the lowest accuracy among the three 
classifiers. Similar remarks can be done for the other 
two classifiers. 

 
Table 2: Individual classifiers accuracy rates 

 
Dataset Bayes kNN J4.8 

Cars 85.43% 92.30% 91.50% 
Cleveland 55.73% 56.91% 52.60% 
Pima  75.44% 73.38% 73.88% 
Wisconsin  96.24% 95.35% 94.41% 

 
Another remark is related to the fact that the 

differences in accuracy between the three classifiers 
are high especially in the case of Cars datasets, which 
proves the high value of the risk involved in choosing 
a certain classifier for a certain dataset. 

 
Table 3: Comparison between the accuracy of the 
combined classifier and the average accuracy of 

the three classifiers 
 

Dataset Average DST combined classifier 
Cars 89.74% 91.55% 
Cleveland 55.08% 55.81% 
Pima  74.23% 74.85% 
Wisconsin 95.33% 96.16% 

As Table 3 shows, the combined classifier is more 
accurate than the average of the three classifiers. Even 
if there is a classifier that performs better than the 
combined classifier on a certain dataset, the same 
classifier will perform poorly on other datasets. For 
example, in the case of the Wisconsin dataset, the 
Bayesian classifier yields highest accuracy, while on 
the Cars dataset it achieves the poorest performance 
among the three classifiers. These results are in strong 
connection with the “No Free Lunch” theorem. 

Results obtained with bagging and boosting for the 
three classifiers are shown in tables 4 and 5, 
respectively. 

 
Table 4: Accuracy rates for bagging 

 
Dataset Bagging 

+Bayes 
Bagging 
+kNN 

Bagging 
+J4.8 

Cars 85.14% 93.10% 92.71% 
Cleveland 55.91% 58.01% 54.26% 
Pima  75.38% 73.48% 75.11% 
Wisconsin  97.40% 95.61% 95.33% 

 
Table 5: Accuracy rates for boosting 

 
Dataset Boosting 

+Bayes 
Boosting 

+kNN 
Boosting 

+J4.8 
Cars 90.35% 92.30% 95.21% 
Cleveland 55.73% 53.55% 53.18% 
Pima  75.61% 73.33% 72.31% 
Wisconsin  95.68% 95.23% 96.24% 

 
Table 6: Comparison between the accuracy of the 
combined classifier and the accuracy of ensemble 

learning methods 
 

Dataset Bagging Boosting Combined 
classifier 

Cars 90.32% 92.62% 91.55% 
Cleveland 56.06% 54.15% 55.81% 
Pima  74.66% 73.75% 74.85% 
Wisconsin 96.11% 95.72% 96.16% 

 
It can be observed that even though the ensemble 

learning methods improve the accuracy, the problem of 
differences between the classifiers’ predictions on a 
dataset still persists, especially in the case of bagging. 
The same observation applies for the problem of a 
classifier being the best predictor in one case and the 
worst on another dataset. 

A comparison with bagging and boosting has been 
conducted, and the results are shown in Table 6: 



The combined classifier outperforms Bagging on 
three datasets and Boosting other three datasets, being 
slightly less accurate than one of the three classifiers 
on one dataset. This proves yet again the risk 
minimization displayed by the combined classifier. 

Starting from the results obtained we can formulate 
that the new system can be used to establish the 
baseline accuracy for a certain dataset, and help 
evaluate how well a specific classifier performs on that 
problem.  

The following chart on Wisconsin datasets 
illustrates the idea of reference system: 
 

 
Figure 1: Overview on Baseline Accuracy 

Determination on Wisconsin Dataset 
 

As the chart shows, among the 12 classifiers and 
average accuracy considered, only two can outperform 
the combined classifier: Bagging with Bayesian 
classifier and Boosting with Decision Tree classifier 
and the improvement is not always significant enough. 
Moreover, there is no guarantee that the same 
combination will perform equally well on another 
dataset, and the tests have proven exactly this –and the 
figure below illustrates the idea: 
 

 
Figure 2: Overview on Baseline Accuracy 

Determination on Pima Dataset 
 
 

From here the necessity of a reference high accuracy, a 
system that is stable with respect to any dataset, and 
the tested system has proven to be exactly that. 
 
5 Conclusions  

 
This paper presents a new system based on the 

classifier fusion technique proposed by the Dempster-
Shafer theory. The starting point was represented by 
existing problems exhibited by individual classifiers 
when applied to different datasets. According to the 
“No Free Lunch” theorem, some classifiers may 
perform better on a certain dataset, but obtain 
disastrous results on a different dataset. Additional 
problems related to single classifiers include variance 
and bias.  

In order to address the problems related to single 
learning schemes, methods of combination have been 
introduced in the machine learning community, the 
most prominent being ensemble approaches and 
classifier fusion. The latter was preferred due to its 
ability to offer a robust behaviour over several 
different datasets. This is a direct consequence of its 
capability of considering data coming from different 
sources. Another advantage of the Dempster-Shafer 
theory is that it considers uncertainty. 

The new system was evaluated on several classical 
benchmarks, and its performance was compared to that 
of its component classifiers. We expected that the 
system perform better than the average of the single 
classifiers involved in the combination. In addition, 
comparative evaluations have been carried out with 
ensemble learning methods (bagging and boosting) in 
order to emphasize the advantages of the chosen 
methodology. 

The results obtained have confirmed our 
expectations, the system’s accuracy on all datasets 
being higher than the average of the three individual 
classifiers. Also, better accuracy has been observed in 
most of the cases when the system was compared with 
ensemble learning methods. Starting from the results 
obtained we can formulate that the new system can be 
used to establish the baseline accuracy for a certain 
problem, and help evaluate how well a specific 
classifier performs on that problem. 

As further work we are considering testing the 
system with different data sources as inputs for the 
three classifier components. This would be possible 
due to the data fusion approach. 
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