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Cancer is the second most threatening disease in the world today, not only because of 
its mortality rate, but also due to the brutal changes it imposes on the patient’s life, 
and the fact that its exact causes of progression remain to be discovered. Prostate 
cancer is the second cause of cancer-related deaths in men in the USA – representing 
a hazard especially for African-American men over the age of 50. Recent evolution in 
computer technology has resulted in the emergence of a combined approach to the 
diagnosis and prognosis process, with a data driven analytical approach 
complementing biomedical and clinical methods. Cost sensitive learning is one such 
data mining method, particularly well suited for medical problems. This paper 
investigates the performance of a new system based on a hybrid cost-sensitive 
algorithm (ProICET) on a prostate cancer medical dataset, while trying to produce new 
medical knowledge. 
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1. Introduction

Recent statistics show that cancer has become one of the most serious threats to human life 
nowadays, being the second cause of death in the USA in 2004. The American Cancer 
Society estimates that prostate cancer in particular will be responsible for 9% of the total 
cancer-related deaths in men in 2007 [1]. 
A cancer diagnosis has obviously a huge impact on human life, affecting especially the 
patient’s emotional state, but also his/her lifestyle and life expectations. Therefore it is natural 
that patients wish to know their prognosis and understand what they are dealing with in terms 
of treatment, quality of life, or finances. Research in the biological and clinical methods for 
cancer diagnosis and prognosis has lead to a better understanding of the likely course and 
outcome of this disease. Still, despite the boost in biomedical technology, the accuracy of 
diagnosis and prognosis is, in many cases, rather low, mainly because of the negative 
influence of factors like the physician’s experience, intuition and biases, or the large amount 
of data to be analyzed.
In this context, machine learning can be used to automatically infer diagnostic rules from 
descriptions of past, successfully treated patients, and help specialists make the diagnostic 
process more objective and more reliable. Records of previous patients are gathered into 
hospital archives and can be made available through machine learning techniques; the 
classifier derived from this data provides support for future diagnosis and treatment and can 
help improve the physician’s speed, accuracy and reliability in establishing a new diagnosis.
Moreover, thanks to the large variety of available machine learning mechanisms, and the 
possibility to store and process large amounts of data, new associations and 
interdependencies can be discovered, leading to new medical research directions and 
suggestions for new approaches to the diagnosis process.
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1.1.Prostate Cancer

Prostate cancer occurs when cells of the prostate (gland in the male reproductive system) 
mutate and begin to multiply out of control, spreading to other parts of the body (bones and 
lymph nodes mainly). Symptoms include pain, difficulty in urinating, erectile dysfunction, and 
many others.
Physical examination and PSA (Prostate Specific Antigen) blood tests are crucial for early 
diagnosis of the disease. Confirmation is received upon performing a biopsy of the prostate 
tissue. Further investigations, such as X-rays and bone scans, may be performed to 
determine the degree of spread.
There are several possible treatments for prostate cancer, such as: surgery, radiation 
therapy, chemotherapy, hormone therapy, or a combination of these – depending on the 
extent of spread of the disease, age and general state of health, and so on.
Just like with any other cancer type, the exact causes that trigger the metastasis remain 
unidentified. There are still some factors that are known to influence the evolution of the 
disease, such as: age (the risk increases quickly after the age of 60), race (African-American
people are more susceptible to developing metastasis), genetics and diet (a diet rich in 
animal fats is very dangerous). 

1.2. Medical Data Mining

Medical data mining is considered to be one of the most challenging areas of application in 
knowledge discovery. Main difficulties are related to the complex nature of data 
(heterogeneous, hierarchical, time series), or to its quality (possibly many missing values) 
and quantity. Domain knowledge or ethical and social issues are also of great importance. [2]
But maybe the most important particularity of medical data mining problems is the concept of 
cost, which is addressed by cost-sensitive classification (to be discussed in the next section).
When mining a medical problem, the concept of cost interferes in several key points. First of 
all, a doctor must always consider the potential consequences of a misdiagnosis. In this field, 
misclassification costs may not have a direct monetary quantification, but they represent a 
more general measure of the impact each particular misclassification may have on human 
life. These costs are non-uniform (diagnosing a sick patient as healthy carries a higher cost 
than diagnosing a healthy patient as sick). Another particularity of the medical diagnosis 
problem is that medical tests are usually costly. Moreover, collecting test results may be 
time-consuming. Arguably, time may not be a real cost, but it does have some implication for 
the decision whether it is practical to take a certain test or not. In the real case, performing all 
possible tests in advance is unfeasible and only a relevant subset should be selected. The 
decision on performing or not a certain test should be based on the relation between its cost 
and potential benefits. When the cost of a test exceeds the penalty for a misclassification, 
further testing is no longer economically justified.

1.3. Cost Sensitive Learning

Recent studies [3], [4] suggest that more complex measures for evaluating the adequacy of 
classifiers should be considered, rather than the classical error reduction strategy. For 
example, non-uniform costs are inherent in fields such as medical diagnosis (classifying a 
healthy patient as ill is far less expensive than the reverse situation), or fraud detection. Such 
problems are addressed by cost-sensitive classification, which is directed towards the 
reduction of the total cost, instead of just minimizing the number of misclassification errors.
Turney [3] provides a general taxonomy of costs involved in inductive concept learning, the 
most important of which being misclassification costs and test costs. The first category 
encompasses the costs which are conventionally considered by most cost-sensitive 
classifiers; however, several solutions address the second category also. A brief survey of 



the most important cost-sensitive classifiers, as described in the literature, is provided in the 
following.
Chronologically one of the first solutions for the problem of reducing the total 
misclassification cost was a procedure called stratification. In this approach, the actual 
classifier is not altered in any way; instead, the distribution of examples for each class is 
changed, either by undersampling or by oversampling. The main drawback of this technique 
is that it restricts the form and dimension of the cost matrix (it is only appropriate for two-
class problems or problems where the cost is independent of the predicted class).
More complex techniques, which overcome these limitations, usually involve meta-learning 
algorithms that are typically applicable to a range of base classifiers. In this category we 
include algorithms based on various ensemble methods, such as AdaBoost.M1 [5], AdaCost 
[6], or MetaCost [7].
Several approaches exist also for tackling the problem of test costs. They usually involve 
some alteration of the information gain function, as to make it cost-sensitive. Various cost 
dependent functions have been proposed in the literature, such as EG2, IDX or CS-ID3 [4].
Significantly less work has been done for aggregating both cost components. The most 
prominent approach in the literature is ICET, which combines a greedy search heuristic 
(decision tree) with a genetic search algorithm. Other possible solutions are explored in [8], 
[9] and [10].
As shown in section 1.2, medical diagnosis is one field in which such an aggregated 
approach is of utmost importance.

2. The Basic ICET Algorithm

As most greedy techniques, classical tree induction suffers from the horizon effect (it tends to 
get caught at local optima). One possibility to avoid this pitfall is to perform a heuristic search 
in the space of possible decision trees through evolutionary mechanisms.
One of the most prominent algorithms that explore this idea is ICET (Inexpensive 
Classification with Expensive Tests). Introduced by Peter Turney, the technique tackles the 
problem of cost-sensitive classification by combining a greedy search heuristic (decision 
tree) with a genetic algorithm [4].
ICET begins with the genetic algorithm (GA) generating randomly a set of individuals (the 
initial population), each individual corresponding to one decision tree. The fitness value of 
each individual is evaluated in the decision tree component (to be described shortly). Then, 
for a specific number of iterations, new individuals are evolved, by applying standard 
mutation and crossover operators, and their fitness is computed. After the last iteration, the 
fittest individual is returned – its biases are used to train the output classifier.
The genetic algorithm used in [4] is GENESIS, and the decision tree algorithm is a modified 
version of Quinlan’s C4.5 [11], which uses ICF (Information Cost Function) as attribute 
selection function, same as in EG2. For the ith attribute, ICF may be defined as follows:

10,
)1(

2







wwhere
C

ICF
w

i

I

i

i

(1)

The formula above shows that, when building a decision tree, the attribute selection criterion 
is no longer based solely on the attribute’s contribution to obtaining a pure split (the 
information gain ΔIi), but also on its cost, Ci. For example, when choosing between two 
attributes which have the same value for the information gain, the attribute with the lower 
cost will be preferred. Parameter w adjusts the strength of the bias towards lower cost 
attributes. When w = 0, the cost of the attribute is ignored, and selection by ICF is equivalent 
to selection by the information gain function; when w = 1, ICF is strongly biased by the cost 
component.
An important remark is that, unlike EG2, ICET does not minimize test costs directly. Instead, 
it uses ICF for the codification of the individuals in the population. The n costs, Ci, are not 



true costs, but bias parameters. They provide enough variation to prevent the decision tree 
learner from getting trapped in a local optimum, by overrating/ underrating the cost of certain 
tests based on past trials’ performance. However, it is possible to use true costs, when 
generating the initial population, which has been shown to lead to some increase in 
performance.
Each individual (decision tree) is represented as a Gray encoded bit string, corresponding to
n + 2 numbers. The first n numbers are the bias parameters (’alleged’ test costs in the ICF 
function). The last two stand for the algorithm’s parameters CF and w; the first controls the 
level of pruning (as defined for C4.5), while w is needed by ICF.
The fitness function for an individual is computed as the average cost of classification of the 
corresponding tree (obtained by randomly dividing the training set in two subsets, the first 
used for the actual tree induction and the second for error estimation). The average cost of 
classification is obtained by normalizing the total costs (obtained by summing the test and 
misclassification costs) to the training set size. 
Test costs are specified as attribute - cost value pairs. The classification costs are defined by 
a cost matrix (Cij)nxn, where Cij is the cost of misclassifying an instance of class j as being of 
class i. If the same attribute is tested twice along the path (numeric attribute), the second 
time its cost is 0.

2.1. ProICET – New System Based on ICET

We have implemented the theoretical model presented above as a new system – ProICET. 
As a starting point we used the implementation of the C4.5 algorithm, revision 8, provided by 
Weka (referred to as J4.8), and a general-purpose genetic algorithms library called GGAT
(General Genetic Algorithm Tool), both written in Java.
Some enhancements have been considered in the genetic component, mainly in what the 
genetic parameters are concerned. For each individual, the n + 2 chromosomes have been
defined (n being the number of attributes in the data set, while the other two correspond to 
parameters w and CF); each chromosome is represented as a 14 bits binary string, encoded 
in Gray. The population size is 50 individuals. The roulette wheel technique was used for 
parent selection; as recombination techniques, we have employed single point random 
mutation with mutation rate 0.2, and multipoint crossover, with 4 randomly select crossover 
points. 
The most important changes are the use of elitism and the single population technique, 
which allow exceptional individuals to propagate unaltered to future generations. Also, we 
used the fitness ranking method to compare the individuals’ strengths, in order to avoid the 
situation when only a few elements, which are by far stronger than the rest, have very high 
probability of being used as parents (thus reducing the search variability).
The number of evaluation steps has also been increased to 1000. Due to the fact that a new 
generation is evolved using single population, the final result yielded by the procedure is the 
best individual over the entire run, which makes the decision on when to stop the evolution 
less critical. More than that, experiments show that usually the best individual does not 
change significantly after 800 steps.

3. Experiments

In [12], the objective was to validate the soundness of ProICET when compared to several 
other well known cost-sensitive algorithms (MetaCost, EG2), as well as the best classical 
decision tree learner (C4.5) and AdaBoost. Therefore, a comparative analysis of the 
misclassification cost component was provided on several benchmark medical datasets, and 
also an analysis of the behaviour of the algorithm in real-world conditions, with both test and 
misclassification costs. In evaluating the results we observed that ProICET yielded lower 
costs than the other algorithms. Also, it achieved very high accuracy rates on reasonably 



sized to large datasets (94% on Wisconsin Breast Cancer, consisting of 699 instances, 99% 
on Thyroid, 7200 instances).
Hence, the strategy of enhancing decision tree induction with evolutionary means has proved
to be beneficial. This is shown by the comparison of the cost values obtained with ProICET
and those with EG2 alone (with no genetic component), as well as by the relative comparison 
with other well-known systems [12].
The objective of this paper is to evaluate the system on a real prostate cancer dataset. The 
main goals are to verify that it maintains its behaviour in this real-world medical problem, 
yielding low costs while maintaining a high precision rate. A second direction of investigation 
involves ranking the predictor attributes, such as to try and match results obtained by our 
system with medical staff assumptions. 
The dataset was provided by the Medicine and Pharmacy University of Cluj-Napoca. During 
the discussions with the medical team, a set of major/immediate interest parameters were 
defined. Consequently, data cleaning was performed and the final version of the dataset for 
the current investigation stage was obtained.The attributes employed can be seen in Table 1.
Since the algorithm involves a large heuristic component, the evaluation procedure assumes 
averaging the costs over 10 runs. Each run uses a pair of randomly generated training-
testing sets, in the proportion 70% - 30%; the same proportion is used when separating the 
training set into a component used for training and one for evaluating each individual (in the 
fitness function). We used two different values for the test costs – 0 and 0.1 – and four 
different cost matrices (built such as to emphasize the unbalance in different errors’ severity). 
This resulted in eight different batches.

Table 1 – Prostate cancer dataset

Attribute Range

One (TNM) Symbolic (1a, 1b, 1c, 2a, 2b, 3a, 3b )
Two (Gleason Score) Numeric (2-10)

Three (Presence on Median Intravesical 
Lobe)

Symbolic (not present in the ultrasound, 
voluminous, intravesical)

Four (Prostate Volume) Numeric

Five (Preoperative PSA) Numeric (ng/ml)

Six (IIEF - International Index of Erectile 
Function)

Numeric

Seven (Quality of Life) Numeric (0-2)

Eight (Surgery Type) Symbolic (TP, EP)

Nine (Operative Technique) Symbolic (Ante Grade, Retro Grade, Bipolar)
Ten (Nerve Sparing) Symbolic (Non, NS Left, NS Right)

Eleven (Bleeding) Numeric (minutes)

Twelve (Anastomosis) Symbolic (Continuous, Separate, Van Velt)
Thirteen (Operative Time) Numeric (minutes)

Fourteen (Postoperative Hospitalization) Numeric (days)
Fifteen (Complications) Boolean

Class (Postoperative PSA) Symbolic (low: PSA < 0.1, medium: 
PSA  [0.1, 1], high: PSA > 1)

The cost matrices are shown in tables 2-5 (AC – Actual Class, PC – Predicted Class). The 
main idea in building them was to capture the different cost of errors as well as possible, 
while keeping a reasonable ratio between them.
The results for the eight different batches are presented in Table 6. We observe that, when 
both types of costs are considered, ProICET yields the lowest total costs, which proves once 
again it is the best approach for cost reduction in medical problems. 



Table 2 – Cost matrix 1

           PC
AC

low medium High

low 0.0 0.5 1.0

medium 1.5 0.0 0.7

high 5.0 3.0 0.0

Table 3 – Cost matrix 2

           PC
AC

low medium High

low 0.0 0.5 1.0

medium 3.0 0.0 0.7

high 10.0 6.0 0.0

Table 4 – Cost matrix 3

           PC
AC

low medium high

low 0.0 0.5 1.0

medium 0.75 0.0 0.7

high 2.5 1.5 0.0

Table 5 – Cost matrix 4

           PC
AC

low medium high

low 0.0 0.5 1.0

medium 3.0 0.0 0.5

High 5.0 3.0 0.0

Table 6 – Total costs and accuracy rate
(TC – value of Test Costs; CM – Cost Matrix)

Average Accuracy Rate Average Total Cost
Medical
Dataset Pro 

ICET
Ada

Boost
EG2 J4.8 Meta 

Cost
Pro 

ICET
Ada 

Boost
EG2 J4.8 Meta

Cost

TC:0,TM:1 84.18% 0.28 0.284 0.269 0.269 0.293

TC:0.1,TM:1 83.77%
84.18%

0.414 0.734 0.430 0.430 0.448

TC:0,TM:2 83.87% 0.561 0.52 0.52 0.52 0.65

TC:0.1,TM:2 84.07%
83.26%

0.678 0.97 0.682 0.682 0.812

TC:0,TM:3 84.28% 0.146 0.166 0.142 0.142 0.145

TC:0.1,TM:3 84.07%
84.38%

0.252 0.616 0.305 0.305 0.310

TC:0,TM:4 84.07% 0.213 0.44 0.44 0.44 0.502

TC:0.1,TM:4 83.77%

79
.1

8%

84
.0

7%

84
.0

7%

83.36%
0.575 0.89 0.603 0.603 0.647

The fact that the accuracy rates (~84%) do not reach very high values could be rooted in the 
characteristics of the dataset: the number of instances was reduced during the pre-
processing stage, because of the high number of missing values. We estimate that on a 
larger dataset the precision rate will be higher. Another piece of evidence that supports our 
assumption can be found in [12] – where ProICET was evaluated against four renowned 
classifiers (AdaBoost, EG2, J4.8 and MetaCost) and yielded both better costs and better 
accuracy rates.  
Another important result is related to the ranking of the attributes in the order of their 
prediction power. Since during the training process equal test costs were assigned to each 
attribute, the cost component did not influence in any way the choice of one attribute over 
another (it only affects the total cost of the trees in the sense that bigger trees yield higher 
total costs). By analyzing the output trees we came up with the following list of best predictor 
attributes (the same list was obtained by the other algorithms as well):
 Four (Prostate Volume)
 Nine (Operation Technique)

 Eleven (Bleeding)
 Two (Gleason Score)
 Six (IIEF)
 Five (Pre-Op PSA)
The fact that the prostate volume appears the first in most tests is new, and, according to the 
medical team’s opinion, it is the confirmation of a fact they have been suspecting for some 
time now.



4. Conclusions and Future Work

The idea of combining biomedical and clinical expertise with data driven analysis in the 
medical diagnosis process has gained considerable interest recently. One of the main fields 
where this approach has proven to be beneficial is that of cancer diagnosis and prognosis, 
where a cost-sensitive tactic seems to be the most appropriate.
ICET provides such an approach, and previous work has shown it is a robust algorithm [12]. 
This paper tries to evaluate a new system, ProICET, based on the ICET algorithm on a 
particular prostate cancer dataset, and to provide an answer to a medical question related to 
the most important attributes that influence the value of postoperative PSA. The results 
obtained show that ProICET is the best at cost reduction when both types of costs are 
involved. Moreover, we estimate that on larger datasets the accuracy rate will reach higher
values than in the current evaluation. This assumption is sustained by previous evaluations 
on larger datasets, which have shown that normal accuracy rates are in the range 94 – 99%. 
These values are better than, or comparable with those of algorithms accepted by the 
machine learning community as being powerful schemes for error/cost reduction ([4], [5], [7]).
The attribute ranking we obtained was validated by the results obtained by other decision 
tree learners, and was confirmed by a medical specialist. This result is of particular interest to 
the medical team, because, in addition to validating their suppositions on the importance of 
the prostate volume in the value of postoperative PSA, it opens new possibilities of expertise 
in the medical field. Also, starting from the obtained ranking, we can carry out more tests that 
will show for sure that the ranking obtained is not pure chance (we intend to implement the 
mutual information measure and evaluate pairs of attributes). Therefore, a study on the 
attribute correlations could bring about new medical knowledge that is otherwise very difficult 
to fetch from the huge amount of data.
Since ICET has a strong evolutionary component, one possible way of improving the results 
is to experiment on the setting of the genetic parameters, such as mutation rate, population 
size, or crossover method. Also, increasing the size of the training dataset is necessary, in 
order to obtain a more accurate classifier.
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