
A Hybrid Algorithm for Medical Diagnosis

Camelia Vidrighin Bratu*, Cristina Savin* and Rodica Potolea*
* Technical University of Cluj-Napoca, Computer Science Department, Cluj-Napoca, Romania

Abstract – Medical diagnosis and prognosis is an
emblematic example for classification problems. Machine
learning could provide invaluable support for automatically
inferring diagnostic rules from descriptions of past cases,
making the diagnosis process more objective and reliable.
Since the problem involves both test and misclassification
costs, we have analyzed ICET, the most prominent
approach in the literature for complex cost problems. The
hybrid algorithm tries to avoid the pitfalls of traditional
greedy induction by performing a heuristic search in the
space of possible decision trees through evolutionary
mechanisms. Our implementation solves some of the
problems of the initial ICET algorithm, proving it to be a
viable solution for the problem considered.

I. INTRODUCTION

Decision tree learning represents one of the simplest,
yet most popular methods for inductive inference. It has
been successfully applied to a wide variety of problems
from medical diagnosis to air traffic control or the
assessment of credit risk for loan applicants. Its popularity
is justified by the fact that it has some key advantages
over other inductive methods. First of all, decision trees
offer a structured representation of knowledge (as
disjunction of conjunctive rules). As a direct consequence,
decision trees may be rewritten as a set of”if-then” rules,
increasing human readability. Secondly, decision trees are
robust to errors, requiring little or no data preprocessing.
Other important features include the capacity of handling
both nominal and numeric attributes, as well as missing
values and a good time complexity even for large data
sets.

An emblematic example of classification problem is
that of medical diagnosis and prognosis. Our study
focuses on the characteristics of this particular problem,
although the results are not restricted to this domain. The
need of using machine learning techniques in the medical
field is rooted in the fact that the accuracy of diagnosis
and prognosis is, in many cases, rather low, despite the
boost in biomedical technology. The reasons for this
situation are multiple. First of all, medical diagnosis is
known to be subjective; it depends on the physician
making the diagnosis (his experience, intuition and biases,
the psycho-physiological conditions). Secondly, and most
importantly, the amount of data that should be analyzed to
make a good prediction is usually huge. In this context,
machine learning can be used to automatically infer
diagnostic rules from descriptions of past, successfully
treated patients, and help specialists make the diagnostic
process more objective and more reliable.

Records of previous patients are gathered into hospital
archives and can be made available through machine
learning techniques; the classifier derived from this data
provides support for future diagnosis and treatment and
can help improve the physician’s speed, accuracy and
reliability in establishing a new diagnosis. Also, it may
offer invaluable support in the training of students and for
non-specialists.

II. COST-SENSITIVE CLASSIFICATION

Typically, the task of classification is concerned with
error reduction, i.e. the minimization of the number of
errors. However, it has been recognized that, in real world
problems, the cost of different errors is rarely the same.
Recent studies suggest that more complex measures for
evaluating the adequacy of classifiers should be
considered. For example, non-uniform costs are inherent
in fields such as medical diagnosis (classifying a healthy
patient as ill is far less expensive than the reverse
situation), or fraud detection.

Such problems are addressed by cost-sensitive
classification, which is directed towards the reduction of
the total cost, instead of just minimizing the number of
misclassification errors.

Turney [10] provides a general taxonomy of costs
involved in inductive concept learning, the most important
of which being misclassification costs and test costs. The
first category encompasses the costs which are
conventionally considered by most cost-sensitive
classifiers; however, several solutions address the second
category also. A brief survey of the most important cost-
sensitive classifiers, as described in the literature, will be
provided in the following.

Chronologically one of the first solutions for the
problem of reducing the total misclassification cost was a
procedure called stratification. In this approach, the actual
classifier is not altered in any way; instead, the
distribution of examples for each class is changed. The
modified training set includes proportionally more
examples of the classes having high misclassification
costs and may be generated either by undersampling or by
oversampling. Each alternative comes at a certain price
(see [1] for a detailed discussion on the subject), but the
most serious limitation of the approach is that it restricts
the dimension or the form of the misclassification cost
matrix - the technique it is only applicable to two-class
problems or to problems where the cost is independent of
the predicted class. More complex techniques, which
overcome these limitations, usually involve meta-learning
algorithms, which typically are applicable to a range of
base classifiers. In this category we include algorithms

based on various ensemble methods, such as AdaBoost.M1
[3], AdaCost [2], or MetaCost [1] and those which take an
evolutionary approach, the best-known being ICET [9].

AdaBoost.M1, first introduced by Freund and Schapire
[3], employs an ensemble method, by combining several
weak classifiers through voting; the resulting composite
classifier generally has a higher predictive accuracy than
any of its components. Each distinct model is build
through the same learning mechanism, by varying the
distribution of examples in the training set. After each
boosting phase, the weights of the misclassified examples
are increased, while those for the correctly classified
examples are decreased. It has been mathematically
proved that the error rate for the composite classifier on
the unweighted training examples approaches zero
exponentially with an increasing number of boosting steps
[3], [6]. Also, various experimental results report that the
reduction in error is maintained for unseen examples.

Another solution for reducing misclassification costs is
MetaCost [1]. The algorithm is based on the Bayes
optimal prediction principle, which minimizes the
conditional risk of predicting that an example belongs to
class i, given its attributes x. The solution requires
accurate estimates for the class probabilities of examples
in the training set. This distribution is obtained through an
ensemble method, by uniform voting from individual
classifiers. Once the conditional probabilities are
estimated, the algorithm re-labels the examples in the
training set, according to their optimal predictions and
generates the final classifier, using the modified training
set. The main advantages of this procedure are related to
its applicability to wide range of base classifiers, the fact
that it generates a single, understandable model, and its
efficiency under changing costs (the conditional
probabilities need to be computed only once, after which
they can be used to generate models for various cost
matrices).

Several approaches exist also for tackling the problem
of test costs. They typically involve some alteration of the
information gain function, as to make it cost-sensitive.
Various cost dependent functions have been proposed in
the literature, such as EG2, IDX or CS-ID3 [9].

Significantly less work has been done for aggregating
several cost components. The most prominent approach in
the literature is ICET, which combines a greedy search
heuristic (decision tree) with a genetic search algorithm.
Other possible solutions are explored in [4], [7] and [8].

Medical diagnosis is one field in which such an
aggregated approach is of utmost importance. First of all,
a doctor must always consider the potential consequences
of a misdiagnosis. In this field, misclassification costs
may not have a direct monetary quantification, but they
represent a more general measure of the impact each
particular misclassification may have on human life.
These costs are non-uniform (diagnosing a sick patient as
healthy carries a higher cost than diagnosing a healthy
patient as sick). Another particularity of the medical
diagnosis problem is that medical tests are usually costly.
Moreover, collecting test results may be time-consuming;
arguably time may not be a ’real’ cost, but it does have
some implication for the decision whether it is practical to
take a certain test or not. In the real case, performing all
possible tests in advance is unfeasible and only a relevant
subset should be selected. The decision on performing or

not a certain test should be based on the relation between
its cost and potential benefits. When the cost of a test
exceeds the penalty for a misclassification, further testing
is no longer economically justified.

III. THE ICET ALGORITHM

Classical tree induction uses hill climbing search,
which, as most greedy techniques, suffers from the
horizon effect, i.e. it tends to get caught in local optima.
One possible way to avoid the pitfalls of simple greedy
induction is to perform a heuristic search in the space of
possible decision trees through evolutionary mechanisms.

ICET (Inexpensive Classification with Expensive
Costs) is such a hybrid algorithm. Introduced by Peter
Turney, the technique tackles the problem of cost-
sensitive classification by combining a greedy search
heuristic (decision tree) with a genetic algorithm [9].

The GA evolves a population of parameters, each
individual corresponding to one decision tree. Standard
mutation and crossover operators are applied to the trees
population and, after a fixed number of iterations, the
fittest individual is returned. The genetic algorithm used in
[9] is GENESIS, and the decision tree algorithm is a
modified version of Quinlan’s C4.5 [5], which uses ICF
(Information Cost Function) as attribute selection
function, same as in EG2.

For the ith attribute, ICF may be defined as follows:

10,
)1(

2 ≤≤
+

=
Δ

wwhere
C

ICF w
i

I

i

i

 (1)

An important remark is that, unlike EG2, ICET does not
minimize test costs directly. Instead, it uses ICF for the
codification of the individuals in the population. The n
costs, Ci, are not true costs, but bias parameters. They
provide enough variation to prevent the decision tree
learner from getting trapped in a local optimum, by
overrating/ underrating the cost of certain tests based on
past trials’ performance. However, it is possible to use
true costs, when generating the initial population, which
has been shown to lead to some increase in performance.

Each individual is represented as a bit string of n + 2
numbers, encoded in Gray. The first n numbers represent
the bias parameters (’alleged’ test costs in the ICF
function). The last two stand for the algorithm’s
parameters CF and w; the first controls the level of
pruning (as defined for C4.5), while w is needed by ICF.

The fitness function for an individual is computed as the
average cost of classification of the corresponding tree
(obtained by randomly dividing the training set in two
subsets, the first used for the actual tree induction and the
second for error estimation). The average cost of
classification is obtained by normalizing the total costs
(obtained by summing the test and misclassification costs)
to the training set size.

Test costs are specified as attribute - cost value pairs.
The classification costs are defined by a cost matrix
(Cij)nxn, where Cij - the cost of misclassifying an instance
of class j as being of class i. If the same attribute is tested
twice along the path (numeric attribute), the second time
its cost is 0.

IV. ICET ENHANCEMENTS AND EXPERIMENTAL WORK

A significant problem related to the ICET algorithm is
rooted in the fact that costs are learned indirectly, through
the fitness function. Rare examples are relatively more
difficult to be learned by the algorithm. This fact was also
observed in [9], where, when analyzing complex cost
matrices for a two-class problem, it is noted that: it is
easier to avoid false positive diagnosis [...] than it is to
avoid false negative diagnosis [...]. This is unfortunate,
since false negative diagnosis usually carry a heavier
penalty, in real life.

Turney, too, attributes this phenomenon to the
distribution of positive and negative examples in the
training set. In this context, our aim is to modify the
fitness measure as to eliminate such undesirable
asymmetries.

Last, but not least, previous ICET papers focus almost
entirely on test costs and lack a comprehensive analysis of
the misclassification costs component. This paper tries to
fill this gap, by providing a comparative analysis with
some of the classic cost-sensitive techniques, such as
MetaCost and AdaBoost.

Our version of ICET was based on the implementation
of the C4.5 algorithm, revision 8, provided by Weka
(referred to as J4.8), and a general-purpose genetic
algorithms library called GGAT (General Genetic
Algorithm Tool), both written in java.

Weka (Waikato Environment for Knowledge Analysis)
is a data mining tool developed at the University of
Waikato, New Zeeland [11]. The application is distributed
under the GPN (Gnu Public License). It includes a wide
variety of state-of-the-art algorithms and data processing
tools and provides extensive support for the entire process
of experimental data mining (input filtering, statistical
evaluation of learning schemes, data visualization,
preprocessing tools). Apart from an easy to use interface,
Weka also comes with a command line interface, which
enables the user to call the different learning schemes
from the command line. This feature was particularly
useful when invoking the modified decision tree learner
for computing the fitness function in the genetic algorithm
part of the application.

GGAT is a generic GA library, developed at the Brunel
University, London. It uses a technique called single
population for generating a new generation, which
directly implements elitism (the best individuals of the
current generation can survive unchanged in the next
generation).

Fig. 1 - ICET average costs for the breast cancer dataset

Another prominent feature is the use of ranking in the
fitness function estimation. The individuals in the
population are ordered according to their fitness value,
after which probabilities of selection are distributed
evenly, according to their rank in the ordered population.
Ranking can be a very effective mechanism for avoiding
the premature convergence of the population, which can
occur if the initial pool has some individuals which
dominate, having a significantly better fitness than the
others.

The information gain function of J4.8 algorithm was
modified, similarly to the implementation presented in [9],
to consider the bias parameter associated to each attribute,
as specified by equation (1).

The modified ICET algorithm was implemented within
the framework provided by GGAT. For each individual,
the n + 2 chromosomes were defined (n being the number
of attributes in the data set, while the other two correspond
to parameters w and CF); each chromosome is
represented as a 14 bits binary string, encoded in Gray.
The population size is 50 individuals. The roulette wheel
technique was used for parent selection; as recombination
techniques, we have employed single point random
mutation with mutation rate 0.2, and multipoint crossover,
with 4 randomly select crossover points.

The algorithm is run for 1000 fitness evaluation steps or
until convergence. Due to the fact that a new generation is
evolved using single population, the final result yielded by
the procedure is the best individual over the entire run,
which makes the decision on when to stop the evolution
less critical. More than that, experiments show that
usually the best individual does not change significantly
after 800 steps.

A. Symmetry Through Stratification
As we have mentioned before, it is believed that the

asymmetry in the evaluated costs for two-class problems,
as the proportion of false positives and false negatives
misclassification costs varies, is owed to the small number
of negative examples in most datasets. If the assumption is
true, the problem could be eliminated by altering the
distribution of the training set, either by oversampling, or
by undersampling. This hypothesis was tested by
performing an evaluation of the ICET results on the
Wisconsin breast cancer dataset.

Fig. 2 – Improved average cost for the stratified Wisconsin dataset

This particular problem was selected as being one of the
largest two-class datasets presented in the literature.

Since the algorithm involves a large heuristic
component, the ICET evaluation procedure assumes
averaging the costs over 10 runs. Each run uses a pair of
randomly generated training-testing sets, in the proportion
70% - 30%; the same proportion is used when separating
the training set into a component used for training and one
for evaluating each individual (in the fitness function).
Test costs are set to 1 during individual evaluation, in
order to avoid overfitting or degenerate solutions. Since
the misclassification costs are the one studied by the
procedure, test costs are ignored during the evaluation of
the final results.

For the stratified dataset, the negative class is
increased to the size of the positive class, by repeating
examples in the initial set, selected at random, with a
uniform distribution. Oversampling is preferred, despite of
an increase in computation time, due to the fact that the
alternate solution involves some information loss.
Undersampling could be selected in the case of extremely
large databases, for practical reasons. In this situation,
oversampling is no longer feasible, as the time required
for the learning phase on the extended training set
becomes prohibitive.

The misclassification cost matrix used for this analysis
has the form:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=
01

0
100

p
p

C (2)

where p is varied with a 0.05 increment.
The results of the experiment are presented in Fig. 1.

We observe a small decrease in misclassification costs for
the stratified case throughout the parameter space. This
reduction is visible especially at the margins, when costs
become more unbalanced. Particularly in the left side, we
notice a significant reduction in the total cost for
expensive rare examples, which was the actual goal of the
procedure.

Fig. 3 – A comparison of average misclassification costs

on the Wisconsin dataset

Starting from the assumption that the stratification
technique may be applicable to other cost-sensitive
classifiers, we have repeated the procedure on the Weka
implementation of MetaCost, using J4.8 as base classifier.
J4.8 was also considered in the analysis, as baseline
estimate.

The results for the second set of tests are presented in
Fig. 2. We observe that MetaCost yields significant costs,
as the cost matrix drifts from the balanced case, a
characteristic which has been described previously.
Another important observation is related to the fact that
the cost characteristic in the case of J4.8 is almost
horizontal. This could give an explanation of the way
stratification affects the general ICET behavior, by
making it insensitive to the particular form of the cost
matrix. Most importantly, we notice a general reduction in
the average costs, especially at the margins of the domain
considered. We conclude that our stratification technique
could be also used for improving the cost characteristic of
MetaCost. Further testing is required before formulating
more general results.

B. Comparing Misclassification Costs
The procedure employed when comparing

misclassification costs is similar to that described in the
previous section. Again, the Wisconsin dataset was used,
and misclassification costs were averaged on 10 randomly
generated training/test sets. For all the tests described in
this section, the test costs are not considered in the
evaluation, in order to isolate the misclassification
component and eliminate any bias.

As illustrated by Fig. 3, MetaCost yields the poorest
results. ICET performs slightly better than J4.8, while the
smallest costs are obtained for AdaBoost, using J4.8 as
base classifier. The improved performance is related to the
different approaches taken when searching for the
solution. If ICET uses heuristic search, AdaBoost
implements a procedure that is guaranteed to converge to
minimum training error, while the ensemble voting
reduces the risk of overfitting.

TABLE I.
MISCLASSIFICATION COST MATRIX FOR

BUPA LIVER DISORDER DATASET

Class less than 3 more than 3

less than 3 0 5

more than 3 15 0

TABLE II.
MISCLASSIFICATION COST MATRIX FOR

THE CLEVELAND HEART DISEASE DATASET

Class 0 1 2 3 4

0 0 10 20 30 40

1 50 0 10 20 30

2 100 50 0 10 20

3 150 100 50 0 10

4 200 150 100 50 0

TABLE III.
MISCLASSIFICATION COST MATRIX FOR

THE THYROID DATASET

Class 3 2 1

3 0 5 7

2 12 0 5

1 20 12 0

However, the approach cannot take into account test
costs, which should make it perform worse on problems
involving both types of costs.

C. Total Costs Analysis
When estimating the performance of the various

algorithms presented, we have considered three problems
from the UCI repository. All datasets involve medical
problems: Bupa liver disorders, heart disease Cleveland
and thyroid. For the first dataset, we have used the same
modified set as in [9]. Also, the test costs estimates are
taken from the previously mentioned study. The
misclassification costs values were more difficult to
estimate, due to the fact that they measure the risks of
misdiagnosis, which do not have a clear monetary
equivalent. These values are set empirically, assigning
higher penalty for undiagnosed disease and keeping the
order of magnitude as to balance the two cost
components (the actual values are displayed in tables I, II
and III).

As anticipated, ICET significantly outperforms all

other algorithms, being the only one built for optimizing
total costs (Fig. 4). Surprisingly, our implementation
performs quite well on the heart disease dataset, where
the initial algorithm obtained poorer results. This
improvement is probably owed to the alterations made to
the genetic algorithm, which increase population
variability and extend the ICET heuristic search. The cost
reduction is relatively small in the Thyroid dataset,
compared to the others, but is quite large for the two
cases, supporting the conclusion that ICET is the best
algorithm for problems involving complex costs.

V. CONCLUSIONS

The study presented here makes several
improvements to the initial ICET implementation in [9],
mostly involving the evolutionary component of the
algorithm. By introducing elitism, increasing the search
variability factor, and extending the number of iterations,
we manage to outperform other cost-sensitive algorithms,
even for datasets on which the initial implementation
yielded modest results.

Another important result is the reduction of
misclassification costs for unbalanced cost matrices, by
adjusting the training set class distribution. This cost
reduction is significant, especially in the case of rare
expensive cases, which is often critical in practice.

More than that, the advances induced by our stratification
method are shown to be maintained for other algorithms,
such as MetaCost.

Although, when analyzing the misclassification costs,
ICET is outperformed by AdaBoost.M1, it still manages to
yield better results than other algorithms built exclusively
for optimizing misclassification costs.

Fig. 4 – A comparison of average total costs on various datasets

The situation changes for complex costs problems,
where ICET performs significantly better than all the other
implementations considered. In conclusion, ICET appears
to be the best solution for the medical diagnosis and
prognosis problem, from the various alternatives analyzed.

Several other adjustments to the basic ICET algorithm
could be examined in the future. Firstly, the procedure
employed during the classification of an instance could
consider both the class distribution in the corresponding
leaf and the associated costs. On a different line of study,
there appears to be a need for a more comprehensive
analysis on the impact of varying the GA parameters, as
we have seen that such changes can lead to significant
performance improvements.

REFERENCES

[1] P. Domingos. Metacost: A general method for making classifiers
cost- sensitive. Proceedings of the 5th International Conference
on Knowledge Discovery and Data Mining, 1991.

[2] W. Fan, S. Stolfo, J. Zhang, and P. Chan. AdaCost:
Misclassification cost- sensitive boosting. Proceedings of the 16th
International Conference on Machine Learning, pages 97–105,
2000.

[3] Y. Freund and R. Schapire. A decision-theoretic generalization of
on- line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119–139, 1997.

[4] J. Li, X. Li, and X. Yao. Cost- sensitive classification with genetic
programming. Proceedings of the 2005 Congress on Evolutionary
Computation, 3:2114–2121, 2005.

[5] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[6] J. Quinlan. Boosting first- order learning. Proceedings of the 7th
International Workshop on Algorithmic Learning Theory,
1160:143–155, 1996.

[7] S. Sheng and C. Ling. Hybrid cost- sensitive decision tree. PKDD,
pages 274–284, 2005.

[8] S. Sheng, C. Ling, and Q. Yang. Simple test strategies for cost-
sensitive decision trees. ECML, pages 365–376, 2005.

[9] P. Turney. Cost sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm. Journal of
Artificial Intelligence Research, (2):369–409, 1995.

[10] P. Turney. Types of cost in inductive concept learning.
Proceedings of the Workshop on Cost-Sensitive Learning, 7th
International Conference on Machine Learning, 2000.

[11] I. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques, 2nd ed. Morgan Kaufmann, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

