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Abstract – Medical diagnosis and prognosis is an 
emblematic example for classification problems. Machine 
learning could provide invaluable support for automatically 
inferring diagnostic rules from descriptions of past cases, 
making the diagnosis process more objective and reliable. 
Since the problem involves both test and misclassification 
costs, we have analyzed ICET, the most prominent 
approach in the literature for complex cost problems. The 
hybrid algorithm tries to avoid the pitfalls of traditional 
greedy induction by performing a heuristic search in the 
space of possible decision trees through evolutionary 
mechanisms. Our implementation solves some of the 
problems of the initial ICET algorithm, proving it to be a 
viable solution for the problem considered. 
 
 

I. INTRODUCTION 
 

Decision tree learning represents one of the simplest, 
yet most popular methods for inductive inference. It has 
been successfully applied to a wide variety of problems 
from medical diagnosis to air traffic control or the 
assessment of credit risk for loan applicants. Its popularity 
is justified by the fact that it has some key advantages 
over other inductive methods. First of all, decision trees 
offer a structured representation of knowledge (as 
disjunction of conjunctive rules). As a direct consequence, 
decision trees may be rewritten as a set of”if-then” rules, 
increasing human readability. Secondly, decision trees are 
robust to errors, requiring little or no data preprocessing. 
Other important features include the capacity of handling 
both nominal and numeric attributes, as well as missing 
values and a good time complexity even for large data 
sets. 

An emblematic example of classification problem is 
that of medical diagnosis and prognosis. Our study 
focuses on the characteristics of this particular problem, 
although the results are not restricted to this domain. The 
need of using machine learning techniques in the medical 
field is rooted in the fact that the accuracy of diagnosis 
and prognosis is, in many cases, rather low, despite the 
boost in biomedical technology. The reasons for this 
situation are multiple. First of all, medical diagnosis is 
known to be subjective; it depends on the physician 
making the diagnosis (his experience, intuition and biases, 
the psycho-physiological conditions). Secondly, and most 
importantly, the amount of data that should be analyzed to 
make a good prediction is usually huge. In this context, 
machine learning can be used to automatically infer 
diagnostic rules from descriptions of past, successfully 
treated patients, and help specialists make the diagnostic 
process more objective and more reliable. 

Records of previous patients are gathered into hospital 
archives and can be made available through machine 
learning techniques; the classifier derived from this data 
provides support for future diagnosis and treatment and 
can help improve the physician’s speed, accuracy and 
reliability in establishing a new diagnosis. Also, it may 
offer invaluable support in the training of students and for 
non-specialists. 
 

II. COST-SENSITIVE CLASSIFICATION 
 

Typically, the task of classification is concerned with 
error reduction, i.e. the minimization of the number of 
errors. However, it has been recognized that, in real world 
problems, the cost of different errors is rarely the same. 
Recent studies suggest that more complex measures for 
evaluating the adequacy of classifiers should be 
considered. For example, non-uniform costs are inherent 
in fields such as medical diagnosis (classifying a healthy 
patient as ill is far less expensive than the reverse 
situation), or fraud detection. 

Such problems are addressed by cost-sensitive 
classification, which is directed towards the reduction of 
the total cost, instead of just minimizing the number of 
misclassification errors. 

Turney [10] provides a general taxonomy of costs 
involved in inductive concept learning, the most important 
of which being misclassification costs and test costs. The 
first category encompasses the costs which are 
conventionally considered by most cost-sensitive 
classifiers; however, several solutions address the second 
category also. A brief survey of the most important cost-
sensitive classifiers, as described in the literature, will be 
provided in the following. 

Chronologically one of the first solutions for the 
problem of reducing the total misclassification cost was a 
procedure called stratification. In this approach, the actual 
classifier is not altered in any way; instead, the 
distribution of examples for each class is changed. The 
modified training set includes proportionally more 
examples of the classes having high misclassification 
costs and may be generated either by undersampling or by 
oversampling. Each alternative comes at a certain price 
(see [1] for a detailed discussion on the subject), but the 
most serious limitation of the approach is that it restricts 
the dimension or the form of the misclassification cost 
matrix - the technique it is only applicable to two-class 
problems or to problems where the cost is independent of 
the predicted class. More complex techniques, which 
overcome these limitations, usually involve meta-learning 
algorithms, which typically are applicable to a range of 
base classifiers. In this category we include algorithms 



based on various ensemble methods, such as AdaBoost.M1 
[3], AdaCost [2], or MetaCost [1] and those which take an 
evolutionary approach, the best-known being ICET [9]. 

AdaBoost.M1, first introduced by Freund and Schapire 
[3], employs an ensemble method, by combining several 
weak classifiers through voting; the resulting composite 
classifier generally has a higher predictive accuracy than 
any of its components. Each distinct model is build 
through the same learning mechanism, by varying the 
distribution of examples in the training set. After each 
boosting phase, the weights of the misclassified examples 
are increased, while those for the correctly classified 
examples are decreased. It has been mathematically 
proved that the error rate for the composite classifier on 
the unweighted training examples approaches zero 
exponentially with an increasing number of boosting steps 
[3], [6]. Also, various experimental results report that the 
reduction in error is maintained for unseen examples. 

Another solution for reducing misclassification costs is 
MetaCost [1]. The algorithm is based on the Bayes 
optimal prediction principle, which minimizes the 
conditional risk of predicting that an example belongs to 
class i, given its attributes x. The solution requires 
accurate estimates for the class probabilities of examples 
in the training set. This distribution is obtained through an 
ensemble method, by uniform voting from individual 
classifiers. Once the conditional probabilities are 
estimated, the algorithm re-labels the examples in the 
training set, according to their optimal predictions and 
generates the final classifier, using the modified training 
set. The main advantages of this procedure are related to 
its applicability to wide range of base classifiers, the fact 
that it generates a single, understandable model, and its 
efficiency under changing costs (the conditional 
probabilities need to be computed only once, after which 
they can be used to generate models for various cost 
matrices). 

Several approaches exist also for tackling the problem 
of test costs. They typically involve some alteration of the 
information gain function, as to make it cost-sensitive. 
Various cost dependent functions have been proposed in 
the literature, such as EG2, IDX or CS-ID3 [9]. 

Significantly less work has been done for aggregating 
several cost components. The most prominent approach in 
the literature is ICET, which combines a greedy search 
heuristic (decision tree) with a genetic search algorithm. 
Other possible solutions are explored in [4], [7] and [8]. 

Medical diagnosis is one field in which such an 
aggregated approach is of utmost importance. First of all, 
a doctor must always consider the potential consequences 
of a misdiagnosis. In this field, misclassification costs 
may not have a direct monetary quantification, but they 
represent a more general measure of the impact each 
particular misclassification may have on human life. 
These costs are non-uniform (diagnosing a sick patient as 
healthy carries a higher cost than diagnosing a healthy 
patient as sick). Another particularity of the medical 
diagnosis problem is that medical tests are usually costly. 
Moreover, collecting test results may be time-consuming; 
arguably time may not be a ’real’ cost, but it does have 
some implication for the decision whether it is practical to 
take a certain test or not. In the real case, performing all 
possible tests in advance is unfeasible and only a relevant 
subset should be selected. The decision on performing or 

not a certain test should be based on the relation between 
its cost and potential benefits. When the cost of a test 
exceeds the penalty for a misclassification, further testing 
is no longer economically justified. 

 

III. THE ICET ALGORITHM 
 

Classical tree induction uses hill climbing search, 
which, as most greedy techniques, suffers from the 
horizon effect, i.e. it tends to get caught in local optima. 
One possible way to avoid the pitfalls of simple greedy 
induction is to perform a heuristic search in the space of 
possible decision trees through evolutionary mechanisms. 

ICET (Inexpensive Classification with Expensive 
Costs) is such a hybrid algorithm. Introduced by Peter 
Turney, the technique tackles the problem of cost-
sensitive classification by combining a greedy search 
heuristic (decision tree) with a genetic algorithm [9]. 

The GA evolves a population of parameters, each 
individual corresponding to one decision tree. Standard 
mutation and crossover operators are applied to the trees 
population and, after a fixed number of iterations, the 
fittest individual is returned. The genetic algorithm used in 
[9] is GENESIS, and the decision tree algorithm is a 
modified version of Quinlan’s C4.5 [5], which uses ICF 
(Information Cost Function) as attribute selection 
function, same as in EG2. 

For the ith attribute, ICF may be defined as follows: 
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An important remark is that, unlike EG2, ICET does not 
minimize test costs directly. Instead, it uses ICF for the 
codification of the individuals in the population. The n 
costs, Ci, are not true costs, but bias parameters. They 
provide enough variation to prevent the decision tree 
learner from getting trapped in a local optimum, by 
overrating/ underrating the cost of certain tests based on 
past trials’ performance. However, it is possible to use 
true costs, when generating the initial population, which 
has been shown to lead to some increase in performance. 

Each individual is represented as a bit string of n + 2 
numbers, encoded in Gray. The first n numbers represent 
the bias parameters (’alleged’ test costs in the ICF 
function). The last two stand for the algorithm’s 
parameters CF and w; the first controls the level of 
pruning (as defined for C4.5), while w is needed by ICF. 

The fitness function for an individual is computed as the 
average cost of classification of the corresponding tree 
(obtained by randomly dividing the training set in two 
subsets, the first used for the actual tree induction and the 
second for error estimation). The average cost of 
classification is obtained by normalizing the total costs 
(obtained by summing the test and misclassification costs) 
to the training set size.  

Test costs are specified as attribute - cost value pairs. 
The classification costs are defined by a cost matrix 
(Cij)nxn, where Cij - the cost of misclassifying an instance 
of class j as being of class i. If the same attribute is tested 
twice along the path (numeric attribute), the second time 
its cost is 0. 



IV. ICET ENHANCEMENTS AND EXPERIMENTAL WORK 
 

A significant problem related to the ICET algorithm is 
rooted in the fact that costs are learned indirectly, through 
the fitness function. Rare examples are relatively more 
difficult to be learned by the algorithm. This fact was also 
observed in [9], where, when analyzing complex cost 
matrices for a two-class problem, it is noted that: it is 
easier to avoid false positive diagnosis [...] than it is to 
avoid false negative diagnosis [...]. This is unfortunate, 
since false negative diagnosis usually carry a heavier 
penalty, in real life. 

Turney, too, attributes this phenomenon to the 
distribution of positive and negative examples in the 
training set. In this context, our aim is to modify the 
fitness measure as to eliminate such undesirable 
asymmetries. 

Last, but not least, previous ICET papers focus almost 
entirely on test costs and lack a comprehensive analysis of 
the misclassification costs component. This paper tries to 
fill this gap, by providing a comparative analysis with 
some of the classic cost-sensitive techniques, such as 
MetaCost and AdaBoost. 

Our version of ICET was based on the implementation 
of the C4.5 algorithm, revision 8, provided by Weka 
(referred to as J4.8), and a general-purpose genetic 
algorithms library called GGAT (General Genetic 
Algorithm Tool), both written in java. 

Weka (Waikato Environment for Knowledge Analysis) 
is a data mining tool developed at the University of 
Waikato, New Zeeland [11]. The application is distributed 
under the GPN (Gnu Public License). It includes a wide 
variety of state-of-the-art algorithms and data processing 
tools and provides extensive support for the entire process 
of experimental data mining (input filtering, statistical 
evaluation of learning schemes, data visualization, 
preprocessing tools). Apart from an easy to use interface, 
Weka also comes with a command line interface, which 
enables the user to call the different learning schemes 
from the command line. This feature was particularly 
useful when invoking the modified decision tree learner 
for computing the fitness function in the genetic algorithm 
part of the application. 

GGAT is a generic GA library, developed at the Brunel 
University, London. It uses a technique called single 
population for generating a new generation, which 
directly implements elitism (the best individuals of the 
current generation can survive unchanged in the next 
generation). 

 
Fig. 1 - ICET average costs for the breast cancer dataset 

Another prominent feature is the use of ranking in the 
fitness function estimation. The individuals in the 
population are ordered according to their fitness value, 
after which probabilities of selection are distributed 
evenly, according to their rank in the ordered population. 
Ranking can be a very effective mechanism for avoiding 
the premature convergence of the population, which can 
occur if the initial pool has some individuals which 
dominate, having a significantly better fitness than the 
others. 

The information gain function of J4.8 algorithm was 
modified, similarly to the implementation presented in [9], 
to consider the bias parameter associated to each attribute, 
as specified by equation (1). 

The modified ICET algorithm was implemented within 
the framework provided by GGAT. For each individual, 
the n + 2 chromosomes were defined (n being the number 
of attributes in the data set, while the other two correspond 
to parameters w and CF); each chromosome is 
represented as a 14 bits binary string, encoded in Gray. 
The population size is 50 individuals. The roulette wheel 
technique was used for parent selection; as recombination 
techniques, we have employed single point random 
mutation with mutation rate 0.2, and multipoint crossover, 
with 4 randomly select crossover points. 

The algorithm is run for 1000 fitness evaluation steps or 
until convergence. Due to the fact that a new generation is 
evolved using single population, the final result yielded by 
the procedure is the best individual over the entire run, 
which makes the decision on when to stop the evolution 
less critical. More than that, experiments show that 
usually the best individual does not change significantly 
after 800 steps. 

A. Symmetry Through Stratification 
As we have mentioned before, it is believed that the 

asymmetry in the evaluated costs for two-class problems, 
as the proportion of false positives and false negatives 
misclassification costs varies, is owed to the small number 
of negative examples in most datasets. If the assumption is 
true, the problem could be eliminated by altering the 
distribution of the training set, either by oversampling, or 
by undersampling. This hypothesis was tested by 
performing an evaluation of the ICET results on the 
Wisconsin breast cancer dataset. 
 

 

 

Fig. 2 – Improved average cost for the stratified Wisconsin dataset 

 



This particular problem was selected as being one of the 
largest two-class datasets presented in the literature. 

Since the algorithm involves a large heuristic 
component, the ICET evaluation procedure assumes 
averaging the costs over 10 runs. Each run uses a pair of 
randomly generated training-testing sets, in the proportion 
70% - 30%; the same proportion is used when separating 
the training set into a component used for training and one 
for evaluating each individual (in the fitness function). 
Test costs are set to 1 during individual evaluation, in 
order to avoid overfitting or degenerate solutions. Since 
the misclassification costs are the one studied by the 
procedure, test costs are ignored during the evaluation of 
the final results. 

For the stratified dataset, the negative class is 
increased to the size of the positive class, by repeating 
examples in the initial set, selected at random, with a 
uniform distribution. Oversampling is preferred, despite of 
an increase in computation time, due to the fact that the 
alternate solution involves some information loss. 
Undersampling could be selected in the case of extremely 
large databases, for practical reasons. In this situation, 
oversampling is no longer feasible, as the time required 
for the learning phase on the extended training set 
becomes prohibitive. 

The misclassification cost matrix used for this analysis 
has the form: 
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where p is varied with a 0.05 increment. 
The results of the experiment are presented in Fig. 1. 

We observe a small decrease in misclassification costs for 
the stratified case throughout the parameter space. This 
reduction is visible especially at the margins, when costs 
become more unbalanced. Particularly in the left side, we 
notice a significant reduction in the total cost for 
expensive rare examples, which was the actual goal of the 
procedure.  

 

 
Fig. 3 – A comparison of average misclassification costs                      

on the Wisconsin dataset 

 
 
 

Starting from the assumption that the stratification 
technique may be applicable to other cost-sensitive 
classifiers, we have repeated the procedure on the Weka 
implementation of MetaCost, using J4.8 as base classifier. 
J4.8 was also considered in the analysis, as baseline 
estimate. 

The results for the second set of tests are presented in 
Fig. 2. We observe that MetaCost yields significant costs, 
as the cost matrix drifts from the balanced case, a 
characteristic which has been described previously. 
Another important observation is related to the fact that 
the cost characteristic in the case of J4.8 is almost 
horizontal. This could give an explanation of the way 
stratification affects the general ICET behavior, by 
making it insensitive to the particular form of the cost 
matrix. Most importantly, we notice a general reduction in 
the average costs, especially at the margins of the domain 
considered. We conclude that our stratification technique 
could be also used for improving the cost characteristic of 
MetaCost. Further testing is required before formulating 
more general results. 

B. Comparing Misclassification Costs 
The procedure employed when comparing 

misclassification costs is similar to that described in the 
previous section. Again, the Wisconsin dataset was used, 
and misclassification costs were averaged on 10 randomly 
generated training/test sets. For all the tests described in 
this section, the test costs are not considered in the 
evaluation, in order to isolate the misclassification 
component and eliminate any bias. 

As illustrated by Fig. 3, MetaCost yields the poorest 
results. ICET performs slightly better than J4.8, while the 
smallest costs are obtained for AdaBoost, using J4.8 as 
base classifier. The improved performance is related to the 
different approaches taken when searching for the 
solution. If ICET uses heuristic search, AdaBoost 
implements a procedure that is guaranteed to converge to 
minimum training error, while the ensemble voting 
reduces the risk of overfitting. 

TABLE I.  
MISCLASSIFICATION COST MATRIX FOR                                                                

BUPA LIVER DISORDER DATASET 

Class less than 3 more than 3 

less than 3 0 5 

more than 3 15 0 

TABLE II.  
MISCLASSIFICATION COST MATRIX FOR                                                                

THE CLEVELAND HEART DISEASE  DATASET                                                               

Class 0 1 2 3 4 

0 0 10 20 30 40 

1 50 0 10 20 30 

2 100 50 0 10 20 

3 150 100 50 0 10 

4 200 150 100 50 0 

 
 



TABLE III.  
MISCLASSIFICATION COST MATRIX FOR                                                                             

THE THYROID DATASET 

Class 3 2 1 

3 0 5 7 

2 12 0 5 

1 20 12 0 
 

However, the approach cannot take into account test 
costs, which should make it perform worse on problems 
involving both types of costs. 

C. Total Costs Analysis 
When estimating the performance of the various 

algorithms presented, we have considered three problems 
from the UCI repository. All datasets involve medical 
problems: Bupa liver disorders, heart disease Cleveland 
and thyroid. For the first dataset, we have used the same 
modified set as in [9]. Also, the test costs estimates are 
taken from the previously mentioned study. The 
misclassification costs values were more difficult to 
estimate, due to the fact that they measure the risks of 
misdiagnosis, which do not have a clear monetary 
equivalent. These values are set empirically, assigning 
higher penalty for undiagnosed disease and keeping the 
order of magnitude as to balance the two cost 
components (the actual values are displayed in tables I, II 
and III). 

 
As anticipated, ICET significantly outperforms all 

other algorithms, being the only one built for optimizing 
total costs (Fig. 4). Surprisingly, our implementation 
performs quite well on the heart disease dataset, where 
the initial algorithm obtained poorer results. This 
improvement is probably owed to the alterations made to 
the genetic algorithm, which increase population 
variability and extend the ICET heuristic search. The cost 
reduction is relatively small in the Thyroid dataset, 
compared to the others, but is quite large for the two 
cases, supporting the conclusion that ICET is the best 
algorithm for problems involving complex costs. 

 

V. CONCLUSIONS 
 

The study presented here makes several 
improvements to the initial ICET implementation in [9], 
mostly involving the evolutionary component of the 
algorithm. By introducing elitism, increasing the search 
variability factor, and extending the number of iterations, 
we manage to outperform other cost-sensitive algorithms, 
even for datasets on which the initial implementation 
yielded modest results.  

Another important result is the reduction of 
misclassification costs for unbalanced cost matrices, by 
adjusting the training set class distribution. This cost 
reduction is significant, especially in the case of rare 
expensive cases, which is often critical in practice.  

More than that, the advances induced by our stratification 
method are shown to be maintained for other algorithms, 
such as MetaCost. 

Although, when analyzing the misclassification costs, 
ICET is outperformed by AdaBoost.M1, it still manages to 
yield better results than other algorithms built exclusively 
for optimizing misclassification costs.  

 

 
 

 
 

 
 
 

Fig. 4 – A comparison of average total costs on various datasets 

 



The situation changes for complex costs problems, 
where ICET performs significantly better than all the other 
implementations considered. In conclusion, ICET appears 
to be the best solution for the medical diagnosis and 
prognosis problem, from the various alternatives analyzed. 

Several other adjustments to the basic ICET algorithm 
could be examined in the future. Firstly, the procedure 
employed during the classification of an instance could 
consider both the class distribution in the corresponding 
leaf and the associated costs. On a different line of study, 
there appears to be a need for a more comprehensive 
analysis on the impact of varying the GA parameters, as 
we have seen that such changes can lead to significant 
performance improvements. 
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