
Pattern Recognition Systems – Lab 1

Least Mean Squares

1. Objectives

This laboratory work introduces the OpenCV-based framework used throughout the

course. In this assignment a line is fitted to a set of points using the Least Mean Squares

method (linear regression). Both the iterative solution (gradient descent) and the closed

form are presented.

2. Theoretical Background

You are given a set of data points of the form (𝑥𝑖, 𝑦𝑖) where 𝑖 = {1,2, … , 𝑛}. Your

task is to find the line equation that best fits the data. We will tackle this with linear

regression. The set of points is considered the training set and your task is to learn a

model that best fits the data.

Model 1

When trying to fit a model to data the first step is to establish the form of the

model. Linear regression adopts a model that is linear in terms of the parameters

(including a constant term). For the first part let us adopt a simple model that expresses y

in terms of x:

𝑓(𝑥) = 𝜃0 + 𝜃1𝑥
This is the usual way this problem is solved. However, this representation cannot

treat vertical lines. Nonetheless, it provides a good introduction to the method. A vector

can be formed that contains all the parameters of the model 𝜽 = [𝜃0, 𝜃1]
T (the intercept

term and the linear coefficient for x).

The least squares approach for determining the parameters states that the best fit

to the model will be obtained when the quadratic cost function is at its minimum:

𝐽(𝜃) =
1

2
∑(𝑓(𝑥𝑖) − 𝑦𝑖)

2

𝑛

𝑖=1

Why quadratic? This can be motivated by making the assumption that the error in

the data follows a normal distribution. See reference. Note that, this minimizes the error

only along the y-axis and not the distances of the points from the line. In order to

minimize the cost function we take its partial derivatives with respect to each parameter.

𝜕

𝜕𝜃0
𝐽(𝜃) =∑(𝑓(𝑥𝑖) − 𝑦𝑖)

𝑛

𝑖=1

𝜕

𝜕𝜃1
𝐽(𝜃) =∑(𝑓(𝑥𝑖) − 𝑦𝑖)

𝑛

𝑖=1

𝑥𝑖

The cost function attains its minimum when the gradient becomes zero. One

general approach to find the minimum is to use gradient descent. Since the gradient

shows the direction in which the function increases the most, if we take steps into the

opposite direction we decrease the value of the function. By controlling the size of the

step we can arrive at a local minimum of the function. Since the objective function in this

case is quadratic, the function has a single minimum and so gradient descent will find it.

To apply gradient descent start from an initial non-zero guess 𝜽 chosen randomly.

Find the gradient in that point:

∇𝐽(𝜽) = [
𝜕𝐽(𝜽)

𝜕𝜃0
,
𝜕𝐽(𝜽)

𝜕𝜃1
]
𝑇

Then apply the following update rule until convergence:

𝜽𝑛𝑒𝑤 = 𝜽 − 𝛼∇𝐽(𝜽),
where 𝛼 is the learning rate and it is chosen appropriately to ensure the cost function

decreases at each iteration. When the change between the parameter values is small

enough, the algorithm stops.

The gradient descent approach is appropriate when the roots of the gradient are

hard to find. But in this case (line fitting) an explicit solution can be found. By setting the

gradient components equal to 0 we obtain the following system:

{

 𝜃0𝑛 + 𝜃1∑𝑥𝑖

𝑛

𝑖=1

=∑𝑦𝑖

𝑛

𝑖=1

𝜃0∑𝑥𝑖

𝑛

𝑖=1

+ 𝜃1∑𝑥𝑖
2

𝑛

𝑖=1

=∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

which is a linear system with two equations and two unknowns and can be solved directly

to obtain the values for 𝜽:

{

 𝜃1 =

𝑛∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 − ∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1)2

𝜃0 =
1

𝑛
(∑𝑦𝑖

𝑛

𝑖=1

− 𝜃1∑𝑥𝑖

𝑛

𝑖=1

)

Normal Equation - A closed form solution in vector form

 In general the minimization problem for this model can be written in matrix form:

‖𝐴𝜽 − 𝒃‖2 = (𝐴𝜽 − 𝒃)𝑇(𝐴𝜽 − 𝒃)
This case arises for model 1, where A is an nx2 matrix with each row containing the

values of xi followed by 1 and b is an nx1 column vector containing the values for y. then

the closed form solution is given directly by:

𝜃𝑜𝑝𝑡 = (𝐴𝑇𝐴)−1𝐴𝑇𝒃

For more details and derivation consult [1].

Model 2

In order to address the issue of vertical lines we introduce another model that is

capable of dealing with every possible case. Consider the following parametrization of a

line in 2D:

𝑥𝑐𝑜𝑠(𝛽) + 𝑦𝑠𝑖𝑛(𝛽) = 𝜌

This describes a line with unit normal vector [𝑐𝑜𝑠(𝛽), 𝑠𝑖𝑛(𝛽)] which is at a distance of 𝜌

from the origin.

The cost function we wish to minimize in this case is the sum of squared distances

of each point from our current line. This is given by:

𝐽(𝛽, 𝜌) =
1

2
∑(𝑥𝑖𝑐𝑜𝑠(𝛽) + 𝑦𝑖𝑠𝑖𝑛(𝛽) − 𝜌)

2

𝑛

𝑖=1

Note, that this is the actual error term we want to minimize and that in the

previous section we have considered only the error along the y-axis, which is incorrect.

The components of the gradient need to be evaluated to perform gradient descent:

𝜕𝐽

𝜕𝛽
=∑(𝑥𝑖𝑐𝑜𝑠(𝛽) + 𝑦𝑖𝑠𝑖𝑛(𝛽) − 𝜌)(−𝑥𝑖𝑠𝑖𝑛(𝛽) + 𝑦𝑖𝑐𝑜𝑠(𝛽))

𝑛

𝑖=1

𝜕𝐽

𝜕𝜌
= −∑(𝑥𝑖𝑐𝑜𝑠(𝛽) + 𝑦𝑖𝑠𝑖𝑛(𝛽) − 𝜌)

𝑛

𝑖=1

A closed form solution can also be obtained, although not as easily as in the previous

case. The solution is given as:

𝛽 = −
1

2
𝑎𝑡𝑎𝑛2(2∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

−
2

𝑛
∑𝑥𝑖

𝑛

𝑖=1

∑𝑦𝑖

𝑛

𝑖=1

,∑(𝑦𝑖
2 − 𝑥𝑖

2) +
1

𝑛
(∑𝑥𝑖

𝑛

𝑖=1

)

2

−
1

𝑛
(∑𝑦𝑖

𝑛

𝑖=1

)

2𝑛

𝑖=1

)

𝜌 =
1

𝑛
(cos(𝛽)∑𝑥𝑖

𝑛

𝑖=1

+ 𝑠𝑖𝑛(𝛽)∑𝑦𝑖

𝑛

𝑖=1

)

Model 3

There is a third possibility for the form of the model. If we adopt a

parametrization with 3 free parameters for a line:

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0
The cost function can be defined as:

𝐽(𝑎, 𝑏, 𝑐) =
1

2
∑(𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐)

2

𝑛

𝑖=1

which can be written in matrix form as the squared norm of a vector:

𝐽(𝑎, 𝑏, 𝑐) = (𝐴𝜽)𝑇𝐴𝜽

where A is a matrix with nx3 elements, each row containing (𝑥𝑖, 𝑦𝑖 , 1) and 𝜽 = [𝑎, 𝑏, 𝑐]𝑇

is the parameter vector (column vector with 3 elements).

We need to minimize this norm to obtain the parameter values. Working with this

model which has 3 parameters has two important consequences: all possible lines can be

modeled and we will have a family of values which give the same line. To solve the

second issue we will seek the parameter vector with unit norm. Finding the null-space of

a matrix A with unit norm is a classical problem and it is solved with Singular Value

Decomposition. We have:

𝐴 = 𝑈𝑆𝑉
where U and V are orthogonal matrices and S contains values only on the main diagonal

(called singular values). From here the optimal value for the parameter vector will

correspond to the last column of the matrix V (which is the eigenvector of 𝐴𝑇𝐴

corresponding to the smallest eigenvalue). The interested reader can consult [2] for a

demonstration and further details.

3. Example results

Figure 1 – Example results using model 2 on data from points1 and points2

4. Practical Background

Reading from a text file:
FILE* f = fopen(“filename.txt”,”r”);

float x,y;

fscanf(f,”%f%f”, &x,&y);

fclose(f);

Creating a color image:
Mat img(height, width, CV_8UC3); //8bit unsigned 3 channel

Accessing the pixel at position row i and column j:
Vec3b pixel = img.at<Vec3b>(i,j); //byte vector with 3

elements

Modifying the pixel at row i and column j:
img.at<Vec3b>(i,j)[0] = 255; //blue

img.at<Vec3b>(i,j)[1] = 255; //green

img.at<Vec3b>(i,j)[2] = 255; //red

Draw a line between two points:
line(img, Point(x1, y1), Point(x2, y2), Scalar(B,G,R));

Viewing the image:
imshow(“title”, img);

waitKey();

5. Practical Work

1. Read the input data from the given file. The first line contains the number of points.

Each line afterwards contains an (x,y) pair.

2. Plot the points on a white 500x500 background image. For better visibility draw

circles, crosses or squares centered at the points. Be careful to consider how the

coordinate system in the image is defined. Some points may have negative

coordinates, either don’t plot them or shift the whole graph. The method is not

affected by points having negative coordinates.

3. Optionally, use model 1 and gradient descent to fit a line to the points. Visualize the

line at each k-th step. Output and visualize the value of the cost function at each step.

Choose the learning rate so that the cost function is decreasing.

4. Use model 1 and the closed form to calculate the parameters. Visualize both the final

line from the previous step and this one and compare the parameter values.

5. Optionally, use model 2 and gradient descent to fit a line to the points. Visualize the

line at each k-th step. Output and visualize the value of the cost function at each step.

Choose the learning rate so that the cost function is decreasing.

6. Use model 2 and the closed form to calculate the parameters. Compare the results

with the previous step.

7. Optionally, draw the errors as perpendiculars segments from the points to the line.

8. Optionally, find the parameters with model 3 and SVD.

6. References

[1] Stanford Machine Learning - course notes 1 –

http://cs229.stanford.edu/notes/cs229-notes1.pdf

[2] Tomas Svoboda - Least-squares solution of Homogeneous Equations -

http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constr

ained_lsq.pdf

http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf

