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Pattern recognition systems – Lab 6 

K-means clustering 
 

 

1. Objectives 

This laboratory session deals with the problem of clustering a set of points. This is 

a machine learning task that is unsupervised, i.e. the class labels of the points are not 

known and not required. Successful methods will identify the underlying structure in the 

data and group similar points together. 

 

2. Theoretical Background 

Cluster analysis or clustering is the task of grouping a set of objects in such a way 

that objects in the same group (called a cluster) are more similar (in some sense or 

another) to each other than to those in other groups (clusters). It is a main task of 

exploratory data mining, and a common technique for statistical data analysis, used in 

many fields, including machine learning, pattern recognition, image analysis, information 

retrieval, bioinformatics, data compression, and computer graphics [1]. 

The input for the method is the set of data points: 𝑋 = {𝑥𝑖, 𝑖 = 1: 𝑛}. Each point is 

d-dimensional 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑). The goal of the k-means clustering method is to 

partition the points into K sets denoted by 𝑆 = {𝑆𝑘|𝑘 = 1:𝐾}. The mean value of the 

points in each set is named 𝑚𝑘. The partitioning must be done in such a way as to 

minimize the following objective function: 

𝐽(𝑋, 𝑆) = ∑ ∑ 𝑑𝑖𝑠𝑡(𝑥,𝑚𝑘)

𝑥∈𝑆𝑘

𝐾

𝑘=1

 

where 𝑑𝑖𝑠𝑡(. , . ) is the Euclidean distance function in d-dimensional space: 

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑑

𝑖=1
 

This is an NP-hard problem but there are several approximations that provide 

good results. Lloyd’s method proposes to divide the problem into two parts. If we have 

the partitioning we can calculate the means, but we cannot know the partitions if the 

cluster centers are unknown. The idea is to start with a random set of cluster centers and 

iteratively refine these. The algorithm is guaranteed to converge to a local minimum but 

it is may not be the global minimum [2]. 

Let L denote the membership function for each point, so 𝐿𝑖 ∈ 1:𝐾, 𝑖 = 1: 𝑛. The 

membership function returns the cluster of the ith point. Start by assigning the cluster 

centers to random points from the dataset: 𝑚𝑘 = 𝑥𝑟𝑘, where 𝑟𝑘 is uniformly distributed 

random integer from 1:n. In order to ensure better convergence more advanced 

initialization techniques can be applied. In [3] the authors define the k-means++ method. 

This relies on drawing the point with a given distribution that disfavors points that are 

close together. 



2 

Afterwards perform several iterations of assignment steps and update steps. When 

the membership does not change or the maximum number of iterations is reached, the 

algorithm is halted. The steps of the method are given in the following algorithm. 

 

K-means algorithm 

 

Initialization – Randomly select the K centers from the set of input points. Let 

each 𝑟𝑘 be a uniformly distributed random integer from 1:n, then the initial means are 

chosen as: 

𝑚𝑘 = 𝑥𝑟𝑘 

Assignment - Assign each point from the input dataset to the closest cluster 

center found so far. The membership function will take the value of the index of the 

closest center: 

𝐿𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑚𝑘) 
 

Update – Recalculate the cluster centers based on the membership function. The 

new cluster centers are the means of the points from the cluster. In the following, 

summation is performed on all elements that are in cluster k, i.e. they have membership 

of Li = k. 

𝑚𝑘 =
∑ 𝑥𝑖𝐿𝑖=𝑘

∑ 1𝐿𝑖=𝑘
=
∑ 𝑥𝑥∈𝑆𝑘

|𝑆𝑘|
 

Halting condition - If there is no change in the membership function then the 

algorithm can be halted because further calculation will lead to no changes in the mean 

values. A maximum number of iterations can also be enforced. If none of the above 

conditions are met the algorithm continues with the assignment step.  
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3. Example results 

 

In the case of d=2, when K-means is run on a set of 2D points: 

   
points2 - K = 3 points2 - K =  4 points2 - K = 5 

  
points4 points4 - Voronoi tessalation K=3 

 

In the case of d=1, when K-means is run on a grayscale image: 

 

In the case of d=3, when K-means is run on a color image: 

 

  

    
img01.jpg K=3 K=7 K=10 

    
img01.jpg K=3 K=7 K=10 
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4. Implementation details 

Generating a random integer with uniform distribution between a and b (inclusive): 
#include <random> 

 

default_random_engine gen; 

uniform_int_distribution<int> dist_img(a,b); 

int randint = distribution(gen); 

 

Creating a color image: 
Mat img(height, width, CV_8UC3); 

 

Assigning random colors to clusters:  
const int K = 3; 

Vec3b colors[K]; 

for(int i=0; i<K; i++) 

 colors[i] = {dist_img(gen), dist_img(gen), dist_img(gen)}; 

 

Assigning colors[k] to position (i,j): 
img.at<Vec3b>(i,j) = colors[k]; 

5. Practical work 

1. Implement K-means on general input data (d dimensional points). Stop the 

algorithm once no change in the membership is observed or after a certain number 

of maximum iterations. The number of clusters, K, is given by the user. 

2. Apply K-means on a set of 2D points (input files points*.bmp) – in this case d=2 

a. Choose random colors to visualize the clusters based on the resulting 

membership function. 

b. Color the neighborhood of points for better visualization 

c. Draw the Voronoi tessellation corresponding to the obtained cluster 

centers. For this picture you must color each image position (including the 

background) according to which is the closest center from it. 

3. Apply K-means on a grayscale image. Use the intensity as the single feature for 

the input points – in this case d=1 

a. Recolor the input image based on the mean intensity of each cluster. 

4. Apply K-mean on a color image. Use the color components as the features for the 

input points – in this case d=3 

a. Recolor the input image based on the mean color of each cluster. 

5. Optionally, implement the k-means++ initialization technique from [3]. (*) 
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