
Pattern Recognition Systems – Lab 7

Principal Component Analysis

1. Objectives

This laboratory describes the Principal Component Analysis method. It is applied as a

means of dimensionality reduction, compression and also visualization. A library capable

of providing the eigenvalue decomposition is required.

2. Theoretical Background

You are given a set of data points lying in a high dimensional space. Each vector

holds the features of a training instance. Our goal is to reduce the dimensionality of the

data points while preserving as much information as possible.

We begin with a simple 2D example. We plot the points corresponding to data

collected about how different people enjoy certain activities and their skill in the

respective domain. Figure 1 shows a cartoon example.

Consider now the two vectors u1 and u2. If we project the 2D points onto the vector u2

we obtain scalar values with a small spread (standard deviation). If instead, we project it

onto u1 the spread is much larger. If we had to choose a single vector we would prefer to

project onto u1 since the points can still be discerned from each other.

Figure 1. Projection of 𝒙 along the 𝒖1 axis

More formally, each 2D point can be written as:

𝒙 = 〈𝒙, 𝒖1〉 𝒖1 ‖𝒖1‖ +⁄ 〈𝒙, 𝒖2〉 𝒖2 ‖𝒖2‖⁄
Here we have projected x onto each vector and then added the corresponding

terms. The dot product 〈𝒙, 𝒖𝑖〉 gives the magnitude of the projection, it needs to be

normalized by the length of the vector ‖𝒖𝑖‖ and the two vectors give the directions. This

is possible since u1 and u2 are perpendicular. If we impose that they be also unit vectors

then the normalization term disappears. See [4] for a better visualization.

The idea behind reducing the dimensionality of the data is to use only the largest

projections. Since the projections onto u2 will be smaller we can approximate x with only

the first term:

�̃�𝟏 = 〈𝒙, 𝒖1〉 𝒖1 ‖𝒖1‖⁄

In general, given an orthonormal basis for a d-dimensional vector space called B

with basis vectors bi we can write any vector as:

𝒙 = ∑〈𝒙, 𝒃𝑖〉𝒃𝑖 = ∑(𝒙𝑇𝒃𝑖)

𝑑

𝑖=1

𝑑

𝑖=1

𝒃𝑖

The question arises of how to determine the basis vectors onto which to perform

the projections. Since we are interested in maximizing the preserved variance the

covariance matrix could offer useful information. The covariance of two features is

defined as:

𝐶(𝑥𝑖, 𝑥𝑗) =
1

𝑛 − 1
∑(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)

𝑛

𝑖=1

where 𝜇𝑖 is the mean for feature i. The covariance matrix contains covariance

values for all pairs. It can be shown that it can be expressed as a simple matrix product:

𝐶 =
1

𝑛 − 1
(𝑋 − 𝝁𝟏1𝑥𝑛)𝑇(𝑋 − 𝝁𝟏1𝑥𝑛)

where 𝝁 is a vector containing all mean values and 𝟏1𝑥𝑛 is a row vector

containing only ones. If we extract the mean from the data as a preprocessing step the

formula simplifies further:

𝐶 =
1

𝑛 − 1
𝑋𝑇𝑋

The next step is to find the axes along which the covariance is maximal.

Eigenvalue decomposition of a matrix offers such information. Intuitively, (almost) any

matrix can be viewed as a rotation followed by a stretching along the axes and the inverse

rotation. The eigenvalue decomposition returns such a decomposition for the matrix:

𝐶 = 𝑄Λ𝑄𝑇 = ∑ 𝜆𝑖𝑄𝑖𝑄𝑖
𝑇

𝑑

𝑖=1

where Q is a dxd rotation matrix (orthonormal) and 𝛬 contains elements only on

the diagonal representing stretching along each axis. The elements are called eigenvalues

and each corresponding column from Q is its eigenvector. Since we want to preserve the

projections with the largest variance we order the eigenvalues according to magnitude

and pick the first k corresponding eigenvalues. In this way C can be approximated as:

�̃�𝑘 = 𝑄1:𝑘Λ1:𝑘𝑄1:𝑘
𝑇 = ∑ 𝜆𝑖𝑄𝑖𝑄𝑖

𝑇

𝑘

𝑖=1

where 𝑄1:𝑘 is a dxk matrix with the first k eigenvectors and Λ1:𝑘 is a kxk diagonal

matrix with the first k eigenvalues. If k equals d we obtain the original matrix and as we

decrease k we get increasingly poorer approximations for C.

Thus we have found the axes along which the variance of the projections is

maximized. Then, for a general vector its approximate with k vectors can be evaluated as:

�̃�𝒌 = ∑〈𝒙, 𝑄𝑖〉𝑄𝑖 = ∑(𝒙𝑇𝑄𝑖)

𝑘

𝑖=1

𝑘

𝑖=1

𝑄𝑖

where 𝑄𝑖 is the ith column of the rotation matrix Q.

The PCA coefficients can be calculated as:

𝑋𝑐𝑜𝑒𝑓 = 𝑋𝑄

PCA approximation can be performed on all the input vectors at once (if they are

stored as rows in X) using the following formulas:

�̃�𝑘 = ∑ 𝑋𝑄
𝑖
𝑄

𝑖
𝑡 = ∑ 𝑋𝑐𝑜𝑒𝑓𝑖

𝑄
𝑖
𝑡

𝑘

𝑖=1

= 𝑋𝑄1:𝑘𝑄1:𝑘
𝑇

𝑘

𝑖=1

It is important to distinguish the approximation from the coefficients; the

approximation is the sum of coefficients multiplied by the principal components.

We will end the theoretical description by giving several examples for application of

PCA:

 reducing the dimensionality of features - in some cases large feature vector

may prohibit fast prediction;

 visualizing the data - we can inspect only data in 3D and 2D, for higher

dimensional data a projection is necessary;

 approximating the data vectors;

 detecting redundant features and linear dependencies between features;

 noise reduction - if the noise term has less variance then the data (high signal-

to-noise ratio) PCA eliminates the noise from the input

3. Example results

For pca2d

 First eigenvalue is 8102.21

 Mean absolute difference using only one dimension: 142.8648

For pca3d

 First eigenvalue is 5462.3301

 Mean absolute difference using only one dimension: 116.0689

Figure 2. Visualization of 2D points resulting from applying PCA on data from pca2d.txt

4. Implementation details

Declare and allocate an nxd matrix with double precision floating point values:
Mat X(n,d,CV_64FC1);

Calculate the covariance matrix after the means have been subtracted:
Mat C = X.t()*X/(n-1);

Perform eigenvalue decomposition on the covariance matrix C, Lambda will contain the

eigenvalues and Q will contain the eigenvectors along columns.
Mat Lambda, Q;

eigen(C, Lambda, Q);

Q = Q.t();

Dot product is implemented as normal multiplication. Note that due to 0 indexing the first

row is row(0). The dot product between row i of X and column i of Q is given by:
Mat prod = X.row(i)*Q.col(i);

5. Practical Work

1. Open the input file and read the list of data points. The first line contains the number

of points n and the dimensionality of the data d. The following n lines each contain a

single point with d coordinates.

2. Calculate the mean vector and subtract it from the data points.

3. Calculate the covariance matrix as a matrix product.

4. Perform the eigenvalue decomposition on the covariance matrix.

5. Print the eigenvalues.

6. Calculate the PCA coefficients and kth approximate �̃�𝑘 for the input data.

7. Evaluate the mean absolute difference between the original points and their

approximation using k principal components.

8. Find the minimum and maximum along the columns of the coefficient matrix.

9. For the input data from pca2d.txt select the first two columns from Xcoef and plot the

data as black 2D points on a white background. To obtain positive coordinates

subtract the minimum values.

10. For input data from pca3d.txt select the first three columns from Xcoef and plot the

data as a grayscale image. Use the first two components as x and y coordinates and

the third as intensity values. To obtain positive coordinates subtract the minimum

values from the first two coordinates. Normalize the third component to the interval

0:255

11. Automatically select the required k which retains a given percent of the original

variance. For example, find k for which the kth approximate retains 99% of the

original variance. The percentage of variance retained is given by ∑ 𝜆𝑖
𝑘
𝑖=1 ∑ 𝜆𝑖

𝑑
𝑖=1⁄ .

6. References

[1] Wikipedia article PCA -

https://en.wikipedia.org/wiki/Principal_component_analysis

[2] Stanford Machine Learning course notes -

http://cs229.stanford.edu/notes/cs229-notes10.pdf

[3] Lindsay Smith - PCA tutorial -

http://faculty.iiit.ac.in/~mkrishna/PrincipalComponents.pdf

[4] PCA in R (animation of projection) -

https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/

https://en.wikipedia.org/wiki/Principal_component_analysis
http://cs229.stanford.edu/notes/cs229-notes10.pdf
http://faculty.iiit.ac.in/~mkrishna/PrincipalComponents.pdf
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/

