
Automatic extrinsic camera parameters

calibration using Convolutional Neural Networks

Razvan Itu, Diana Borza, Radu Danescu

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

razvan.itu@cs.utcluj.ro

Abstract—Camera calibration is essential for accurate

computer vision, and automatic calibration of some extrinsic

parameters is needed in case the camera is placed on a mobile

platform. The pitch and yaw angles, which are the most likely ones

to change as the vehicle moves, can be inferred from the image

coordinates of the vanishing point (VP). In this paper we present

an artificial neural network approach for detecting the vanishing

point position in road traffic scenarios. The network is trained

using 2500 images which are first automatically annotated using a

classical vanishing point detection algorithm, and then manually

validated. The training and test datasets are made publicly

available. The trained network was tested on more than 250

images not previously seen by the network, locating the VP

accurately in more than 90% of the cases.

Keywords—vanishing point; convolutional neural networks;

calibration; automatic; camera; extrinsic; pitch; yaw

I. INTRODUCTION

Camera calibration is essential for accurate computer vision
applications that involve reasoning about the 3D world. Such
applications include sensing the environment for mobile robots,
driving assistance applications, or surveillance. The most robust
techniques for inferring the 3D information from images are
based on stereovision, but monocular vision can also be used in
limited applications, relying on assumed properties of the
environment (such as flat road, known width of obstacles or
lanes, etc).

Both stereo and monocular environment perception
techniques need accurate camera calibration in order be able to
retrieve the 3D information. Camera calibration is usually a
static process, involving reference objects, accurately measured,
in a controlled environment. However, in the case of vision
applications that involve mobility (mobile robots, driving
assistance), the parameters that are calibrated can quickly
change. This is especially true in the case of consumer cameras,
or smartphones, placed in vehicles, which do not benefit from a
professional mounting system. The angles of the camera with
respect to the reference system of the world (pitch, yaw and roll)
can change rapidly as the mobile platform moves in the 3D
world, and automatic, real time calibration is needed to cope
with this problem.

This Vanishing Point (VP, the point of the perspective image
where the parallel lines in the 3D scene intersect) can be used to

extract valid information regarding the extrinsic parameters of
the camera, such as the pitch and yaw angles. Also, a reliable
detection of the vanishing point is important in the case of
monocular driving assistance applications, as the vanishing
point is also the further point of the road surface, and the
intersecting point of lane markings.

In this paper we propose a novel method, based on a
convolutional neural network (CNN), to predict the position of
the vanishing point. The solution was tested against a classical
VP detection solution, using our own annotated dataset which
includes 2684 images.

The paper is structured as follows: section 2 presents recent
and similar work for detecting vanishing points, section 3
explains the dataset preparation, section 4 presents the neural
network and the architecture of the proposed system, and also
presents the computation of the pitch and yaw angles from the
detected VP, section 5 presents the testing procedure and results
and finally, section 6 describes the conclusion and further work.

II. RELATED WORK

Recent work in vanishing point detection is based solely on
computer vision algorithms that analyze the texture [1], [2] or
geometric properties such as edges and lines in the image [3],
[4] or [5]. Usually edge based methods perform well only in
scenarios where the road surface is clear and well delimited by
painted lane markings or borders. In [3] the authors present a
method based on Gabor filters with different orientations in
order to estimate the main orientation of edges. A voting scheme
is used to update a vanishing point accumulator for multiple
vanishing point locations. This approach works well for
unstructured roads where road markings might not be present.
Texture based methods, such as [1], [2] or [3] generally work
well on both structured and non-structured roads. These methods
use texture information and have similar steps as the edge based
methods: determine the orientation of the textures by applying
various filters, determine vanishing point candidates and voters
and finally, applying a voting scheme to obtain a vanishing
point. In the literature, local voting schemes have been proposed
to increase the accuracy of the voting by introducing confidence
levels.

978-1-5386-3368-7/17/$31.00 ©2017 IEEE

Road surface segmentation using CNNs has received vast
research interest in the past years. Using such approaches, the
drivable road surface can be estimated from neural networks [6],
[7]. The CNNs are used to perform pixel wise predictions
regarding the scene. From a segmented image which includes a
drivable road the vanishing point can be found as the top of the
road surface. However, this approach is usually computationally
expensive and imprecise due to pixel-wise segmentation errors,
and assumes that the road is always flat, or that the vanishing
point is always a visible road point in the image.

Most vanishing point detection methods based on traditional
computer vision algorithms rely on pixel information and
voting, meaning that such systems are generally computationally
expensive.

III. DATASET PREPARATION

We have used traditional computer vision algorithms for
computing the ground truth vanishing points, the method is
based on [5]. We process images taken from OpenStreetCam [8]
and create a dataset annotated with the following data: image,
text file and image vote map. The text file contains the image
name, the vanishing point x and y coordinates obtained by the
algorithm, the tracked vanishing point x and y coordinates
obtained by a tracking algorithm. The tracking algorithm is
based on a ring buffer where the most recent 6 frames are stored
and the median value is selected. This introduces a delay in the
vanishing point values, but overall produces better results and
filters out cases when the classical algorithm might fail. The
images are of a 4:3 scale and size of 640 x 480 pixels. We chose
to crop the top part of the image in order to avoid unnecessary
processing of irrelevant data (such as sky and trees) and also to
improve the overall performance, both the training time and the
prediction time. Then the images are resized and the final size of
the input is actually 160 x 48 pixels. The initial dataset consists
of 2828 total images and labels, of which 2233 represent
highway scenarios and 595 for city. The dataset was adjusted so
that negative y coordinates of the vanishing point are removed
after the image resizing and cropping, resulting in a dataset
containing 2090 highway images and labels and 594 images and
labels for city, resulting a total size of 2684. The initial dataset
is further split into training (90%) and test (10%).

As the automatic detection of the vanishing point is prone to
errors, we have also analyzed the processed sequences manually,
and corrected the wrong results.

 One of the properties of CNNs is that they work better when
the training process uses a lot of data. One of the easiest ways of
generating more training data is to augment the existing
annotated data. This can be done in multiple ways, such as:
random image flips, translations, applying rotations or even by
adjusting the brightness and contrast of the input data. In our
case, we have applied a horizontal flip on the entire dataset and
we have adjusted the vanishing points accordingly. The resulted
final training dataset includes 4830 images, with their annotated
vanishing points and the test dataset consists of 269 images and
annotations. During training phase of the neural network, the
training set is further split in two: training 90% and validation
10%. The distribution of all the vanishing points in the image
space is illustrated in figure 1.

Fig. 1. Vanishing point distribution for the training dataset.

IV. THE PROPOSED SOLUTION

This section presents the proposed solution for vanishing
point estimation, based on a convolutional neural network.

A. Solution overview

We present an original vanishing point detection framework
based on convolutional neural networks. The framework is
inspired from [9], where Nvidia used a neural network to predict
the steering angle of a vehicle directly from a single image. A
system overview of our framework is presented in figure 2.

Fig. 2. System overview

We deploy a convolutional neural network (CNN) in order
to process cropped and resized input images that were acquired
using monocular camera systems. We then predict the vanishing
point position and compare it using the ground truth vanishing
point.

B. Convolutional neural network architecture

Convolutional neural networks have been widely used in the
past years, especially since computational power has become
more affordable. Notable changes occurred in 2012 when [11]
used a CNN for the ImageNet classification challenge and won
by a large margin. The classical steps of image based
classification, such as: feature pre-processing, extraction and
classification are replaced by neural networks that automatically
learn the relevant features.

Our chosen CNN architecture is illustrated in figure 3.

Fig. 3. Proposed convolutional neural network architecture.

For our network, the images are cropped and then scaled
down to 160 x 48 resolution and fed directly as input to the
neural network. The layers are organized as follows:

 First layer represents batch normalization (B)

 The second layer is actually the first convolution layer
(C1), with 16 filters using a 3x3 kernel

 The third layer is also a convolution layer (C2), with 24
filters using a 3x3 kernel

 The fourth layer represents another convolution (C3),
with 36 filters using a 3x3 kernel

 The fifth layer is also a CONV (C4) with 48 filters
using a 2x2 kernel

 The sixth layer is the last CONV (C5) featuring 48
filters with a 2x2 kernel

 The next layer is a flatten operation that flattens the
input

 The 7th layer represents the first fully-connected layer
(FC1) that contains 512 neurons, followed by a 0.5
dropout with ReLU as activation function

 The 8th layer is another FC layer (FC2) with 10
neurons with ReLU as activation function

 The final layer represents a fully connected layer (FC3)
with 2 neurons

Batch normalization is used in order to achieve faster
learning and increase the overall accuracy of the network. The
convolutional layers will feature filters with weights adjusted so
that the output images will work similar to line detectors.

The 2 neurons from the final layer actually represent the
values for the predicted vanishing point: the x and y coordinates.

The response of the first convolutional layer (with its 16 3x3
filters) for a sample input image is shown in figure 4.

Fig. 4. Output of the first convolutional (C1) layer for a sample input image.

C. CNN training

We have trained the network in 20 epochs, using a batch size
of 256 images. In figure 5 we plot the loss function evolution on
training and test datasets. As seen in the figure, after 5 epochs
the loss function stops converging, therefore training can be
stopped earlier.

The loss function of the network is defined as the root mean
squared error (RMSE) between the ground truth and the
predicted position of the vanishing point. The network’s weights
are adjusted by using back-propagation by gradient descent and
using an Adam optimizer [10] with a learning rate of 0.001.

As described in section 3, we have split the dataset into
training and test (90% - 10%). From the remaining training set
we have further obtained the validation set (90% training - 10%
validation) that is used during the training phase.

Training the network on a GPU powered machine usually
takes around 2 seconds per epoch, whereas on a CPU based
machine it takes around 20 seconds per epoch. Therefore, the
use of a GPU can bring significant speedup, but the system is
capable of running in real time (for the prediction) also on a
decent CPU.

Fig. 5. Loss function result evolution while training, computed using training

and validation sets.

D. VP prediction, pitch and yaw computation

The network is trained by using images with annotated
vanishing points. After training, the network can predict the
image coordinates of the VP on new, unseen images. An
example of VP prediction, compared with ground truth, is
presented in figure 6.

Fig. 6. Example of a predicted vanishing point. The green circle represents the

ground truth and the white circle is the prediction.

From the detected VP coordinates, we can extract the pitch
and yaw angles of the camera with respect to the road, using the
following equations:

 𝑝𝑖𝑡𝑐ℎ = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑡𝑐ℎ + 𝛥𝑝𝑖𝑡𝑐ℎ (1)

where  pitch is obtained as follows:

 𝛥𝑝𝑖𝑡𝑐ℎ =
𝛥𝑦

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 (2)

 𝛥𝑦 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑝. 𝑦 − 𝑣𝑝. 𝑦 (3)

The equations for computing the yaw angle are similar to the
ones for the pitch, with the only difference that we use the x
vanishing point coordinate coordinate. Pitch and yaw angles
provide relevant information about the camera pose in the 3D
world scene.

The original pitch and yaw angles are the initial known
angles of the camera, which can be calibrated in static conditions
when the camera is set up on the mobile platform. If such
calibration cannot be performed, these angles can be assumed to
be zero, and the pitch and yaw differences computed from VP
differences become the actual angle values.

The original vanishing point x and y coordinates can be
computed by projecting a 3D point situated far away on the Z-
axis (in a left hand rule coordinate system, where the Z-axis
points in front of the ego-vehicle) into the 2D image space.
Projection of the theoretical vanishing point is done using a
projection matrix where the pitch, yaw and roll angles can be
either known from a static calibration process, or assumed to be
equal to 0. The focal length is expressed in pixels, and is adjusted
for the resized input image.

The roll angle (lateral inclination of the platform) does not
affect the vanishing point, and therefore cannot be computed
from the VP coordinates. Therefore, this angle is assumed to be
zero, if no other means of computing it can be used.

The pitch and yaw angles are then used for computing the
extrinsic camera rotation matrix, which is further used to
generate the projection matrix that related the 3D world to the
image plane. The projection matrix can be used to infer 3D
information from the image features (under several assumptions,
if monocular vision is used), or can be used for removing the
perspective effect, and to generate a bird eye’s view image, like
in [12].

V. TESTS AND EVALUATION

The evaluation dataset includes 59 images of city traffic and
209 images of highway driving. The mean error values obtained
after testing the prediction is presented in table 1.

To evaluate our results, we have used two metrics: the root
mean squared error (RMSE) between the predicted and actual
(ground truth) vanishing point and a similar metric named:
NormDist that divides the RMSE by the image diagonal (so that
the metric is image-independent). The NormDist is actually the
distance between the vanishing points divided by the image
diagonal, as expressed in equation 4: where VPP represents the
predicted vanishing point, VPG is the ground truth vanishing
point and diag represents the image diagonal expressed in pixels.

 𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡 =
||𝑉𝑃𝑃−𝑉𝑃𝐺||

𝑑𝑖𝑎𝑔
 (4)

The NormDist distance metric is generally used for
computing the VP error in [4] and also in [5]. We ran prediction
tests on random batch of images from both datasets and also on
the entire city and highway dataset.

TABLE I. ERROR COMPUTATION ON DATASET

Error metric Random data City Highway

NormDist 0.04458 0.05072 0.02612

RMSE 5.19591 8.47350 4.36344

We have also computed the NormDist error on each image
in the city and highway datasets and the results are displayed in
figure 7.

Fig. 7. NormDist error computed on individual images in both city (top) and

highway (bottom) test datasets.

Table 2 represents an analysis on the RMSE metric that was
computed on the entire vanishing point dataset. We have
computed how many predictions have a RMSE value lower than
2, between 2 and 3, between 3 and 5, between 5 and 10 and over
10. The table presents the percentage from the total number of
images.

From table 2 we can clearly see that the city dataset has a
larger uncertainty, whereas the highway predictions are more
accurate (over 76% of the predictions have a RMSE smaller than
3 and over 93% have a RMSE smaller than 5). The higher
uncertainty from the city dataset is caused by the presence of a
higher number of vehicles and other obstacles in front of the ego
vehicle, which make the road surface and the painted road
markings less visible.

Sometimes the predicted vanishing point is better than the
one obtained from the classic algorithms, as can be seen in figure
8. This is usually caused by additional obstacles in front of the
ego vehicle which can influence the results of traditional
algorithms.

Fig. 8. Example of a predicted vanishing point that is better than the vanishing

point computed by traditional algorithms. The green circle represents the

ground truth and the white circle is the prediction.

Figure 9 illustrates more prediction examples on random
images from the datasets. As opposed to the previous example,
the predicted value is not always accurate (for example, the
middle image in the last row of the 2nd column).

TABLE II. RMSE ANALYSIS ON CITY AND HIGHWAY DATASETS

City (594 total images) Highway (2090 total images)

interval count interval percent interval count interval percent

< 2 68 < 2 11.4 % < 2 1122 < 2 53.6 %

[2 - 3) 65 < 3 22.3 % [2 - 3) 487 < 3 76.9 %

[3 - 5) 215 < 5 58.5 % [3 - 5) 340 < 5 93.2 %

[5 - 10) 238 < 10 98.6 % [5 - 10) 139 < 10 99.9 %

> 10 8 > 10 1.34 % > 10 2 > 10 0.09 %

Fig. 9. Comparison between network predicted vanishing point and ground truth vanishing point. The green circle represents the ground truth and the white circle

is the prediction.

The processing time for making prediction is close to an
average of 1.7 milliseconds per image on an Intel i7 6700K
(desktop CPU) and Nvidia GTX 1080 Ti GPU. Tests on the
same dataset were performed on a laptop with Intel i7
3615QM (laptop CPU) and the prediction time is close to 100
milliseconds per image. Therefore, the system is capable of
computing the vanishing point position in real time on a
decent CPU.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel method for obtaining
vanishing points using a CNN and a unique dataset that is used
to compute the pitch and yaw of a monocular camera system.
Even though the metrics and results are good, there are a few
improvements that can be done. One major aspect is to
compute individually, on each image a proper start index for
cropping the top part. Another improvement that can be done
is regarding the dataset: we can further increase the amount of
data using new trips and using our own acquisition system.
Augmentation can be of good help, but new images can be
better for training neural networks.

The vanishing point dataset is publicly available at [13]
and consists of multiple trips organized into 2 folders: city and
highway. Inside of each trip folder there is a text file
corresponding to individual images. The text file contains:
vanishing point x and y coordinates, the tracked vanishing
point x and y coordinates and the web address of the image
file.

Automatic self-calibration systems are very useful, but not
limited to, the self-driving cars field. By using our method, we
can automatically compute most of the extrinsic camera
parameters (pitch and yaw angles) of a monocular camera
system that is used in driving scenarios.

REFERENCES

[1] Bui, T.H., Nobuyama, E., Saitoh, T., “A texture-based local soft voting
method for vanishing point detection from a single road image”. IEICE
Trans. Inf. Syst. 2013, E96-D, 690 - 698.

[2] Bui, T.H.; Saitoh, T., Nobuyama, E., “Road Area Detection Based on
Texture Orientations Estimation and Vanishing Point Detection”. In
Proceedings of the 2013 SICE Annual Conference (SICE), Nagoya,
Japan, 14 - 17 September 2013; pp. 1138 - 1143.

[3] Kong, H., Audibert, J.-Y., Ponce, J., “Vanishing point detection for
road detection”. Comput. Vis. Pattern Recognit, 2009, 96–103.

[4] Moghadam, P., Starzyk, J.A., Wijesoma, W.S., “Fast vanishing-point
detection in unstructured environments”. IEEE Trans. Image Process.
2012, 21, 425 - 430.

[5] Wu, Z., Fu, W., Xue, R., Wang, W., “A Novel Line Space Voting
Method for Vanishing-Point Detection of General Road Images”.
Sensors 2016, 16, 948.

[6] Alvarez J.M., Gevers T., LeCun Y., Lopez A.M., “Road Scene
Segmentation from a Single Image”, ECCV 2012.

[7] Badrinarayanan V., Kendall A., Cipolla R., “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image
Segmentation”, eprint arXiv:1511.0056, 2015, online:
https://arxiv.org/abs/1511.00561

[8] OpenStreetCam, online: https://www.openstreetcam.org/
[9] Bojarski M., et. al., “End to End Learning for Self-Driving Cars”,

eprint arXiv:1604.07316, 2016, online:
https://arxiv.org/abs/1604.07316

[10] Kingma J. Ba, “Adam: A method for stochastic optimization”, ICLR
2015.

[11] Krizhevsky A., Sutskever I., Hinton G.E., “Imagenet classification
with deep convolutional neural networks”. Advances in neural
information processing systems. 2012, 1097 - 1105.

[12] Danescu R., Itu R., Petrovai A., “Generic Dynamic Environment
Perception Using Smart Mobile Devices”. Sensors 2016, 16, 1721.

[13] Vanishing Point public dataset, online:
http://users.utcluj.ro/~razvanitu/VPdataset.zip

https://arxiv.org/abs/1511.00561
https://www.openstreetcam.org/
https://arxiv.org/abs/1604.07316
http://users.utcluj.ro/~razvanitu/VPdataset.zip

