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Abstract—Camera calibration is essential for accurate 

computer vision, and automatic calibration of some extrinsic 

parameters is needed in case the camera is placed on a mobile 

platform. The pitch and yaw angles, which are the most likely ones 

to change as the vehicle moves, can be inferred from the image 

coordinates of the vanishing point (VP). In this paper we present 

an artificial neural network approach for detecting the vanishing 

point position in road traffic scenarios. The network is trained 

using 2500 images which are first automatically annotated using a 

classical vanishing point detection algorithm, and then manually 

validated. The training and test datasets are made publicly 

available. The trained network was tested on more than 250 

images not previously seen by the network, locating the VP 

accurately in more than 90% of the cases. 
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I.  INTRODUCTION 

Camera calibration is essential for accurate computer vision 
applications that involve reasoning about the 3D world. Such 
applications include sensing the environment for mobile robots, 
driving assistance applications, or surveillance. The most robust 
techniques for inferring the 3D information from images are 
based on stereovision, but monocular vision can also be used in 
limited applications, relying on assumed properties of the 
environment (such as flat road, known width of obstacles or 
lanes, etc). 

Both stereo and monocular environment perception 
techniques need accurate camera calibration in order be able to 
retrieve the 3D information. Camera calibration is usually a 
static process, involving reference objects, accurately measured, 
in a controlled environment. However, in the case of vision 
applications that involve mobility (mobile robots, driving 
assistance), the parameters that are calibrated can quickly 
change. This is especially true in the case of consumer cameras, 
or smartphones, placed in vehicles, which do not benefit from a 
professional mounting system. The angles of the camera with 
respect to the reference system of the world (pitch, yaw and roll) 
can change rapidly as the mobile platform moves in the 3D 
world, and automatic, real time calibration is needed to cope 
with this problem. 

This Vanishing Point (VP, the point of the perspective image 
where the parallel lines in the 3D scene intersect) can be used to 

extract valid information regarding the extrinsic parameters of 
the camera, such as the pitch and yaw angles. Also, a reliable 
detection of the vanishing point is important in the case of 
monocular driving assistance applications, as the vanishing 
point is also the further point of the road surface, and the 
intersecting point of lane markings. 

In this paper we propose a novel method, based on a 
convolutional neural network (CNN), to predict the position of 
the vanishing point. The solution was tested against a classical 
VP detection solution, using our own annotated dataset which 
includes 2684 images.  

The paper is structured as follows: section 2 presents recent 
and similar work for detecting vanishing points, section 3 
explains the dataset preparation, section 4 presents the neural 
network and the architecture of the proposed system, and also 
presents the computation of the pitch and yaw angles from the 
detected VP, section 5 presents the testing procedure and results 
and finally, section 6 describes the conclusion and further work. 

 

II. RELATED WORK 

Recent work in vanishing point detection is based solely on 
computer vision algorithms that analyze the texture [1], [2] or 
geometric properties such as edges and lines in the image [3], 
[4] or [5]. Usually edge based methods perform well only in 
scenarios where the road surface is clear and well delimited by 
painted lane markings or borders. In [3] the authors present a 
method based on Gabor filters with different orientations in 
order to estimate the main orientation of edges. A voting scheme 
is used to update a vanishing point accumulator for multiple 
vanishing point locations. This approach works well for 
unstructured roads where road markings might not be present. 
Texture based methods, such as [1], [2] or [3] generally work 
well on both structured and non-structured roads. These methods 
use texture information and have similar steps as the edge based 
methods: determine the orientation of the textures by applying 
various filters, determine vanishing point candidates and voters 
and finally, applying a voting scheme to obtain a vanishing 
point. In the literature, local voting schemes have been proposed 
to increase the accuracy of the voting by introducing confidence 
levels.  
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Road surface segmentation using CNNs has received vast 
research interest in the past years. Using such approaches, the 
drivable road surface can be estimated from neural networks [6], 
[7]. The CNNs are used to perform pixel wise predictions 
regarding the scene. From a segmented image which includes a 
drivable road the vanishing point can be found as the top of the 
road surface. However, this approach is usually computationally 
expensive and imprecise due to pixel-wise segmentation errors, 
and assumes that the road is always flat, or that the vanishing 
point is always a visible road point in the image. 

Most vanishing point detection methods based on traditional 
computer vision algorithms rely on pixel information and 
voting, meaning that such systems are generally computationally 
expensive.  

III. DATASET PREPARATION 

We have used traditional computer vision algorithms for 
computing the ground truth vanishing points, the method is 
based on [5]. We process images taken from OpenStreetCam [8] 
and create a dataset annotated with the following data: image, 
text file and image vote map. The text file contains the image 
name, the vanishing point x and y coordinates obtained by the 
algorithm, the tracked vanishing point x and y coordinates 
obtained by a tracking algorithm. The tracking algorithm is 
based on a ring buffer where the most recent 6 frames are stored 
and the median value is selected. This introduces a delay in the 
vanishing point values, but overall produces better results and 
filters out cases when the classical algorithm might fail. The 
images are of a 4:3 scale and size of 640 x 480 pixels. We chose 
to crop the top part of the image in order to avoid unnecessary 
processing of irrelevant data (such as sky and trees) and also to 
improve the overall performance, both the training time and the 
prediction time. Then the images are resized and the final size of 
the input is actually 160 x 48 pixels. The initial dataset consists 
of 2828 total images and labels, of which 2233 represent 
highway scenarios and 595 for city. The dataset was adjusted so 
that negative y coordinates of the vanishing point are removed 
after the image resizing and cropping, resulting in a dataset 
containing 2090 highway images and labels and 594 images and 
labels for city, resulting a total size of 2684. The initial dataset 
is further split into training (90%) and test (10%). 

As the automatic detection of the vanishing point is prone to 
errors, we have also analyzed the processed sequences manually, 
and corrected the wrong results. 

 One of the properties of CNNs is that they work better when 
the training process uses a lot of data. One of the easiest ways of 
generating more training data is to augment the existing 
annotated data. This can be done in multiple ways, such as: 
random image flips, translations, applying rotations or even by 
adjusting the brightness and contrast of the input data. In our 
case, we have applied a horizontal flip on the entire dataset and 
we have adjusted the vanishing points accordingly. The resulted 
final training dataset includes 4830 images, with their annotated 
vanishing points and the test dataset consists of 269 images and 
annotations. During training phase of the neural network, the 
training set is further split in two: training 90% and validation 
10%. The distribution of all the vanishing points in the image 
space is illustrated in figure 1. 

 

 

Fig. 1. Vanishing point distribution for the training dataset. 

IV. THE PROPOSED SOLUTION 

This section presents the proposed solution for vanishing 
point estimation, based on a convolutional neural network.  

A. Solution overview 

We present an original vanishing point detection framework 
based on convolutional neural networks. The framework is 
inspired from [9], where Nvidia used a neural network to predict 
the steering angle of a vehicle directly from a single image. A 
system overview of our framework is presented in figure 2. 

 

 

Fig. 2. System overview 

We deploy a convolutional neural network (CNN) in order 
to process cropped and resized input images that were acquired 
using monocular camera systems. We then predict the vanishing 
point position and compare it using the ground truth vanishing 
point.  

B. Convolutional neural network architecture 

Convolutional neural networks have been widely used in the 
past years, especially since computational power has become 
more affordable. Notable changes occurred in 2012 when [11] 
used a CNN for the ImageNet classification challenge and won 
by a large margin. The classical steps of image based 
classification, such as: feature pre-processing, extraction and 
classification are replaced by neural networks that automatically 
learn the relevant features. 

Our chosen CNN architecture is illustrated in figure 3. 



 

Fig. 3. Proposed convolutional neural network architecture. 

 

For our network, the images are cropped and then scaled 
down to 160 x 48 resolution and fed directly as input to the 
neural network. The layers are organized as follows: 

 First layer represents batch normalization (B) 

 The second layer is actually the first convolution layer 
(C1), with 16 filters using a 3x3 kernel 

 The third layer is also a convolution layer (C2), with 24 
filters using a 3x3 kernel 

 The fourth layer represents another convolution (C3), 
with 36 filters using a 3x3 kernel 

 The fifth layer is also a CONV (C4) with 48 filters 
using a 2x2 kernel 

 The sixth layer is the last CONV (C5) featuring 48 
filters with a 2x2 kernel 

 The next layer is a flatten operation that flattens the 
input 

 The 7th layer represents the first fully-connected layer 
(FC1) that contains 512 neurons, followed by a 0.5 
dropout with ReLU as activation function 

 The 8th layer is another FC layer (FC2) with 10 
neurons with ReLU as activation function 

 The final layer represents a fully connected layer (FC3) 
with 2 neurons 

 

Batch normalization is used in order to achieve faster 
learning and increase the overall accuracy of the network. The 
convolutional layers will feature filters with weights adjusted so 
that the output images will work similar to line detectors. 

The 2 neurons from the final layer actually represent the 
values for the predicted vanishing point: the x and y coordinates.  

The response of the first convolutional layer (with its 16 3x3 
filters) for a sample input image is shown in figure 4. 

 

 

 

 

 

 

 

Fig. 4. Output of the first convolutional (C1) layer for a sample input image. 

 

C. CNN training 

We have trained the network in 20 epochs, using a batch size 
of 256 images. In figure 5 we plot the loss function evolution on 
training and test datasets. As seen in the figure, after 5 epochs 
the loss function stops converging, therefore training can be 
stopped earlier.  

The loss function of the network is defined as the root mean 
squared error (RMSE) between the ground truth and the 
predicted position of the vanishing point. The network’s weights 
are adjusted by using back-propagation by gradient descent and 
using an Adam optimizer [10] with a learning rate of 0.001. 

As described in section 3, we have split the dataset into 
training and test (90% - 10%). From the remaining training set 
we have further obtained the validation set (90% training - 10% 
validation) that is used during the training phase. 

Training the network on a GPU powered machine usually 
takes around 2 seconds per epoch, whereas on a CPU based 
machine it takes around 20 seconds per epoch. Therefore, the 
use of a GPU can bring significant speedup, but the system is 
capable of running in real time (for the prediction) also on a 
decent CPU.  

 



 

Fig. 5. Loss function result evolution while training, computed using training 

and validation sets. 

 

D. VP prediction, pitch and yaw computation 

The network is trained by using images with annotated 
vanishing points. After training, the network can predict the 
image coordinates of the VP on new, unseen images. An 
example of VP prediction, compared with ground truth, is 
presented in figure 6. 

 

 

Fig. 6. Example of a predicted vanishing point. The green circle represents the 

ground truth and the white circle is the prediction. 

From the detected VP coordinates, we can extract the pitch 
and yaw angles of the camera with respect to the road, using the 
following equations: 

 

 𝑝𝑖𝑡𝑐ℎ = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑡𝑐ℎ + 𝛥𝑝𝑖𝑡𝑐ℎ (1) 

 

where  pitch is obtained as follows: 

 

 𝛥𝑝𝑖𝑡𝑐ℎ =  
𝛥𝑦

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
  (2) 

 𝛥𝑦 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑝. 𝑦 − 𝑣𝑝. 𝑦  (3) 

The equations for computing the yaw angle are similar to the 
ones for the pitch, with the only difference that we use the x 
vanishing point coordinate coordinate. Pitch and yaw angles 
provide relevant information about the camera pose in the 3D 
world scene. 

The original pitch and yaw angles are the initial known 
angles of the camera, which can be calibrated in static conditions 
when the camera is set up on the mobile platform. If such 
calibration cannot be performed, these angles can be assumed to 
be zero, and the pitch and yaw differences computed from VP 
differences become the actual angle values. 

The original vanishing point x and y coordinates can be 
computed by projecting a 3D point situated far away on the Z-
axis (in a left hand rule coordinate system, where the Z-axis 
points in front of the ego-vehicle) into the 2D image space. 
Projection of the theoretical vanishing point is done using a 
projection matrix where the pitch, yaw and roll angles can be 
either known from a static calibration process, or assumed to be 
equal to 0. The focal length is expressed in pixels, and is adjusted 
for the resized input image. 

The roll angle (lateral inclination of the platform) does not 
affect the vanishing point, and therefore cannot be computed 
from the VP coordinates. Therefore, this angle is assumed to be 
zero, if no other means of computing it can be used. 

The pitch and yaw angles are then used for computing the 
extrinsic camera rotation matrix, which is further used to 
generate the projection matrix that related the 3D world to the 
image plane. The projection matrix can be used to infer 3D 
information from the image features (under several assumptions, 
if monocular vision is used), or can be used for removing the 
perspective effect, and to generate a bird eye’s view image, like 
in [12].  

V. TESTS AND EVALUATION 

The evaluation dataset includes 59 images of city traffic and 
209 images of highway driving. The mean error values obtained 
after testing the prediction is presented in table 1. 

To evaluate our results, we have used two metrics: the root 
mean squared error (RMSE) between the predicted and actual 
(ground truth) vanishing point and a similar metric named: 
NormDist that divides the RMSE by the image diagonal (so that 
the metric is image-independent). The NormDist is actually the 
distance between the vanishing points divided by the image 
diagonal, as expressed in equation 4: where VPP represents the 
predicted vanishing point, VPG is the ground truth vanishing 
point and diag represents the image diagonal expressed in pixels. 

 

 𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡 =  
||𝑉𝑃𝑃−𝑉𝑃𝐺||

𝑑𝑖𝑎𝑔
 (4) 

 

The NormDist distance metric is generally used for 
computing the VP error in [4] and also in [5]. We ran prediction 
tests on random batch of images from both datasets and also on 
the entire city and highway dataset.  

TABLE I.  ERROR COMPUTATION ON DATASET 

Error metric Random data City Highway 

NormDist 0.04458 0.05072 0.02612 

RMSE 5.19591 8.47350 4.36344 

 



We have also computed the NormDist error on each image 
in the city and highway datasets and the results are displayed in 
figure 7. 

 

 

 

Fig. 7. NormDist error computed on individual images in both city (top) and 

highway (bottom) test datasets. 

 

 

 

Table 2 represents an analysis on the RMSE metric that was 
computed on the entire vanishing point dataset. We have 
computed how many predictions have a RMSE value lower than 
2, between 2 and 3, between 3 and 5, between 5 and 10 and over 
10. The table presents the percentage from the total number of 
images. 

From table 2 we can clearly see that the city dataset has a 
larger uncertainty, whereas the highway predictions are more 
accurate (over 76% of the predictions have a RMSE smaller than 
3 and over 93% have a RMSE smaller than 5). The higher 
uncertainty from the city dataset is caused by the presence of a 
higher number of vehicles and other obstacles in front of the ego 
vehicle, which make the road surface and the painted road 
markings less visible. 

Sometimes the predicted vanishing point is better than the 
one obtained from the classic algorithms, as can be seen in figure 
8. This is usually caused by additional obstacles in front of the 
ego vehicle which can influence the results of traditional 
algorithms. 

 

 

Fig. 8. Example of a predicted vanishing point that is better than the vanishing 

point computed by traditional algorithms. The green circle represents the 

ground truth and the white circle is the prediction. 

Figure 9 illustrates more prediction examples on random 
images from the datasets. As opposed to the previous example, 
the predicted value is not always accurate (for example, the 
middle image in the last row of the 2nd column). 

 

 

 

TABLE II.  RMSE ANALYSIS ON CITY AND HIGHWAY DATASETS 

City (594 total images) Highway (2090 total images) 

interval count interval percent interval count interval percent 

< 2 68 < 2 11.4 % < 2 1122 < 2 53.6 % 

[2 - 3) 65 < 3 22.3 % [2 - 3) 487 < 3 76.9 % 

[3 - 5) 215 < 5 58.5 % [3 - 5) 340 < 5 93.2 % 

[5 - 10) 238 < 10 98.6 % [5 - 10) 139 < 10 99.9 % 

> 10 8 > 10 1.34 % > 10 2 > 10 0.09 % 

 

 

 



 

Fig. 9. Comparison between network predicted vanishing point and ground truth vanishing point. The green circle represents the ground truth and the white circle 

is the prediction. 

 

The processing time for making prediction is close to an 
average of 1.7 milliseconds per image on an Intel i7 6700K 
(desktop CPU) and Nvidia GTX 1080 Ti GPU. Tests on the 
same dataset were performed on a laptop with Intel i7 
3615QM (laptop CPU) and the prediction time is close to 100 
milliseconds per image.  Therefore, the system is capable of 
computing the vanishing point position in real time on a 
decent CPU. 

VI. CONCLUSION AND FUTURE WORK 

This paper presents a novel method for obtaining 
vanishing points using a CNN and a unique dataset that is used 
to compute the pitch and yaw of a monocular camera system. 
Even though the metrics and results are good, there are a few 
improvements that can be done. One major aspect is to 
compute individually, on each image a proper start index for 
cropping the top part. Another improvement that can be done 
is regarding the dataset: we can further increase the amount of 
data using new trips and using our own acquisition system. 
Augmentation can be of good help, but new images can be 
better for training neural networks.  

The vanishing point dataset is publicly available at [13] 
and consists of multiple trips organized into 2 folders: city and 
highway. Inside of each trip folder there is a text file 
corresponding to individual images. The text file contains: 
vanishing point x and y coordinates, the tracked vanishing 
point x and y coordinates and the web address of the image 
file. 

Automatic self-calibration systems are very useful, but not 
limited to, the self-driving cars field. By using our method, we 
can automatically compute most of the extrinsic camera 
parameters (pitch and yaw angles) of a monocular camera 
system that is used in driving scenarios. 
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