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Abstract—Deep learning based image processing has become 
popular and approaches using convolutional neural networks 
(CNNs) have been widely used in recent years. In this paper we 
propose a multiple output convolutional neural network for 
road traffic scene understanding using a monocular camera. 
The color images are fed into the artificial neural network that 
produces multiple outputs. Our model performs three tasks: 
semantic segmentation, object detection and vanishing point 
computation. The semantic segmentation produces relevant 
data regarding the traffic scene, the obstacle detection module 
provides individual obstacles, whereas the vanishing point 
module will provide information that can be used to perform 
extrinsic camera calibration. We propose a novel obstacle 
detection approach and extend already published work by 
having a vanishing point detection module. The multiple outputs 
are predicted in a single-step and the information can be used as 
an initialization step for a 3D tracking system. Our network can 
extract individual dynamic objects and their correlation to the 
3D space can be computed using the extrinsic parameters 
generated from the vanishing point module. 
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I. INTRODUCTION 
Deep learning based image processing has become 

popular and approaches using convolutional neural networks 
(CNNs) have been widely used in recent years. The increase 
in processing power availability and new datasets has 
facilitated the development of CNNs that predict relevant 
information from road traffic images, such as vehicles or 
pedestrians, traffic signs, road and lane information and so on.   

In this paper we propose a CNN model that is able to 
perform multiple tasks. This is achieved using a single 
encoder part and multiple decoders. The encoder is generally 
referred as “backbone” network, whereas the decoders are 
named “heads”. The encoder part has the role of extracting the 
relevant features from images, whereas the decoders will 
generate the required outputs based on the features. We 
present a CNN architecture that is able to detect individual 
obstacles in the road scene, perform semantic segmentation 
and estimate the position of the vanishing point. The encoder 
features convolution layers. The semantic segmentation is 
composed out of upsampling layers that construct an image of 
the scene from the extracted features. The obstacle detection 
is implemented in a novel way by using the same structure as 
the semantic segmentation, instead of the traditional bounding 
box regression. The same idea is used also for the vanishing 
point computation. Predicting data related to vanishing point 
using a single backbone CNN is also a novel idea.   

The neural network is trained using existing datasets and 
also by generating new data using our own algorithms that we 
previously published.  

The artificial neural network presented in this paper can be 
used in a monocular camera based perception system, as an 
initialization step for a 3D tracker system: our system offers 
the dynamic and static obstacles from the sementic 
segmentation module, individual obstacle instances extracted 
from the detection module and their mapping into the 3D 
space can be performed using the extrinsic parameters 
computed from the vanishing point that is generated from the 
vanishing point module of the CNN. 

II. RELATED WORK 
Convolutional neural networks have been used for various 

tasks in recent years starting from image classification [1], 
object detection [2], semantic segmentation [3], [4], or even 
3D data inference [5] or tracking [6]. Monocular depth 
estimation can also be achieved using CNNs and a survey is 
presented here [7]. A survey regarding deep learning based 
methods for autonomous driving is presented in [8].  

The main difference of the semantic segmentation 
approaches compared to the instance segmentation ones, is 
that they are faster and they make use of the same extracted 
features. Instance segmentation models usually predict 
bounding boxes and then they try to apply the segmentation 
for each predicted box. Therefore they are mostly dependent 
on the quality of the bounding box prediction step, whereas 
the multiple output networks provide results that are 
completely independent (the segmentation does not interfere 
with the obstacle detector and vice-versa). Training multiple 
output networks proves to be a difficult challenge due to the 
fact that they make use of different loss functions that require 
different weights. Paper [9] proposes a multi-task neural 
network using images in the YUV color space. Our work is 
similar to MultiNet [10] and [11], with the main difference 
that we detect obstacles in a unique approach and we also 
predict information regarding the vanishing point, by using 
multiple databases, a different network structure and 
complexity. We also use small dimension images as input to 
reduce the prediction speed and facilitate a good performance 
on portable devices. We use the vanishing point to calibrate 
the monocular camera by computing the extrinsic parameters, 
more specifically the yaw and pitch rotation angles.  

Multi-task artificial learning is used to improve 
computational efficiency. The main drawback is that it heavily 
relies on good training datasets that are usually harder to come 
by and multiple output networks are generally harder to 
debug. However, the main reason why these types of networks 
are becoming more popular is due to the scalability and 
extensibility nature, meaning that a multi-task network can be 



extended to predict other information such as: depth, optical 
flow or even tracking, by using the network’s shared features.  

III. SOLUTION OVERVIEW 
The neural network proposed by us has a color image as 

input, whereas the output is composed out of an obstacle 
detection part, a segmentation part and a vanishing point 

detection part. We propose a novel structure of the multiple 
output network (MONet).  

The input is based on an encoder part that has the role of 
extracting the relevant features from the input images. The 
network features three outputs based on the U-Net 
architecture. Each module is trained separately using the same 
loss function applied on different outputs. This approach is 
illustrated in figure 1.

  

 
Fig. 1. The multiple output network architecture (MONet). 

The obstacle detection part is based on a U-Net module 
that outputs the obstacle’s 2D bounding box split into four 
layers (left, top, right and bottom). This original approach 
simplifies the network architecture by using the same 
generic layer structure for all detection tasks and also has 
the advantage of using direct connections with the layers 
from the decoder.  

 The main advantage of a solution based on multiple 
outputs is that the prediction for all the modules is done in 
a single step and the encoder part (the feature extraction) is 
shared between the modules. The model can be easily 
extended to infer other information.  

A. Feature extraction 
The first part of the network has the role of extracting 

the relevant information (features) from the input images 
and is based on the ResNet architecture [12], more 
specifically a modified version called ResNet-50. The 
ResNet is a popular approach that is widely used and won 
the ImageNet competition in 2015. This approach 
introduced the concept of the skip connections between the 
neural network layers that had a large impact on improving 
the performance of CNNs, especially those that feature a 
large number of layers.  

 

 
Fig. 2. The architecture of ResNet-50.  

B. Obstacle detection 
The CNN features an obstacle detection module that 

uses the same layers and structure as the semantic 
segmentation module. The main idea is to split the 2D 
bounding box of an obstacle into four parts in four different 
images: one contains the left delimiter line, the second 
image contains the top delimiter, the third features the right 
delimiter and the fourth has the bottom delimiter line. We 
make use of the existing 2D bounding box from the datasets 
and create the four independent images by drawing the lines 
with a thickness of 2 pixels, as illustrated in figure 3.  

 
Fig. 3. Creating the training images for the obstacle detection module 
from the initial 2D bounding box. Image source: [15]. 

After the prediction from the convolutional neural 
network, the 2D bounding boxes can be reconstructed by 



combining the features from these four images as illustrated 
in figure 4. 

 
Fig. 4. Combining the obstacle prediction results (left, top, right and 
bottom) from the obstacle detection module using segmentation. 

The individual obstacles are extracted by grouping the 
contours according to their relation to the objects body 
(figure 5).  

 
Fig. 5. Extracting the individual 2D bounding boxes from the CNN 
prediction. 

An object is reconstructed by joining the left, top, right 
and bottom lines based on their proximity, which takes an 
additional 0.05ms to compute on average, after the 
prediction is done.  

C. Semantic segmentation 
The decoder part that constructs the semantic 

segmentation part is based on the U-Net approach [3], 
meaning that our proposed network features a central layer 
and three upsampling layers that are concatenated with their 
correspondent layers from the encoder (ResNet). The 
central layer features a convolution followed by a batch 
normalization, whereas the following three upsampling 
layers feature the following operations: upsampling, 
concatenation, zero padding and convolution followed by a 
batch normalization. The final layer from the semantic 
segmentation module features another convolution which 
will represent the segmentation map with the number of 
layers the same as the number of predicted classes.  

Using the relevant features extracted using ResNet, the 
reconstruction layers of the U-Net will determine the output 
of the network: an image on 3 channels using the same 
dimension as the input, where each channel represents a 
different segmentation class. The 3 chosen classes are: road, 
dynamic objects and static objects. The first channel will 
represent the driveable road area, the second channel 
represents the moving (dynamic) objects such as: vehicles, 
buses, trucks, motorcycles, pedestrians, whereas the last 
channel (the static objects) represent the sidewalks and the 
lane delimiters (fences or barriers).  

D. Vanishing point 
The vanishing point can be computed by line 

intersections, or by analysing relevant features from images. 
We use our previously published work [13], based on 
computing the magnitute and orientation of the gradient, to 
compute three vote map images that can be used to extract 
the coordinates of the vanishing point. The first image 
represents the vote map of features from the left side of the 
input image, the second image contains the vote map of 
features from the right side of the image, whereas the third 
image represents the multiplication result of the previous 

two images (left and right). An example is presented in 
figure 6. 

 
Fig. 6. Vanishing point relevant feature maps: the left side features, the 
right side features and the result of multiplying them. 

The final coordinates in the input image of the vanishing 
point can be obtained either by a sliding window or by 
simply extracting the maximum value of the combined vote 
maps (the third image). We use the last approach and it takes 
an additional 0.09ms to compute.  

The vanishing point is highly relevant because it can be 
used to compute the extrinsic parameters of the monocular 
camera. By knowing the focal distance and image size, the 
pitch and yaw rotation angles of the camera with respect to 
the world can be computed.  

IV. MULTI OUTPUT CNN TRAINING 
For training we have used 3 well-known datasets: 

CityScapes [14], Berkeley Deep Drive (BDD) [15] and 
Mapillary [16], due to the fact that they contain information 
regarding both segmentation and bounding boxes and their 
location in images. We prepared and processed the images 
in order to have them in the same input size and scale, 
meaning that we ended up using a total of 2975 images from 
CityScapes, 2759 images from Berkeley Deep Drive and 
17109 images from Mapillary. The images were also 
filtered in order to keep those that feature a large number of 
road pixels. During training we used data augmentation 
techniques such as: random image translation and scaling 
and also random intensity and saturation adjustments in the 
HSV color space.  

For the semantic segmentation we have used the binary 
cross entropy and Sorensen-Dice [17] loss function. The 
Sorensen-Dice loss function, also called Dice loss is a 
modified version of the Intersect over Union loss. The loss 
function used for the obstacle detection is the same. 

The vanishing point module features the same loss 
function as the semantic segmentation (Sorensen-Dice 
loss). The training data for the vanishing point vote map 
feature images was generated using the approach described 
in [13].  

The three loss functions are used simultaneously during 
training, each having a configurable weight. We trained 
with equal weights and using the same loss function for each 
module. We experimented with different weights for each 
loss function, and we ended up using the same for each. 

V. EVALUATION AND RESULTS 
The semantic segmentation part was evaluated on the 

validation set from the CityScapes dataset, which is 
composed of 500 images that were never before seen by the 
network during training. The result is similar to the one 
obtained in our previous published papers [18]: 0.906 IoU 
score for the road class. The score is smaller than the state 
of the art approaches due to the fact that we used smaller 



sized input images and a reduced number of classes during 
training. We have used 256 x 256 input images in order to 
favor a reduced prediction time.  

The analysis of the prediction times for MONet on the 
validation set from CityScapes in presented in figure 7. 

 
Fig. 7. Analysis of the prediction times (expressed in seconds) for the 
500 images from the validation set from CityScapes dataset. 

 
The prediction time analysis represents the number of 

seconds needed to make a complete prediction on a single 
image (meaning that it predicts all three outputs: semantic 
segmentation, obstacles and vanishing point). The average 
prediction time for the validation set of CityScapes was 41 
ms, meaning that this approach represents a major 
advantage in terms of speed, especially when compared to 
other solutions that feature separate CNNs to segment 
images and detect obstacles, or solutions based on 
probabilistic algorithms to detect vehicles or obstacles in a 
scene. A faster execution time can be an advantage, even 
though the accuracy might not be so robust, especially if an 
approach like ours will be integrated with other tracking 
solutions. Extracting the vanishing point coordinates from 
the CNN output takes an additional 0.09ms on average 
(figure 8). 

 
Fig. 8. Computing the coordinates of the vanishing point from the CNN 
output (the time is expressed in seconds), tested on 3000 images. 

 

Qualitative results using our proposed network are 
illustrated in figure 9. The input images are completely new, 
unseen by the network during training (they are from our 
own dataset [18]).  

 

 

 

 
Fig. 9. Prediction results: the first column represents the input image, the 
second column is the driveable road area, the third column is the dynamic 
objects (vehicles, trucks, buses or pedestrians), the fourth represents the 
static objects (sidewalk, barriers or poles) and the last column represents 
the detected obstacles (bounding boxes). 

We evaluated the detection module using one of our 
own datasets where the ground truth is considered the 
information from a stereovision camera setup. We obtained 
an IoU score of 0.74 on our own dataset featuring over 1000 
images of various 3D objects extracted from a stereovision 
setup using particle filter tracking. We also performed an 
evaluation using the CityScapes validation dataset (500 
images) and we obtained an IoU score of 0.80. We have also 
compared our approach with one using the same backbone 
(ResNet-50) but with YOLO [19] as output. This network 
was trained with the same datasets and by using the loss 
presented in the original YOLO paper. 

The approach presented in this paper provides better 
results, as presented in table 1.  

TABLE I.  2D BOUNDING BOX EVALUATION 

 Our dataset 
(IoU) 

CityScapes 
(IoU) 

MONet with 
YOLO obstacle 
detection 

0.64 0.63 

MONet 0.74 0.80 

 

Examples of 2D obstacle prediction results on our 
stereo-vision dataset are illustrated in figure 10. An 
additional video with results from the 2D box obtained from 
MONet is available at: https://vimeo.com/435661138.  

 



 
Fig. 10. 2D bounding box prediction on images from our own dataset. 

Evaluating the vanishing point has been performed on a 
test set from CityScapes. We have also evaluated using our 
vanishing point dataset that is published at [20]. We have 
used the NormDist metric which is actually the RMSE (root 
mean squared error) divided by the input image diagonal. 
The evaluation results are presented in table 2. 

TABLE II.  VANISHING POINT EVALUATION 

 CityScapes VP Highway VP City 

NormDist (MONet) 0.016 0.013 0.018 

NormDist [18] - 0.050 0.026 

 

Qualitative results of the vanishing point prediction are 
illustrated in figure 11. 

 

 

 

 

 
Fig. 11. Vanishing point prediction results (second, third and final 
column). The first image represents the input image with the extracted 
vanishing point colored in green. Images are taken from [14] and [20].  

Our proposed CNN has a total median prediction time 
of 0.41ms and a total computational time of 0.55ms for an 
individual image. The total computation time contains the 
prediction time (0.41ms on average) and the time required 
to extract the VP (additional 0.09ms) and the individual 
bounding boxes (additional 0.05ms).   

The semantic segmentation module is already integrated 
with our particle filter system that was previously presented 
in [18].  

VI. CONCLUSION AND FUTURE WORK 
In this paper we have presented a multi ouput network 

that performs three tasks relevant to the road traffic scene 
perception using a monocular camera. The CNN performs 
semantic segmentation, obstacle detection and vanishing 
point computation. Our solution favors execution speed by 
making multiple predictions in a single step. In addition to 
already published work, we presented a vanishing point 
detection module that can be used to calibrate the extrinsic 
camera parameters. We also presented a novel approach to 
detect obstacles based on semantic segmentation. The 
segmentation module that extracts the road, dynamic and 
static objects is currently integrated into our own road traffic 
processing system and in the future we plan to integrate also 
the 2D bounding box output in our framework. We plan to 
use the results presented here and fuse them our own 
tracking algorithm based on particle filters. The neural 
network can also be extended to perform other inference 
tasks related to road traffic scene perception such as depth 
or optical flow estimation.  
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