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Abstract—Low Earth Orbit Objects (LEOs) are objects that 
circle our planet at a distance of less than 2000 km from the 
surface. Due to their small orbital radius, they move fast and are 
sometimes affected by atmospheric drag, meaning that their 
orbit will change in time. This orbit includes communication 
satellites, Earth observation satellites, but also space debris such 
as rocket bodies which will eventually reenter the atmosphere. 
The fast motion, the changing nature of the orbit, their sheer 
number, and the periodic reentry events, lead to the need of 
intense observation of their position. This paper presents a 
compact, portable system for surveillance of the LEO objects. 
The system is built with commercially available, low-cost items, 
and is capable of on-site acquisition and real time processing of 
images. The acquired images are processed by background 
subtraction, analysis of the difference between frames, 
extraction of elongated objects corresponding to the satellite 
streaks, and forming trajectories (tracklets) from consecutive 
detections. The emphasis on trajectories instead of individual 
object properties allows successful detection of faint objects, 
without a significant increase in false positives. 
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I. INTRODUCTION 
According to the European Space Agency (ESA) vision, a 

Space Surveillance and Tracking (SST) system detects space 
objects, catalogues objects, and determines and predicts their 
orbits.  The data generated by an SST system can be used to 
predict hazards to operational spacecraft, such as a potential 
collision with a debris objects, or to infrastructure on the 
ground, in the case of a re-entering object.  A SST system can 
be considered a ‘processing pipeline’ based on observation 
data acquired by sensors – the telescopes, radars or laser-
ranging stations – and provide derived applications and 
services, comprising collision warnings, fragmentation 
detection and re-entry predictions [1].  

The Earth Orbiting objects, or satellites, can have a wide 
range of orbits, of different radii and eccentricities. The Low 
Earth Orbit (LEO) objects are the closest to the ground, and 
many of them are visible to the naked eye. They are also the 
most ubiquitous, they move very fast, both in absolute and in 
angular (perceived) speeds, and their orbit can change in time 
due to their proximity to the atmosphere. Also, due to the 
proximity to Earth, the field of view for observing them is 
limited. 

This orbit includes communication satellites, Earth 
observation satellites, but also space debris such as rocket 
bodies which will eventually reenter the atmosphere. The fast 
motion, the changing nature of the orbit, their sheer number, 
and the periodic reentry events, lead to the need of intense 
observation of their position. 

II. RELATED WORK 
Many of these LEO objects are space debris, and they are 

of special interest for the space agencies. In detecting them, 
optical approaches are easy to employ. In [2], a survey of 
observation strategies and image processing techniques is 
presented, and we can find that the most popular approaches 
are the ones that track the sky, causing the background stars to 
be fixed in the image sequence, and the satellite to be 
perceived as a streak, or the ones which track the previously 
known object, causing it to be a point in the image and the 
stars to be the streaks. While the target tracking strategy is 
easier, the satellite can also have variable intensity over time, 
or can deviate slightly from its predicted position, as shown in 
[3].  

When the starry background is fixed, the satellite is seen 
as a linear streak. If detection is desired for a single frame, the 
streak can be detected using matched filters, as presented in 
[4] and [5], or using a transformation that emphasizes the 
linear aspect of the streak, such as the Hough transform [6] or 
the Radon transform [7], [8]. If multiple frames are available 
to be processed consecutively, the streaks can be detected as 
differences followed by validation based on shape [9]. A more 
complex approach, which assumes neither sidereal tracking 
(fixed background) nor target tracking, uses image registration 
to match the stars between frames, is shown in [10]. 

This paper presents a complete system for space 
surveillance in the LEO region. The first part describes the 
compact, low-cost acquisition system and computing 
platform, and the second part describes the image processing 
algorithm for detecting the satellite as a sequence of streaks (a 
tracklet). The main idea is based on detecting differences, but 
without the use of sidereal tracking, which means that the 
background is not completely static, followed by geometric 
properties initial streak validation, and final validation based 
on the trajectory across multiple frames. The simple approach 
allows real time processing of large images on the embedded 
board which also triggers the camera, and yet it is sensitive 
enough to detect dim satellites from an urban location, and 
also to have a minimum of false positives even in the presence 
of clouds. 

III. IMAGE ACQUISITION AND PROCESSING SYSTEM 

A. Hardware architecture 
The observation instrument is based on a commercial 

DSLR camera, Canon EOS 800D, equipped with a 24-
megapixel CMOS sensor. The camera is equipped with a 
Sigma EX 20 wide-angle lens, having a focal distance of 20 
mm. 



The camera and lens assemble is mounted on a fixed 
photographic tripod, without any tracking system to 
compensate for the Earth rotation. While this solution impacts 
on accuracy, causing the background stars to move slightly 
between shots and to deviate from the point-like or circular 
shape for long exposures, it greatly increases the ease of use 
and portability, as the system can be set up anywhere without 
any preparation. 

The system’s core is a nVidia Jetson Nano embedded 
board, featuring a Quad-core ARM® A57 CPU, 128-core 
NVIDIA Maxwell™ GPU and 4 GB of RAM. The board 
features four USB ports, needed for the communication with 
the camera and with other peripherals, and general purpose 
I/O pins (GPIO) which are used for camera triggering and for 
interface buttons. While initially we believed that the 
processing power of the GPU will be needed for the image 
processing tasks, the CPU proved to be enough. 

The camera is connected to the processing board by two 
interfaces: the USB interface for image transfer, and a GPIO 
interface (trigger wire + ground wire, TTL level, active low) 
for triggering. 

 
Fig. 1. Hardware architecture of the system. 

The system needs to be connected to the Internet for 
delivering detection results and for time synchronization. The 
most convenient solution was to equip the board with a WiFi 
adapter, and connect it to a mobile phone set up as a mobile 
access point. As the system does not send whole images, but 
only detection results as text files, it needs neither high speed 
nor high volume of transferred data. The detection result files 
will eventually be sent to a cloud storage location, such as 
Google Drive, where they will be accessible for post-
processing and astrometric reduction. 

For starting and stopping of the system, simple push 
buttons were connected to GPIO pins of the Jetson board. 
Mouse, keyboard and monitor can also be connected for 
debugging or even on-site programming. The system is 
powered either by a AC 5V/3A adapter, or by a LiPo 5000 
mAh battery, connected to the Jetson board through a step-
down voltage stabilizer capable of delivering up to 5 A. 

The complete architecture is shown in Fig. 1, and the 
working assembly is shown in Fig. 2. 

 
Fig. 2. The assembled system. 

B. Software architecture 
The main activity of the acquisition and processing system 

is organized in two threads, as shown in Fig. 3. One thread 
needs to be accurately synchronized with the system time, 
which is also synchronized with an external time source 
(internet time in the current solution, with the possibility of 
using GPS time for increased accuracy). This thread ensures 
accurate periodic generation of the trigger signal, which 
controls the starting time of the exposure and the exposure 
duration. The camera is set up in the “Bulb” mode, and the 
exposure is controlled by the pulse length. The exposure 
length and the interval between shots can be configured by the 
user. For each start of the exposure interval, the triggering 
thread registers the current timestamp of the system, to be 
matched with the image file. 

 
Fig. 3. Time diagram of the exposure and processing threads, including the exposure signal. 

 

Because the camera’s image download interface was not 
designed for real-time transfer after each shot, we need re-
mount the drive to discover the newly written files. We have 

found that this process, if executed too often, will eventually 
crash the system. Therefore, we have chosen to make the 
transfer after five images are captured. The processing 



thread will be started after five exposure triggers have been 
sent, will read the images, associate to them the timestamps 
and name the files 
IMG_YYYY_MM_DD_HH_MM_SS.jpg, so that the 
timestamp will be recorded directly in the file name. Each 
captured image will be processed, and the results will be 
written as a text file, containing the pixel coordinates and 
the timestamps. Due to the large interval between frames 
(currently 6 seconds), there is plenty of time for processing, 
and the processing thread will finish in time for the next 
batch of 5 frames. 

 

IV. DETECTION OF SATELLITE STREAKS 

A. Extracting movement features 
The basic idea for detecting the satellites is to take 

advantage of their moving nature, against the (almost) fixed 
starry background. In a single frame, a satellite will cause a 
linear streak, as it moves during camera exposure, and in 
consecutive frames the streak will change position. This 
establishes the basic strategy: find regions that differ from 
consecutive frames and see if they are elongated shapes. 
This approach is not new and has been used by other 
researchers as well [2][9]. The basic approach can detect 
clearly visible streaks moving on dark, stationary 
background, but we want the system to work for faint, short 
streaks, with uneven background, when the images are taken 
from the city as opposed to a secluded observatory, without 
a star tracking mount to make the background fully 
stationary. 

The first problem to be solves is the unevenly lit 
background. This problem is especially relevant in the case 
of observing LEO satellites, as they are visible only near 
sunset or near sunrise, otherwise they are either in the 
Earth’s shadow or the sunlight is too powerful and renders 
them invisible. Unfortunately, these times are exactly the 
times the sky is unevenly lit. Figure 4 shows a full frame 
with uneven background light, and figure 5 shows a detail 
around a satellite streak. 

 

 
Fig. 4. Captured image, converted to grayscale. The red rectangle shows 
the area around the satellite streak. The contrast is enhanced for display, but 
not for processing. 

 

 
Fig. 5. Detail showing the satellite streak against the unevenly lit 
background. Contrast enhanced for display – the intensity of the streak is 
only 5-6 units above the local background. 

 

Some researchers [5] model the background light as a 
parametric surface. However, we have found that a median 
filter of a sufficiently large size will extract the light model 
accurately, as shown in figure 6. 

 
Fig. 6. Background light model, extracted by median filtering. 

 

Thus, assuming It to be the captured image at time t, we 
subtract the background Bt, to get the dark-background 
image Dt. 

   𝐵! = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼! , 55)  (1) 

   𝐷! = 𝐼! − 𝐵!   (2) 

A detail of the dark image is presented in figure 7. 

Next, the moving features in the image are emphasized 
by subtracting the current background-free image Dt from 
the past image Dt-1, obtaining the movement image Mt. 

   𝑀! = 𝐷! −𝐷!"#   (3) 

All subtractions so far are performed using saturation, 
meaning that any pixel difference below 0 is set to 0. The 
movement image is then thresholded with a very low 
threshold (in our current implementation we use T=2, set 
experimentally, meaning that each difference that is above 
or equal to 2 will be set to 1 in the binary image). This way, 
any small variation of intensity is taken into consideration. 



The result for our detail window is seen (in negative) in 
figure 8. 

 
Fig. 7. Detail region after background subtraction. 

 

 
Fig. 8. Binary image, following thresholding of the movement image. 

 

As we can see, many features, including parts of the 
stars, are present in the binary image. This is due mostly to 
the fact that we do not use a star tracking mount for the 
camera, to compensate for the Earth’s rotation. The satellite 
streaks will be extracted by further analyzing the size and 
shape of the binary objects. 

B. Extracting streak candidates 
The binary image is further processed by extracting the 

connected components (labeling). First, for each connected 
component we compute the area (the number of pixels 
included in the object), and the ones with a very small area 
(in our implementation the area threshold is 15 pixels) are 
discarded. For the remaining objects, we compute the 
following geometric properties: 

- Center of mass, 

- Major ellipse axis length, 

- Minor ellipse axis length, 

- Eccentricity, computed from the axes’ lengths, 

- Orientation angle. 

The objects having the major axis length above 30 
pixels, and the minor axis length less than half the major 
axis, and the eccentricity above 0.95 will be selected as 
streak candidates. 

 
Fig. 9. Objects classification: the streak candidate is shown in green, and 
the other large area objects in blue. 

For every possible streak candidate, we’ll compute three 
key points, which will define the streak as a line segment. 
The first point is the center of mass, already known, which 
will be denoted as O, having the coordinates xO and yO. The 
other two points are denoted as A and B, and their 
coordinates are computed by starting from the streak’s 
center and going along its orientation, progressively 
increasing the distance from the center r until the current 
point passes beyond the pixel set of the streak. The search is 
performed in both directions, and therefore the coordinates 
of the streak ends are computed as: 

  𝑥$ = 𝑥% − 𝑟$ cos𝜑  (4) 

  𝑦$ = 𝑦% − 𝑟$ sin𝜑  (5) 

  𝑥& = 𝑥% + 𝑟& cos𝜑  (6) 

  𝑦& = 𝑦% + 𝑟& sin𝜑  (7) 

 
Fig. 10. False streaks caused by clouds. 



The conditions for the streak candidate are not strict, 
because the distance of a LEO from the observation site 
varies greatly, along with the perceived angular speed, and 
therefore the streak can be as short as 30 pixels or as long as 
200. The variable brightness of the satellite also affects the 
thickness of the streak. Thus, strict criteria will lead to a lot 
of missed targets. However, our lax criteria will lead to a lot 
of false positives when other moving features are present in 
the image, such as clouds, as seen in figure 10. In order to 
have the best of both worlds, high sensitivity and low 
number of false positives, we’ll validate the streaks by their 
trajectory. 

C. Trajectory analysis and tracklet formation 
The trajectories will be formed based on individual, 

consecutive detected streaks. Each streak will be defined by 
the center point O, and the end points A and B, therefore we 
can define two types of distances between two streaks: 

- The Euclidean distance between centroids, due to 
velocity, dV; 

 

  𝑑! = #(𝑥" − 𝑥"#)$ + (𝑦" − 𝑦"#)$ (8) 
 

- The distances between one streak’s points and the 
line defined by the other streak, d(P, A, B), where P 
can be either the centroid of the new streak, O’, or 
one of the end points, A’ and B’. 

𝑑(𝑃, 𝐴, 𝐵) = |()!")")(+""+#)"()"")#)(+!"+")|
,()!")")$-(+!"+")$

  (9) 

 

The two types of distances are shown in figure 11. 

 

 
Fig. 11. Computing distances between two streaks. 

 

A tracklet is a sequence of streaks that depict the same 
LEO object at different moments in time. A tracklet is 
started when a new streak is detected and it cannot be 
associated to an existing tracklet. 

The tracklet can have the following states: 

State 0 – empty tracklet. 

State 1 – a new streak has been detected, and a new 
tracklet has been initialized. In this state, the speed of the 
streak is not yet known, and neither is the orientation along 
the trajectory line. This state is depicted in figure 12: the 
gray areas are the locations of the possible new streaks to be 
matched to this track. Even though we don’t know the speed 
of the tracklet, we can assume that it is similar to the length 
of the streak, as the exposure time is equal to the time 

between frames. Thus, we will impose an acceptable 
interval for the distance dV. 

 

 
Fig. 12. A tracklet in state 1: a single streak is detected, and the following 
streak can be on either side. 

State 2 – at least two streaks are associated to the 
tracklet, and therefore the speed and the orientation of the 
trajectory are known. In this state, the area allowed for the 
new detections is limited to the side pointed by the speed 
vector, as shown in figure 13. 

 

 
Fig. 13. A tracklet in state 2: the tracklet now has speed and orientation, 
and new detections can only match in one direction. 

 

State 3 – a state 2 tracker will eventually pass beyond 
the borders of the image, or no new streaks will be added to 
it for a significant number of frames. This state represents a 
“closed” tracker, which will be delivered as output. 

The process is illustrated step by step in figures 14 – 17. 
We can also see false streaks caused by clouds, which are 
not transformed into tracklets. 

 
Fig. 14. A newly detected streak initializes a tracklet, which goes into state 
1. 



 

 
Fig. 15. A second detection is assigned to the state 1 tracklet, which now 
goes into state 2. 

 

 

 

 

 
Fig. 16. A state 2 track gets a new measurement. A trajectory curve can 
now be fitted to the tracklet (for display purposes only for now). 

 

 
Fig. 17. The tracklet passes the boundary of the image and goes into state 
3 (finished). 

 

V. TESTS AND RESULTS 

A. Test scenarios 
 The system was tested in challenging conditions, from 
an urban location in Cluj-Napoca, usually in uneven sky 
illumination conditions near the sunset. Many times the 
observed area of the sky had moving clouds. Each test 
sequence consists of 1000 frames. Initially the frames were 
acquired with a 5 second exposure, and 10 seconds between 
exposure starts, but later this time was reduced to a 3 second 
exposure and 6 seconds between exposures. The main 
reason for reducing the exposure time was the observation 
of the Starlink satellite groups, which were very close 
together and a 5 second exposure time led to the merging of 
the streaks of multiple satellites into a single streak.  

For the average sequence length of 1h40m (at 6 seconds 
interval between frames) the system typically detects 
around 40 satellites, while covering an angular sky area of 
60x40 degrees. Figure 18 an example of trajectories 
extracted during a typical observation period. 

 
Fig. 18. Satellite trajectories extracted in a typical observation session. 



B. Limitations of the detection system 
The satellites need to be visible to be detected, therefore 

they need to be slightly brighter than the background sky. 
We have recorded sequences which start immediately 
before sunset, and we have found that the system starts to 
detect when the ambient light is still significant (for a 
0…255 intensity, the system starts detecting when the 
average sky intensity is 65). The streaks need to be just 2-3 
units brighter than the surrounding background to be 
reliably detected. 

A very difficult challenge is the presence of clouds. 
While the system works reliably when a few cloudy areas 
are present in the image, some false positives will be 
validated as tracklets when the cloudy area is large, as seen 
in figure 19. We can also see that the number of streak 
hypotheses vastly outnumbers the number of validated 
tracks by more than 100:1. 

 
Fig. 19. Cloud dominated scenario: the false positives cannot be all 
avoided. 

C. Preliminary testing the accuracy of the detection 
The detection results must be converted into angular 

coordinates (Right Ascension – RA, Declination – DEC), to 
be useful for space surveillance. Since this work is 
preliminary, this conversion, called Astrometric Reduction, 
was done offline, using the reduction tool from Astrometry. 
net [11]. The converted coordinates were then compared to 
the predicted coordinates of a known satellite. Most of the 
satellites are tracked by the US and EU authorities, and their 
known parameters are described in the TLE (Two Line 
Element) format. Based on this format, specialized software 
such as TheSkyX [12] can be used to predict the angular 
coordinates at specific moments of time. 

The test scenario satellite is a space debris, a rocket body 
having the following TLE description: 
0 CZ-2C R/B 
1 37766U 11039B  21158.87867492  .00000036  00000-0  15813-4 0  9992 
2 37766  98.3347  24.6498 0045379 348.6624  11.3553 14.66571447527545 

 

The object’s distance from the observation point was 
higher than 1000 km, which caused its contrast in the image 
to be low (the average intensity of the streak was 44 units, 
while the background intensity was 38 units, with a standard 
deviation of 6), and the length of the streak to be less than 
40 pixels. A detail showing the streak in one of the frames 
is shown in figure 20. One advantage of a distant satellite is, 
however, the low apparent angular motion, which allow us 
to detect it in many frames, as shown in figure 21. 

 
Fig. 20. Detail streak of CZ-2C R/B. 

 

 
Fig. 21. Complete trajectory of CZ-2C R/B. 

 

The angular coordinates estimated based on the detected 
tracklet are shown in figures 22 and 23, against the frame 
number since detection, and they clearly match the 
predicted trajectory. The errors, of arc minute order of 
magnitude (for a 40x60 degrees field) are shown in figures 
24 and 25. The errors are larger at the edge of the image due 
to the lens distortion.  

 
Fig. 22. Detected vs predicted Right Ascension angles. 

 

D. Execution time 
The execution time per frame, on board of the nVidia 

Jetson Nano, is between 300 and 400 ms, without the use of 
GPU or other specific optimizations. Taking into 
consideration that the interval between frames is 6 seconds, 
plenty of processing time is left available, which means that 



we can also perform, in the future, astrometric reduction 
directly on the Nano, or we can choose a cheaper and less 
powerful solution for processing, such as a Raspberry Pi 
board. 

 

 
Fig. 23. Detected vs predicted Declination angles. 

 

 
Fig. 24. Error of Right Ascension (arc minutes). 

 

 
Fig. 25. Error of Declination (arc minutes). 

 

VI. CONCLUSIONS AND FUTURE WORK 
We have presented a compact, lightweight space 

surveillance solution based on off the shelf components, 
which can be easily set up anywhere to detect Low Earth 
Orbiting objects. To make up for the lack of perfect 

observation conditions, and to allow for low contract streaks 
to be detected, the system relies mostly on coherent 
trajectories instead of the geometric properties of the 
streaks, thus reducing the number of false positives even 
without sidereal tracking systems, and in the presence of 
clouds. The detection works in real time, on board of the 
acquisition system. 

The future work will be focused on reducing the number 
of false positives in severe conditions by imposing 
additional constraints on the tracklets, merging tracklets if 
they are detected as fragments for the same satellite, and 
performing automatic astrometric reduction on board of the 
acquisition system. 
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