
978-1-6654-0976-6/21/$31.00 ©2021 IEEE

Compact Solution for Low Earth Orbit Surveillance

Radu Danescu, Razvan Itu, Mircea Paul Muresan
Computer Science Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

radu.danescu@cs.utcluj.ro, razvan.itu@cs.utcluj.ro,
mircea.muresan@cs.utcluj.ro

Vlad Turcu
Astronomical Observatory Cluj-Napoca

Astronomical Institute of the Romanian Academy
Cluj-Napoca, Romania
vladturcu@yahoo.com

Abstract—Low Earth Orbit Objects (LEOs) are objects that
circle our planet at a distance of less than 2000 km from the
surface. Due to their small orbital radius, they move fast and are
sometimes affected by atmospheric drag, meaning that their
orbit will change in time. This orbit includes communication
satellites, Earth observation satellites, but also space debris such
as rocket bodies which will eventually reenter the atmosphere.
The fast motion, the changing nature of the orbit, their sheer
number, and the periodic reentry events, lead to the need of
intense observation of their position. This paper presents a
compact, portable system for surveillance of the LEO objects.
The system is built with commercially available, low-cost items,
and is capable of on-site acquisition and real time processing of
images. The acquired images are processed by background
subtraction, analysis of the difference between frames,
extraction of elongated objects corresponding to the satellite
streaks, and forming trajectories (tracklets) from consecutive
detections. The emphasis on trajectories instead of individual
object properties allows successful detection of faint objects,
without a significant increase in false positives.

Keywords—space surveillance, embedded image processing,
tracking

I. INTRODUCTION
According to the European Space Agency (ESA) vision, a

Space Surveillance and Tracking (SST) system detects space
objects, catalogues objects, and determines and predicts their
orbits. The data generated by an SST system can be used to
predict hazards to operational spacecraft, such as a potential
collision with a debris objects, or to infrastructure on the
ground, in the case of a re-entering object. A SST system can
be considered a ‘processing pipeline’ based on observation
data acquired by sensors – the telescopes, radars or laser-
ranging stations – and provide derived applications and
services, comprising collision warnings, fragmentation
detection and re-entry predictions [1].

The Earth Orbiting objects, or satellites, can have a wide
range of orbits, of different radii and eccentricities. The Low
Earth Orbit (LEO) objects are the closest to the ground, and
many of them are visible to the naked eye. They are also the
most ubiquitous, they move very fast, both in absolute and in
angular (perceived) speeds, and their orbit can change in time
due to their proximity to the atmosphere. Also, due to the
proximity to Earth, the field of view for observing them is
limited.

This orbit includes communication satellites, Earth
observation satellites, but also space debris such as rocket
bodies which will eventually reenter the atmosphere. The fast
motion, the changing nature of the orbit, their sheer number,
and the periodic reentry events, lead to the need of intense
observation of their position.

II. RELATED WORK
Many of these LEO objects are space debris, and they are

of special interest for the space agencies. In detecting them,
optical approaches are easy to employ. In [2], a survey of
observation strategies and image processing techniques is
presented, and we can find that the most popular approaches
are the ones that track the sky, causing the background stars to
be fixed in the image sequence, and the satellite to be
perceived as a streak, or the ones which track the previously
known object, causing it to be a point in the image and the
stars to be the streaks. While the target tracking strategy is
easier, the satellite can also have variable intensity over time,
or can deviate slightly from its predicted position, as shown in
[3].

When the starry background is fixed, the satellite is seen
as a linear streak. If detection is desired for a single frame, the
streak can be detected using matched filters, as presented in
[4] and [5], or using a transformation that emphasizes the
linear aspect of the streak, such as the Hough transform [6] or
the Radon transform [7], [8]. If multiple frames are available
to be processed consecutively, the streaks can be detected as
differences followed by validation based on shape [9]. A more
complex approach, which assumes neither sidereal tracking
(fixed background) nor target tracking, uses image registration
to match the stars between frames, is shown in [10].

This paper presents a complete system for space
surveillance in the LEO region. The first part describes the
compact, low-cost acquisition system and computing
platform, and the second part describes the image processing
algorithm for detecting the satellite as a sequence of streaks (a
tracklet). The main idea is based on detecting differences, but
without the use of sidereal tracking, which means that the
background is not completely static, followed by geometric
properties initial streak validation, and final validation based
on the trajectory across multiple frames. The simple approach
allows real time processing of large images on the embedded
board which also triggers the camera, and yet it is sensitive
enough to detect dim satellites from an urban location, and
also to have a minimum of false positives even in the presence
of clouds.

III. IMAGE ACQUISITION AND PROCESSING SYSTEM

A. Hardware architecture
The observation instrument is based on a commercial

DSLR camera, Canon EOS 800D, equipped with a 24-
megapixel CMOS sensor. The camera is equipped with a
Sigma EX 20 wide-angle lens, having a focal distance of 20
mm.

The camera and lens assemble is mounted on a fixed
photographic tripod, without any tracking system to
compensate for the Earth rotation. While this solution impacts
on accuracy, causing the background stars to move slightly
between shots and to deviate from the point-like or circular
shape for long exposures, it greatly increases the ease of use
and portability, as the system can be set up anywhere without
any preparation.

The system’s core is a nVidia Jetson Nano embedded
board, featuring a Quad-core ARM® A57 CPU, 128-core
NVIDIA Maxwell™ GPU and 4 GB of RAM. The board
features four USB ports, needed for the communication with
the camera and with other peripherals, and general purpose
I/O pins (GPIO) which are used for camera triggering and for
interface buttons. While initially we believed that the
processing power of the GPU will be needed for the image
processing tasks, the CPU proved to be enough.

The camera is connected to the processing board by two
interfaces: the USB interface for image transfer, and a GPIO
interface (trigger wire + ground wire, TTL level, active low)
for triggering.

Fig. 1. Hardware architecture of the system.

The system needs to be connected to the Internet for
delivering detection results and for time synchronization. The
most convenient solution was to equip the board with a WiFi
adapter, and connect it to a mobile phone set up as a mobile
access point. As the system does not send whole images, but
only detection results as text files, it needs neither high speed
nor high volume of transferred data. The detection result files
will eventually be sent to a cloud storage location, such as
Google Drive, where they will be accessible for post-
processing and astrometric reduction.

For starting and stopping of the system, simple push
buttons were connected to GPIO pins of the Jetson board.
Mouse, keyboard and monitor can also be connected for
debugging or even on-site programming. The system is
powered either by a AC 5V/3A adapter, or by a LiPo 5000
mAh battery, connected to the Jetson board through a step-
down voltage stabilizer capable of delivering up to 5 A.

The complete architecture is shown in Fig. 1, and the
working assembly is shown in Fig. 2.

Fig. 2. The assembled system.

B. Software architecture
The main activity of the acquisition and processing system

is organized in two threads, as shown in Fig. 3. One thread
needs to be accurately synchronized with the system time,
which is also synchronized with an external time source
(internet time in the current solution, with the possibility of
using GPS time for increased accuracy). This thread ensures
accurate periodic generation of the trigger signal, which
controls the starting time of the exposure and the exposure
duration. The camera is set up in the “Bulb” mode, and the
exposure is controlled by the pulse length. The exposure
length and the interval between shots can be configured by the
user. For each start of the exposure interval, the triggering
thread registers the current timestamp of the system, to be
matched with the image file.

Fig. 3. Time diagram of the exposure and processing threads, including the exposure signal.

Because the camera’s image download interface was not
designed for real-time transfer after each shot, we need re-
mount the drive to discover the newly written files. We have

found that this process, if executed too often, will eventually
crash the system. Therefore, we have chosen to make the
transfer after five images are captured. The processing

thread will be started after five exposure triggers have been
sent, will read the images, associate to them the timestamps
and name the files
IMG_YYYY_MM_DD_HH_MM_SS.jpg, so that the
timestamp will be recorded directly in the file name. Each
captured image will be processed, and the results will be
written as a text file, containing the pixel coordinates and
the timestamps. Due to the large interval between frames
(currently 6 seconds), there is plenty of time for processing,
and the processing thread will finish in time for the next
batch of 5 frames.

IV. DETECTION OF SATELLITE STREAKS

A. Extracting movement features
The basic idea for detecting the satellites is to take

advantage of their moving nature, against the (almost) fixed
starry background. In a single frame, a satellite will cause a
linear streak, as it moves during camera exposure, and in
consecutive frames the streak will change position. This
establishes the basic strategy: find regions that differ from
consecutive frames and see if they are elongated shapes.
This approach is not new and has been used by other
researchers as well [2][9]. The basic approach can detect
clearly visible streaks moving on dark, stationary
background, but we want the system to work for faint, short
streaks, with uneven background, when the images are taken
from the city as opposed to a secluded observatory, without
a star tracking mount to make the background fully
stationary.

The first problem to be solves is the unevenly lit
background. This problem is especially relevant in the case
of observing LEO satellites, as they are visible only near
sunset or near sunrise, otherwise they are either in the
Earth’s shadow or the sunlight is too powerful and renders
them invisible. Unfortunately, these times are exactly the
times the sky is unevenly lit. Figure 4 shows a full frame
with uneven background light, and figure 5 shows a detail
around a satellite streak.

Fig. 4. Captured image, converted to grayscale. The red rectangle shows
the area around the satellite streak. The contrast is enhanced for display, but
not for processing.

Fig. 5. Detail showing the satellite streak against the unevenly lit
background. Contrast enhanced for display – the intensity of the streak is
only 5-6 units above the local background.

Some researchers [5] model the background light as a
parametric surface. However, we have found that a median
filter of a sufficiently large size will extract the light model
accurately, as shown in figure 6.

Fig. 6. Background light model, extracted by median filtering.

Thus, assuming It to be the captured image at time t, we
subtract the background Bt, to get the dark-background
image Dt.

 𝐵! = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼! , 55) (1)

 𝐷! = 𝐼! − 𝐵! (2)

A detail of the dark image is presented in figure 7.

Next, the moving features in the image are emphasized
by subtracting the current background-free image Dt from
the past image Dt-1, obtaining the movement image Mt.

 𝑀! = 𝐷! −𝐷!"# (3)

All subtractions so far are performed using saturation,
meaning that any pixel difference below 0 is set to 0. The
movement image is then thresholded with a very low
threshold (in our current implementation we use T=2, set
experimentally, meaning that each difference that is above
or equal to 2 will be set to 1 in the binary image). This way,
any small variation of intensity is taken into consideration.

The result for our detail window is seen (in negative) in
figure 8.

Fig. 7. Detail region after background subtraction.

Fig. 8. Binary image, following thresholding of the movement image.

As we can see, many features, including parts of the
stars, are present in the binary image. This is due mostly to
the fact that we do not use a star tracking mount for the
camera, to compensate for the Earth’s rotation. The satellite
streaks will be extracted by further analyzing the size and
shape of the binary objects.

B. Extracting streak candidates
The binary image is further processed by extracting the

connected components (labeling). First, for each connected
component we compute the area (the number of pixels
included in the object), and the ones with a very small area
(in our implementation the area threshold is 15 pixels) are
discarded. For the remaining objects, we compute the
following geometric properties:

- Center of mass,

- Major ellipse axis length,

- Minor ellipse axis length,

- Eccentricity, computed from the axes’ lengths,

- Orientation angle.

The objects having the major axis length above 30
pixels, and the minor axis length less than half the major
axis, and the eccentricity above 0.95 will be selected as
streak candidates.

Fig. 9. Objects classification: the streak candidate is shown in green, and
the other large area objects in blue.

For every possible streak candidate, we’ll compute three
key points, which will define the streak as a line segment.
The first point is the center of mass, already known, which
will be denoted as O, having the coordinates xO and yO. The
other two points are denoted as A and B, and their
coordinates are computed by starting from the streak’s
center and going along its orientation, progressively
increasing the distance from the center r until the current
point passes beyond the pixel set of the streak. The search is
performed in both directions, and therefore the coordinates
of the streak ends are computed as:

 𝑥$ = 𝑥% − 𝑟$ cos𝜑 (4)

 𝑦$ = 𝑦% − 𝑟$ sin𝜑 (5)

 𝑥& = 𝑥% + 𝑟& cos𝜑 (6)

 𝑦& = 𝑦% + 𝑟& sin𝜑 (7)

Fig. 10. False streaks caused by clouds.

The conditions for the streak candidate are not strict,
because the distance of a LEO from the observation site
varies greatly, along with the perceived angular speed, and
therefore the streak can be as short as 30 pixels or as long as
200. The variable brightness of the satellite also affects the
thickness of the streak. Thus, strict criteria will lead to a lot
of missed targets. However, our lax criteria will lead to a lot
of false positives when other moving features are present in
the image, such as clouds, as seen in figure 10. In order to
have the best of both worlds, high sensitivity and low
number of false positives, we’ll validate the streaks by their
trajectory.

C. Trajectory analysis and tracklet formation
The trajectories will be formed based on individual,

consecutive detected streaks. Each streak will be defined by
the center point O, and the end points A and B, therefore we
can define two types of distances between two streaks:

- The Euclidean distance between centroids, due to
velocity, dV;

 𝑑! = #(𝑥" − 𝑥"#)$ + (𝑦" − 𝑦"#)$ (8)

- The distances between one streak’s points and the
line defined by the other streak, d(P, A, B), where P
can be either the centroid of the new streak, O’, or
one of the end points, A’ and B’.

𝑑(𝑃, 𝐴, 𝐵) = |()!")")(+""+#)"()"")#)(+!"+")|
,()!")")$-(+!"+")$

 (9)

The two types of distances are shown in figure 11.

Fig. 11. Computing distances between two streaks.

A tracklet is a sequence of streaks that depict the same
LEO object at different moments in time. A tracklet is
started when a new streak is detected and it cannot be
associated to an existing tracklet.

The tracklet can have the following states:

State 0 – empty tracklet.

State 1 – a new streak has been detected, and a new
tracklet has been initialized. In this state, the speed of the
streak is not yet known, and neither is the orientation along
the trajectory line. This state is depicted in figure 12: the
gray areas are the locations of the possible new streaks to be
matched to this track. Even though we don’t know the speed
of the tracklet, we can assume that it is similar to the length
of the streak, as the exposure time is equal to the time

between frames. Thus, we will impose an acceptable
interval for the distance dV.

Fig. 12. A tracklet in state 1: a single streak is detected, and the following
streak can be on either side.

State 2 – at least two streaks are associated to the
tracklet, and therefore the speed and the orientation of the
trajectory are known. In this state, the area allowed for the
new detections is limited to the side pointed by the speed
vector, as shown in figure 13.

Fig. 13. A tracklet in state 2: the tracklet now has speed and orientation,
and new detections can only match in one direction.

State 3 – a state 2 tracker will eventually pass beyond
the borders of the image, or no new streaks will be added to
it for a significant number of frames. This state represents a
“closed” tracker, which will be delivered as output.

The process is illustrated step by step in figures 14 – 17.
We can also see false streaks caused by clouds, which are
not transformed into tracklets.

Fig. 14. A newly detected streak initializes a tracklet, which goes into state
1.

Fig. 15. A second detection is assigned to the state 1 tracklet, which now
goes into state 2.

Fig. 16. A state 2 track gets a new measurement. A trajectory curve can
now be fitted to the tracklet (for display purposes only for now).

Fig. 17. The tracklet passes the boundary of the image and goes into state
3 (finished).

V. TESTS AND RESULTS

A. Test scenarios
 The system was tested in challenging conditions, from
an urban location in Cluj-Napoca, usually in uneven sky
illumination conditions near the sunset. Many times the
observed area of the sky had moving clouds. Each test
sequence consists of 1000 frames. Initially the frames were
acquired with a 5 second exposure, and 10 seconds between
exposure starts, but later this time was reduced to a 3 second
exposure and 6 seconds between exposures. The main
reason for reducing the exposure time was the observation
of the Starlink satellite groups, which were very close
together and a 5 second exposure time led to the merging of
the streaks of multiple satellites into a single streak.

For the average sequence length of 1h40m (at 6 seconds
interval between frames) the system typically detects
around 40 satellites, while covering an angular sky area of
60x40 degrees. Figure 18 an example of trajectories
extracted during a typical observation period.

Fig. 18. Satellite trajectories extracted in a typical observation session.

B. Limitations of the detection system
The satellites need to be visible to be detected, therefore

they need to be slightly brighter than the background sky.
We have recorded sequences which start immediately
before sunset, and we have found that the system starts to
detect when the ambient light is still significant (for a
0…255 intensity, the system starts detecting when the
average sky intensity is 65). The streaks need to be just 2-3
units brighter than the surrounding background to be
reliably detected.

A very difficult challenge is the presence of clouds.
While the system works reliably when a few cloudy areas
are present in the image, some false positives will be
validated as tracklets when the cloudy area is large, as seen
in figure 19. We can also see that the number of streak
hypotheses vastly outnumbers the number of validated
tracks by more than 100:1.

Fig. 19. Cloud dominated scenario: the false positives cannot be all
avoided.

C. Preliminary testing the accuracy of the detection
The detection results must be converted into angular

coordinates (Right Ascension – RA, Declination – DEC), to
be useful for space surveillance. Since this work is
preliminary, this conversion, called Astrometric Reduction,
was done offline, using the reduction tool from Astrometry.
net [11]. The converted coordinates were then compared to
the predicted coordinates of a known satellite. Most of the
satellites are tracked by the US and EU authorities, and their
known parameters are described in the TLE (Two Line
Element) format. Based on this format, specialized software
such as TheSkyX [12] can be used to predict the angular
coordinates at specific moments of time.

The test scenario satellite is a space debris, a rocket body
having the following TLE description:
0 CZ-2C R/B
1 37766U 11039B 21158.87867492 .00000036 00000-0 15813-4 0 9992
2 37766 98.3347 24.6498 0045379 348.6624 11.3553 14.66571447527545

The object’s distance from the observation point was
higher than 1000 km, which caused its contrast in the image
to be low (the average intensity of the streak was 44 units,
while the background intensity was 38 units, with a standard
deviation of 6), and the length of the streak to be less than
40 pixels. A detail showing the streak in one of the frames
is shown in figure 20. One advantage of a distant satellite is,
however, the low apparent angular motion, which allow us
to detect it in many frames, as shown in figure 21.

Fig. 20. Detail streak of CZ-2C R/B.

Fig. 21. Complete trajectory of CZ-2C R/B.

The angular coordinates estimated based on the detected
tracklet are shown in figures 22 and 23, against the frame
number since detection, and they clearly match the
predicted trajectory. The errors, of arc minute order of
magnitude (for a 40x60 degrees field) are shown in figures
24 and 25. The errors are larger at the edge of the image due
to the lens distortion.

Fig. 22. Detected vs predicted Right Ascension angles.

D. Execution time
The execution time per frame, on board of the nVidia

Jetson Nano, is between 300 and 400 ms, without the use of
GPU or other specific optimizations. Taking into
consideration that the interval between frames is 6 seconds,
plenty of processing time is left available, which means that

we can also perform, in the future, astrometric reduction
directly on the Nano, or we can choose a cheaper and less
powerful solution for processing, such as a Raspberry Pi
board.

Fig. 23. Detected vs predicted Declination angles.

Fig. 24. Error of Right Ascension (arc minutes).

Fig. 25. Error of Declination (arc minutes).

VI. CONCLUSIONS AND FUTURE WORK
We have presented a compact, lightweight space

surveillance solution based on off the shelf components,
which can be easily set up anywhere to detect Low Earth
Orbiting objects. To make up for the lack of perfect

observation conditions, and to allow for low contract streaks
to be detected, the system relies mostly on coherent
trajectories instead of the geometric properties of the
streaks, thus reducing the number of false positives even
without sidereal tracking systems, and in the presence of
clouds. The detection works in real time, on board of the
acquisition system.

The future work will be focused on reducing the number
of false positives in severe conditions by imposing
additional constraints on the tracklets, merging tracklets if
they are detected as fragments for the same satellite, and
performing automatic astrometric reduction on board of the
acquisition system.

ACKNOWLEDGMENT
The work was supported by a grant of Ministry of

Research and Innovation, CNCS–UEFISCDI, project
number PN-III-P2-2.1-PED-2019-4819, within PNCDI III.

REFERENCES

[1] European Space Agency, “Space Safety”, online:
https://www.esa.int/Our_Activities/Space_Safety/Space_Surveillan
ce_and_Tracking_-_SST_Segment, accessed: 2021.

[2] E. Stoveken, T. Schildknecht, “Algorithms for the optical detection
of space debris objects”, Proceedings of the 4th European
Conference on Space Debris, Darmstadt, Germany, pp. 637-640,
2005.

[3] S. Maksim, “A comparison between a non-linear, poisson-based
statis-tical detector and a linear, gaussian statistical detector for
detecting dim satellites”, Advanced Maui Optical and Space
Surveillance Technologies Conference, p. 44, 2012.

[4] R. Sara, V. Cvrcek, “Faint streak detection with certicate by adaptive
multi-level bayesian inference”, European Conference on Space
Debris, 2017.

[5] M. P. Levesque, S. Buteau, “Image processing technique for
automatic detection of satellite streaks. Technical Report”,
DEFENCE RESEARCH AND DEVELOPMENT CANADA
VALCARTIER (QUEBEC), 2007.

[6] F. Diprima, F. Santoni, F. Piergentili, V. Fortunato, C. Abbattista, L.
Amoruso, “Efficient and automatic image reduction framework for
space debris detection based on gpu technology”, Acta Astronautica,
vol. 145, pp. 332-341, 2018.

[7] A. Ciurte, R. Danescu, “Automatic detection of meo satellite streaks
from single long exposure astronomic images”, 2014 International
Conference on Computer Vision Theory and Applications
(VISAPP), pp. 538-544, 2014.

[8] P. Hickson, “A fast algorithm for the detection of faint orbital debris
tracks in optical images”, Advances in Space Research, vol. 62,
3078-3085, 2018.

[9] R. Danescu, F. Oniga, V. Turcu, O. Cristea, “Long baseline stereo-
vision for automatic detection and ranging of moving objects in the
nightsky”, Sensors, vol. 12, pp. 12940-12963, 2012.

[10] H. N. Do, T. J. Chin, N. Moretti, M. K. Jah, M. Tetlow, “Robust
foreground segmentation and image registration for optical detection
of geo objects”, Advances in Space Research, vol. 64, pp. 733-746,
2019.

[11] D. Lang, D. W. Hogg, K. Mierle, M. Blanton, S. Roweis,
“Astrometry.net: Blind astrometric calibration of arbitrary
astronomical images”, The Astronomical Journal, vol. 139, pp.
1782–1800, 2010.

[12] Software Bisque, “TheSky Professional”, online:
https://www.bisque.com/product/theskyx-pro/, accessed 2021.

