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Abstract—Monocular vision systems are increasingly 
popular in driving assistance applications as they are easy to set 
up and do not require precise calibration or synchronization. 
The downside of monocular vision is the lack of 3D information, 
which makes the task of identifying individual objects that are 
close together in the image space difficult. The lack of 3D 
information must be compensated by high accuracy 
classification of the image data. This paper proposes a novel way 
of detecting objects using fully convolutional neural networks 
followed by lightweight geometric based post processing. The 
fully convolutional neural network has four semantic 
segmentation outputs corresponding to quarters of individual 
objects. Therefore, each pixel of the input image will be 
classified as either belonging to a top left, a top right, a bottom 
left, or a bottom right region of a whole object. If the object is 
occluded and only a few of the four regions are visible, the 
component pixels will still be labeled correctly. Based on the 
multiple outputs of the neural network, the pixels are grouped 
into connected regions using a clustering algorithm aware of the 
relations between the object’s quarters. The accuracy of 
individual obstacle instances is similar to the accuracy of the 
results obtained from instance segmentation networks, while the 
demand of resources and the number of trainable parameters is 
significantly reduced. 
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I. INTRODUCTION 
Artificial intelligence and neural network based 

processing have facilitated great improvements and 
developments in multiple fields, most notably in computer 
vision. Applications of convolutional neural networks (CNNs) 
refer to medical image processing, autonomous robots and 
vehicles, surveillance and so on. The work proposed in this 
paper is closely related to autonomous robotic platforms or 
vehicles, using deep learning to process images of the 
surrounding scene.  

In this paper we propose a CNN model that detects objects 
in a novel way, by using a semantic segmentation approach, 
followed by a geometric based post-processing step. The 
artificial neural network proposed in this work will provide 
four semantic segmentation outputs corresponding to quarters 
of the individual objects from the input image, meaning that 
each image pixel will be classified as part of the top left, top 
right, bottom left or bottom right region of the object. We then 
apply light post-processing to group the quarters into 
individual objects, similarly to a clustering algorithm. Partly 
occluded objects will still have the pixels labeled correctly, 
even if the quarters are not fully visible.  

The solution proposed by us works similarly to instance 
segmentation approaches, but with a reduced network 
complexity. 

II. RELATED WORK 
Recent object detection approaches make use of 

convolutional neural networks that are composed of two 
modules: a backbone network that is usually pre-trained and a 
head that provides the prediction of the objects’ bounding 
boxes and their corresponding class. Object prediction can be 
implemented with CNNs using either a one-stage approach, or 
a two-stage approach. One stage object detectors perform a 
regression of the bounding boxes and classes of the objects. 
Two-stage approaches use a region proposal network to 
generate regions of interest from the input image (first stage), 
that are then used to regress the bounding boxes and 
classification (second stage). These networks will feature a 
better accuracy than one-stage approaches, but are usually 
slower.  

Yolo [1] and SSD [2] are one-stage detection architectures 
that have been widely popular. They can be trained with 
different backbone networks and Yolo usually performs better 
with Darknet [3] backbone. These networks make multiple 
bounding box predictions in a single step and also compute 
confidence and perform obstacle classification. Mostly these 
networks perform in real time achieving a high frame rate.  

Another popular approach is Mask R-CNN [4] that 
performs instance segmentation (two stage approach). This 
approach has the advantage of predicting the individual, 
segmented pixel regions of obstacle instances. The main 
downside of such an approach is the network architecture 
complexity and the specfic pre-labeled datasets that need to be 
used during training.  

Obstacle detection can also be performed using traditional 
image processing methods, using a single camera [5] or a 
stereo-vision setup [6]. This task can also be achieved with the 
help of additional sensorial data, such as RADAR [7] or 
LIDAR [8], or even both [9]. Additional sensors increase the 
accuracy of the system, but they require special calibration 
and synchronization, therefore adding extra complexity to 
such a system. The next step after detection is tracking, where 
the problem of occlusion appears. Some obstacles become 
partly occluded. Therefore, partial detection is essential for 
accurate traffic scene perception.  

In this paper, we propose a solution that combines a CNN 
architecture with elements from classic geometric based 
obstacle reconstruction and detection. In this way, we are able 
to obtain results which are comparable to the ones obtained 
from instance segmentation networks, without having the 
complexity and higher computational resource requirements 
of these networks. 



III. SYSTEM OVERVIEW 
The proposed system features a unique method of 

extracting the individual object instances, based on generic 
semantic segmentation networks. Instead of using the network 
to classify the image pixels into different classes such as 
obstacle, free space, or even specific obstacles (cars, 
pedestrians, etc.), the network will label the image pixels with 
object parts (quarters) identifiers. The labeled parts are then 
grouped into individual obstacles based on their proximity and 
relative position as parts of the whole object. 

The difference between the part-based semantic 
segmentation and the generic type-based semantic 
segmentation is shown in figure 1. 

 
Fig. 1. The difference between free space segmentation vs. part-based 
semantic segmentation. 

We propose a encoder-decoder convolutional neural 
network which uses as input a color image acquired on board 
of the vehicle, whereas the output consists of four channels 
encoding the binary status of the pixels as part of an individual 
object quarter (top left, top right, bottom left, bottom 
right).  The algorithmic post-processing step consists of 
extracting the individual object instances as labeled regions of 
pixels and as rectangular bounding boxes, as illustrated in 
figure 2. 

 
Fig. 2. System overview. 

IV. SOLUTION DESCRIPTION 

A. Feature extraction 
The encoder part of the neural network has the role of 

extracting relevant features from the input images that are fed 
into the decoder part. The encoder module is based on an 
existing CNN architecture: ResNet [10] that has won the 
ImageNet competition in the past and has proven its 
efficiency. In this paper we make use of a modified version 
called ResNet-50.  

 
Fig. 3. The feature extractor based on ResNet-50. 

B. Object quarter semantic segmentation 
The structure of the U-Net based decoder is presented in 

figure 4. There are three concatenate operations with the 
corresponding layers from the encoder module. The final 
convolution operation will provide the network output.  

 
Fig. 4. The decoder module based on U-Net. 

The output of the decoder will provide obstacles divided 
into four individual parts.  

 
Fig. 5. The neural network outputs the obstacle quarters. 

 

C. Object reconstruction 
Based on the results of the neural network, the system 

must identify individual obstacles. The first step is to generate 
a 4-bit pixel encoding image, each bit corresponding to a type 
of quarter: bit 0 - top left quarter, bit 1 - top right, bit 2 - bottom 
left, and bit 3 - bottom right. Some pixels may belong to 
overlapping regions, and therefore they will have more than 
one bit set, as seen in figure 6. 



 
Fig. 6. Object pixel coding based on segmented quarters. 

Based on the quarter coding, each pixel will have the value 
0 if it is no obstacle point, or a value from 1 to 15, depending 
on the quarter overlap. We will generate 15 binary images, and 
label each one using connected components labeling. The 
labels from every set will be joined, and a region image will 
be generated, as seen in figure 7. The problem now becomes 
the problem of joining these regions into individual obstacles. 
A defining assumption is that each region will belong to only 
one object, because if adjacent objects are present in the scene 
their quarter codes will differ and will therefore split the 
regions. These regions are similar to the superpixels [11], but 
computed from semantic segmentation results. 

 
Fig. 7. Labeled regions based on connected pixels of the same quarter code. 

The individual labeled regions will be clustered by 
assignment to rectangle hypotheses generated from quarter 
regions. Each quarter region can generate a complete object 
hypothesis, by expanding from the given region to the missing 
pieces of the object, using duplication of the region’s 
bounding box along the horizontal and along the vertical axis. 
If an object is completely seen, it will have four quarters, and 
each quarter will generate a complete rectangle, as seen in 
figure 8. Each rectangle generated from each quarter of each 
object in the scene will receive a unique label. 

 
Fig. 8. Generation of rectangle hypotheses based on quarters. 

Now we have, for each quarter region of each object, a 
rectangle which is a complete hypothesis of a bounding box 
of an obstacle. The hypotheses therefore outnumber the 
objects by a factor of almost 4 to 1. For this reason, the 
hypotheses will be merged based on an overlapping score and 
a pixel fitness score. 

For each individual rectangle hypothesis R, a pixel score 
S(R) is computed as shown in figure 9. Each image pixel 
overlapped by the rectangle is checked to fit with the 
corresponding quarter of the rectangle: for example, if the 
quarter is top-left, the score is incremented if the image pixel 
has the top-left quarter bit set (Match). The score is then 
normalized with the rectangle area. 

 
Fig. 9. Computing the rectangle score based on quarter matching. 

The rectangles are subsequently re-labeled, based on their 
overlap with other rectangles, and based on their pixel score. 
Each rectangle Ri will be compared to every other rectangle 
Rj, and if they overlap significantly and S(Rj)>S(Ri), the 
rectangle Ri will be labeled with the label of Rj. The process 
is shown in figure 10. 

 
Fig. 10. Re-labeling the rectangle hypothesis by the best scored overlap. 

The final step is to label each region shown in figure 7 with 
the label of the best scored rectangle overlapping the region. 
For each region, the overlapping pixels with every rectangle 
hypothesis are taken into consideration, and the rectangle 
score is added every time an overlapping pixel is found. The 
label of the highest scoring match is assigned to the region. If 



the rectangle is re-labeled, as shown in figure 10, the final 
label is assigned to the region. The process is shown in figure 
11, where we see two partially overlapping objects and their 
final label. 

 
Fig. 11. Final result obtained by labeling the regions with the rectangle 
labels. 

 

V. TRAINING THE SEMANTIC SEGMENTATION CNN 
A. Automatic training data generation 
 

For training we have used the following datasets: 
CityScapes [12], Berkeley Deep Drive [13] and KITTI [14]. 
These databases feature semantic segmentation examples and 
also obstacle detection examples, meaning that we can extract 
the four obstacle areas using the provided data. Each input 
image is split intro four different quarters using the existing 
bounding boxes from the datasets. Then, we mask each 
quarter with the data from the semantic segmentation maps in 
order to generate the top left, top right, bottom left and bottom 
right images of object instances.  

 

 
Fig. 12. Extracting the object quarters (right) from the dataset bounding 
boxes (top left) and semantic segmentation mask (bottom left). 

B. CNN training 
The neural network was trained on a system featuring 2 x 

1080 Ti featuring 11 GB of memory, for a total of 500 epochs. 
We set the patience parameter to 50 epochs, meaning that if 
the training doesn’t improve for 50 epochs, the process is 
stopped early (this usually happens after 200 epochs). 
Training one epoch takes around 50 seconds, meaning that we 
can obtain a fully working CNN model in less than 3 hours.  

We perform data augmentation during training (random 
scaling, translation of the input data and color adjustments in 
the HSV color space). Training is performed using the 
Sorensen-Dice loss [15] and binary cross entropy.  

VI. RESULTS AND EVALUATION 
Our proposed model was evaluated using well-known 

existing datasets and also the following dataset [6]. We 
compare our approach with the one proposed in paper [16]. 
The results are improved, especially on dataset [6] with 
images that were captured with camera systems that are 
different than the images included in the training datasets. We 
have also managed to train a Yolo V3 network on KITTI 
dataset and we compare with our proposed model. The results 
are presented in table 1. 

TABLE I.  BOUNDING BOX EVALUATION 

 Stereo dataset 
(IoU) 

Cityscapes 
dataset (IoU) 

Kitti dataset 
(IoU) 

MONet [16] 0.74 0.80 0.55 

Our system 0.88 0.82 0.70 

DarkNet  
with Yolo V3 0.56 0.57 0.88 

 
The Stereo dataset is composed of images acquired with a 

stereo-camera setup and we use only the left image from the 
setup. We then compared the results with the ground truth data 
obtained from a stereo tracking algorithm [17]. A stereo-
vision system has a clear advantage in the case of partially 
overlapping objects, because they can be easily sorted out 
based on their depth. Still, this proposed monocular object 
detection solution obtains a high accuracy on this dataset.  

Based on the evaluation on the CityScapes dataset, our 
solution has been proven highly accurate for detecting 
obstacles in complex city scenarios. For the KITTI dataset, the 
results are poorer due to the aspect ratio of the input images in 
the dataset, which impose to us two choices: we either resize 
the image as it is to our 256x256 pixels network input, or we 
crop the image and then resize. The first choice will severely 
deform the objects impacting the recognition process and the 
second choice will prevent possible objects from even being 
considered for detection.   

Figure 13 illustrates some results of the proposed system 
in different scenarios and datasets.  

 



 
Fig. 13. Sample results: first column is the input image, the second column 
is the quarter semantic segmentation (CNN outputs merged), the third 
column shows the labels of individual instances, and the fourth column 
shows the extracted bounding boxes. 

Mask R-CNN features 64 million parameters, whereas our 
model based on U-Net features 11 million parameters. The 
prediction time for Mask R-CNN is 0.27 seconds, compared 
to 0.043 seconds for our network. Labeling the images takes 
0.014 seconds on average. Extracting the bounding boxes 
from the post-processed images takes an additional 0.0041 
seconds on average, resulting a total average computational 
time of 0.0611 seconds for an individual frame. Testing was 
done on a desktop system using an Intel i7 CPU and equipped 
with two Nvidia 1080 Ti GPU boards that were used for 
training and prediction.  

VII. CONCLUSION 
The proposed system accurately detects object instances 

from road traffic sequences. We have obtained local 
geometric information using generic semantic segmentation 
networks and then we used this information for weak model 
based clustering of object parts. This way, our proposed 
system is able to successfully identify objects even if they are 
in close contact or partly occluded. The resulted system is 
lighter, faster, easier to train and has the accuracy comparable 
to networks that are much more complex.  

The future work will be focused on the analysis of 
consecutive frames to improve the stability and performance 
of the segmentation and to track individual objects. The 
knowledge about the parts of the object will be very helpful 
when the object is tracked in the presence of occlusions.  
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