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Abstract— Predicting emergency braking events in vehicles 
plays a critical role in enhancing road safety, particularly in the 
context of speeding-related accidents. In this research, we 
propose a convolutional neural network (CNN) approach to 
predict current frame emergency braking using a sequence of 
20 images and 20 corresponding velocity data points as input. 
Leveraging the spatial and temporal information captured by 
CNNs, our model aims to accurately anticipate the need for 
immediate braking actions. We conduct experiments using the 
Honda Deep Drive dataset, which contains diverse road traffic 
scenes captured at different moments of the day and under 
various weather conditions. Our results demonstrate the 
effectiveness of the proposed approach, achieving high 
prediction accuracy and providing real-time warnings for 
potential emergency braking situations. The developed model 
contributes to the field of autonomous vehicles, where ensuring 
safe and efficient navigation is of paramount importance. By 
improving the prediction capabilities for emergency braking, we 
contribute to enhancing the overall road safety and provide 
valuable insights for the development of intelligent systems in 
autonomous vehicles. 
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I. INTRODUCTION 
Autonomous vehicles have emerged as a prominent and 

active research field, with significant efforts being dedicated 
to developing intelligent systems capable of perceiving and 
interacting with their environment. One crucial aspect of such 
systems is the ability to predict emergency braking events 
accurately. By accurately anticipating the need for immediate 
braking actions, autonomous vehicles can proactively respond 
to potential hazards, thus enhancing overall road safety. 

Speeding stands out as a critical contributing factor to fatal 
accidents, as highlighted by the National Highway Traffic 
Safety Administration (NHTSA) [1] or by Transport Canada 
[2]. The detrimental consequences of speeding include 
increased collision risks, severe injuries, and loss of life. 
Consequently, there is a need for advanced systems capable of 
predicting and mitigating potential hazards caused by 
speeding vehicles. This requirement becomes even more 
significant in the context of the ongoing advancements in 
autonomous vehicles, where ensuring safe and efficient 
navigation is of paramount importance. 

Convolutional neural networks (CNNs) have 
demonstrated exceptional performance in analyzing sensorial 
and visual data, making them a promising tool for predicting 
emergency braking events. By leveraging the intrinsic ability 
of CNNs to capture complex spatial patterns, researchers have 
explored their potential in developing predictive models for 
various computer vision tasks. The application of CNNs in the 

context of emergency braking prediction for vehicles can 
provide valuable insights into potential hazardous situations, 
enabling timely actions and preventing accidents caused by 
speeding. 

Motivated by the need for accurate and real-time 
predictions in the field of autonomous vehicles and the 
importance of addressing speeding-related accidents, this 
paper focuses on developing a CNN-based approach to predict 
current frame emergency braking events. Specifically, we 
investigate the effectiveness of using a sequence of 20 images 
and 20 corresponding velocity data points as input to the 
model. By capturing both visual and temporal information, 
our proposed model aims to improve the accuracy of 
emergency braking prediction and contribute to the 
development of intelligent systems for autonomous vehicles 
that prioritize safety. The emergency brake signal predicted by 
our model is generated in a unique method by analyzing the 
existing brake and accelerator pedal data. 

II. RELATED WORK 
Detecting hazardous situations is crucial for improving 

road traffic safety. Some of the existing published methods 
leverage sensorial input, whereas others make use of imagery 
data as input. There are also methods that combine multi-
sensorial input to predict hazardous situations or driver 
intentions in driving scenarios.  

Early work in this field analyzed the detection of brake 
lights from vehicles using image data as input. The work of 
[3] uses an image processing algorithm in the HSV color space 
to extract the vehicle tail lights. This data can be used to 
determine if the vehicle in front is braking and if emergency-
braking is needed in order to develop forward collision 
warning or avoidance (FCW/FCA) systems. 

Other studies have explored the prediction of emergency 
braking for vehicles using convolutional neural networks 
(CNNs). Paper [4] addressed the problem of brake light 
detection using CNNs in a vision-based approach. They 
utilized a deep CNN architecture based on the Yolo detector 
[5] to analyze images and accurately detect brake light signals, 
contributing to the prediction of emergency braking situations. 

In a similar vein, [6] proposed a vision-based method for 
predicting emergency braking by leveraging a CNN and a 
Long-Short Term Memory (LSTM) [7]. Their approach 
focused on processing sequential images from tunnels in road 
traffic. Their results demonstrated the effectiveness of deep 
learning in anticipating emergency braking events. 

The authors of [8], make use of sensorial data to predict 
emergency-braking distance. This approach uses three-
dimensional accelerometer data paired with the corresponding 



emergency-braking distance to train a neural network to 
predict the distance.  

Incorporating multi-sensor fusion and deep learning 
techniques, the work of [9] proposed a forward collision 
warning model based on a fully connected neural network. 
This approach was trained using velocity, acceleration and the 
separation distance from the front objects, along with radar-
based data as inputs for the neural network.  

In [10], the authors developed an end-to-end deep neural 
network that employs an early fusion approach, taking both 
visual images, corresponding depth information and 
navigation commands as input. The network simultaneously 
produces pixel-wise semantic segmentation for scene 
understanding and generates vehicle control commands, 
including steering angle and speed. Another end-to-end 
approach is presented in [11], where the authors propose 
predicting the longitudinal and lateral control values of 
vehicles using LIDAR and camera fusion. They employ a 
CNN architecture based on Inception [12] and ResNet [13]. 

In [14], the authors present six end-to-end deep learning 
architectures for directly generating driving actions (predict 
vehicle speed and steering angle). The authors make use of 
CNNs and Recurrent Neural Networks [15], mainly Gated 
Recurrent Units, to predict the desired data using either image-
based only input, or image and additional sensorial data as 
input. The paper concludes that using additional data (such as 
velocity) as input can increase the robustness and precision of 
the results. 

The multi-sensorial input based approaches require a lot of 
pre-processed data as input, whereas our proposal uses pixel 
data obtained from the forward-facing camera and the 
vehicular velocity expressed directly in km/h as raw input to 
the CNN in order to extract the braking warning output from 
complex road traffic scenarios. Using pixel data as input to 
extract relevant features for predictions, in an end-to-end 
manner, has already been well-studied. In [16], the authors 
present the application of CNNs to directly learn driving 
behaviors from visual input, specifically predicting the 
steering angle of the ego-vehicle based on road traffic scene 
images. In our work, we adopt a similar approach and further 
enhance it by incorporating vehicle velocity as an additional 
input to better anticipate hazardous situations and improve the 
overall robustness of the method. 

These previous studies collectively demonstrate the 
efficacy of utilizing deep learning and image and sensorial 
data processing algorithms to determine driver behaviour or 
vehicle state in road traffic scenarios. Most methods are based 
on determining the vehicle tail lights or by using image data 
and fusing additional pre-processed sensorial data as input in 
order to determine emergency braking prediction in vehicles. 

III. SOLUTION OVERVIEW 
In this paper, we propose a CNN architecture specifically 

tailored for predicting current frame emergency braking based 
on a sequence of 20 images and 20 corresponding velocity 
data points without the use of recurrent neural networks. 
Figure 1 illustrates an overview of the proposed solution. 

 
Fig. 1. The proposed system that uses multiple inputs to estimate the need 
for emergency braking in road traffic scenarios. 

A. Neural network description  
The network structure presented in this paper is described 

in this section. The model takes two inputs (a sequence of 20 
consecutive past images from the traffic scene and 20 values 
representing the ego-vehicle speed) and predicts a single 
output (the current frame state for emergency braking for the 
ego-vehicle). 

The first input expects image data with dimensions of 
300x300 pixels and 20 observed frames. It captures the visual 
information of the road traffic scenario using single channel 
grayscale images. 

The network architecture begins with several 
convolutional layers to process the image input. These layers 
are as follows: 

• conv1: Convolutional layer with 24 filters of size 5x5 
and a stride of (2, 2). It applies the ReLU activation 
function to introduce non-linearity. 

• conv2: Convolutional layer with 36 filters of size 5x5 
and a stride of (2, 2), followed by ReLU activation. 

• conv3: Convolutional layer with 48 filters of size 5x5 
and a stride of (2, 2), followed by ReLU activation. 

• conv4: Convolutional layer with 64 filters of size 3x3, 
using ReLU activation. 

• conv5: Convolutional layer with 64 filters of size 3x3, 
using ReLU activation. 

 

To prevent overfitting, a dropout layer is applied with a 
rate of 0.5 after last convolutional layer. The output of the 
dropout layer is flattened to prepare it for concatenation with 
the second input. 

The second input represents the velocity of the vehicle in 
the road traffic scenario. It is a 1-dimensional signal with a 
length of 20, capturing the temporal velocity information. 

The second input is reshaped (reshape) to remove the last 
dimension, making it compatible for concatenation with the 
flattened output from the convolutional layers. 

The flattened output and the reshaped second input are 
then concatenated (concat) along the last axis to merge their 
features. 

After the concatenation, the network continues with a 
series of dense layers: 



• dense1: Dense layer with 100 units and ReLU activation 
function. 

• dense2: Dense layer with 50 units and ReLU activation 
function. 

• dense3: Dense layer with 10 units and ReLU activation 
function. 

 

Finally, an output layer (output) with a single unit and 
linear activation function is created to produce the final output 
of the model. The output represents the predicted signal value 
based on the combined information from the images and the 
velocity of the vehicle. 

The entire model features a total of ~5.9 million 
parameters and a visual representation of the layer structure is 
presented in figure 2. 

 
Fig. 2. Proposed CNN layer structure and concatenation of the two inputs. 

 

B. Dataset 
The work presented in this paper makes use of the Honda 

Deep Drive dataset [17], which is a large-scale database used 
in the field of autonomous driving and computer vision 
research. The dataset features 104 hours of driving data from 
the San Francisco area in various scenarios: urban, suburban 
and also highway, captured at different times of the day and 
under various weather conditions. The dataset focuses on 
capturing real-world driving scenarios and has a diverse range 
of environments and driving conditions. It includes data 
collected from a variety of sensors, such as cameras, LIDAR 
(Light Detection and Ranging), and GPS (Global Positioning 
System), to capture information about the surroundings of the 
vehicle. It also uses the Controller Area Network (CAN) bus 
of the vehicle to acquire data directly from the car, such as 
velocity, brake pedal pressure, accelerator pedal pressure, thus 
making it an ideal dataset for analysing driver behaviour in 
interactions with other traffic participants.  

The imagery data consists of color images with a 
resolution of 1280x720 pixels, captured at a frequency of 30 
frames per second. However, upon analysing the data, we 
discovered that certain frames were missing, resulting in some 
sequences having less than 30 frames per second. The dataset 
has a total of 137 trips, out of which 7 trips were randomly 
chosen for exclusion from the training process and reserved 
for evaluation purposes. From the trips, we extracted 
sequences of 20 consecutive images. To ensure overlap and 
continuity, a sliding window approach was utilized with a 
window size of 20 and an overlap of 5 frames. Therefore, we 
obtained a collection of over ~57,200 continuous sequences 
with 20 images and the corresponding ego-vehicle speed data. 
The sequences were then filtered, as the data was imbalanced, 

meaning that only ~12,800 of the entries had velocity values 
greater than 0 km/h, whereas the remaining ~44.400 
sequences had velocity data equal to 0 km/h. The data was 
balanced with 50/50 distribution between standing still 
(velocity = 0 km/h) and moving (velocity >0 km/h), resulting 
in a total of ~25.700 sequences, that were divided into training 
and testing/validation sets, with an 80/20 split. 

 

C. Data pre-processing and preparation 
 The proposed emergency-brake signal is generated from 

the existing brake pedal sensorial data. We analyse the first 
order derivative of the brake pedal data, which is expressed in 
kPa in the dataset with values ranging from 0 (no brake 
applied) to ~7300 (brake pedal applied to the maximum). The 
values are normalized in the [0, 1] interval and an example 
plot of the data is presented in figure 3. 

 
Fig. 3. Example of the acceleration and brake pedal data (values normalized 
in 0-1 range). 

Acceleration and brake pedals are almost never pressed 
together, therefore we can safely use either sensor to predict 
dangerous situations when an imminent stop is required. We 
first tried to determine the intersection of the acceleration and 
brake signal values in order to detect hazardous situations: 

 
Fig. 4. Computing the intersection of acceleration and brake pedals 
sensorial data. 



To better analyse the data, a Gaussian 1D kernel with std. 
dev. 5 and variance 3.5, was applied to the acceleration and 
brake signal to smooth the input data. 

 
Fig. 5. Filtering the brake signal using a 1D Gaussian kernel. 

We decided on using the ascending slope (gradient / first 
order derivative) of the brake signal to detect hard braking (we 
also analysed the descending slope of the acceleration, but it 
is not used – illustrated in the next figure): 

 
Fig. 6. First order derivative illustration of the ascending brake signal and 
the descending acceleration signal (values are normalized between 0-1).. 

The highest values from the first order derivative of the 
ascending brake signal values are then filtered: 

 
Fig. 7. Filtering the first order derivative of the ascending brake signal data 
(values are normalized between 0-1). 

The next step is to generate the alert signal and introduce 
it 1 frame before the actual hard braking occurs (we initially 
tested with 5 frames): 

 
Fig. 8. Generating the emergency brake signal one frame before the actual 
hard braking occurs (values are normalized between 0-1).. 

The emergency brake signal was initially generated as a 
Gaussian distribution (std.dev. = 10, σ = 3.5 from which we 
only extracted the first 5 elements as the signal), and it was 
inserted 5 frames before the detected hard brake event. Then, 
upon further investigation in order to properly train the CNN, 
we decided to convert the generated emergency signal to a 
step signal with a length of 10 frames. 

 
Fig. 9. The generated emergency brake signal and the initial brake pedal 
pressure signal from the dataset (values are normalized between 0-1). 

 

D. Experimental Setup and Implementation 
The experimental configuration uses a desktop computer 

powered by an Intel i7 CPU, along with two Nvidia 1080 Ti 
GPUs with a combined VRAM capacity of 22 GB. These 
GPUs are utilized during the training phase of the neural 
network. To efficiently handle the memory constraints of the 
desktop workstation, most of the Honda Research Institute 
dataset is accessed directly from SSDs during training. 

The software development for the experimental setup is 
built using TensorFlow and Keras [18], which serve as the 
frameworks for implementing the neural network. 
Additionally, OpenCV and Matplotlib libraries are employed 



for visualizing and generating videos showcasing the results 
obtained from the neural network. 

 

IV. EVALUATION AND RESULTS 
The proposed CNN was trained using the Mean Squared 

Error (MSE) loss function between the ground truth and the 
predicted value. The network’s weights are adjusted during 
training by using the back-propagation algorithm and by using 
the Adam optimizer [19] with an initial learning rate of 0.001, 
that is decreased over time if the loss function does not 
improve. 

To assess the performance of our proposed method for 
predicting the emergency brake signal based on image 
sequences and velocity data, we conducted an evaluation 
using various classification metrics. We performed the 
evaluation on a test dataset consisting of real-world driving 
scenarios, ensuring a diverse range of road traffic scenes and 
emergency braking instances. For each input sequence of 20 
images and corresponding velocity data, we compared the 
predicted emergency brake signal with the ground truth. 

The classification metrics were computed as follows: 

• True Positives (TP): The number of correctly predicted 
emergency brake signals. 

• False Positives (FP): The number of instances where the 
model incorrectly predicted an emergency brake signal. 

• False Negatives (FN): The number of instances where 
the model failed to predict an emergency brake signal 
when one was present. 

• True Negatives (TN): The number of correctly predicted 
non-emergency brake instances. 

 

Additionally, we calculated the following metrics: 

• Accuracy (ACC): The ratio of correctly predicted 
instances (TP and TN) to the total number of instances. 

• Precision: The proportion of correctly predicted positive 
instances (TP) to the total number of predicted positive 
instances (TP and FP). 

• Recall: The proportion of correctly predicted positive 
instances (TP) to the total number of actual positive 
instances (TP and FN). 

• F1-score: The harmonic mean of precision and recall, 
providing a balanced measure of the model's overall 
performance. 

• True Positive Rate (TPR): The ratio of correctly 
predicted positive instances (TP) to the total number of 
actual positive instances (TP and FN), also known as 
sensitivity or recall. 

• False Positive Rate (FPR): The ratio of incorrectly 
predicted negative instances (FP) to the total number of 
actual negative instances (FP and TN). 

 

A prediction example on the test set is illustrated in figure 
10, where the ground truth and predicted emergency brake is 
displayed, along with the velocity data and the brake pedal 
sensor data. 

 
Fig. 10. Prediction example overlaid with the original input image. 

For better visualization of the obtained results, we have 
also displayed a warning (red triangle) when the predicted 
emergency brake signal is active. Two videos of the results 
can be accessed here: https://vimeo.com/840489630 and 
https://vimeo.com/840489932, and an individual frame 
prediction example is presented in figure 11. 

 

 
Fig. 11. Prediction example with emergency brake warning (red triangle) 
displayed on the center of the input image. 

The evaluation was done by counting all emergency brake 
signals of length equal or larger than 10 frames (considered to 
be strong signals) when counting the false positives. When 
computing the true positives, we counted any signal of length 
larger than 1 frame. The classification results on five 
individual evaluation trips from the HDD dataset are 
presented in table 1. 

TABLE I.  EMERGENCY BRAKE SIGNAL EVALUATION 

 
Trip #1 Trip #2 Trip #3 Trip #4 Trip 

#5 

Total frames 5090 3603 11154 2372 6266 
GT signals 
(count) 

58 60 68 28 114 



 
Trip #1 Trip #2 Trip #3 Trip #4 Trip 

#5 

True Positive 51 55 55 24 101 

False Positive 40 34 26 1 19 

True Negative 4992 3509 11060 2343 6133 

False Negative 7 5 13 4 13 

True Positive 
Rate  0.879 0.916 0.808 0.857 0.885 

False Positive 
Rate 0.007 0.009 0.002 0.0004 0.003 

Accuracy 0.990 0.989 0.996 0.997 0.994 

Recall 0.879 0.916 0.808 0.857 0.885 

Precision 0.560 0.617 0.679 0.960 0.841 

F1 Score 0.684 0.738 0.738 0.905 0.863 

 

The CNN model effectively utilizes pixel data to extract 
crucial features, enabling accurate prediction of the 
emergency brake signal, even in the presence of simulated 
velocity input failures. Specifically, when 50%, 80% or 100% 
of the input data represents -1 km/h velocity, the model 
demonstrates robust performance in accurately predicting the 
emergency brake signal with minimal difference compared to 
a fully working velocity sensor input (as can be seen in table 
2). 

TABLE II.  EMERGENCY BRAKE SIGNAL EVALUATION WITH VELOCITY 
SENSOR FAIL SIMULATED (50%, 80% AND 100% FAIL RATE) 

 
Trip #2 Trip #2  

50% FAIL 
Trip #2 

80% FAIL 

Trip #2 
100% 
FAIL 

Total frames 3603 3603 3603 3603 
GT signals 
(count) 

60 60 60 60 

True Positive 55 55 52 51 

False Positive 34 24 32 17 

True Negative 3509 3519 3511 3526 

False Negative 5 5 8 9 

True Positive 
Rate  0.916 0.916 0.866 0.850 

False Positive 
Rate 0.009 0.006 0.009 0.004 

Accuracy 0.989 0.991 0.988 0.992 

Recall 0.916 0.916 0.866 0.85 

Precision 0.617 0.696 0.619 0.75 

F1 Score 0.738 0.791 0.722 0.796 

 

More prediction examples extracted from a subset of 330 
frames from an evaluation trip, are presented in figure 12. 

 
Fig. 12. Emergency brake predictions vs ground truths along with velocity 
and brake pedal sensor data from a sequence. All data is normalized in the 
(0-1) interval. 

We have also evaluated the prediction time of the CNN, 
and the results are presented in figure 13. 

 
Fig. 13. Prediction time analysis over a small subset of 200 frames. 

The CNN is able to predict in an average time of ~3 
milliseconds (computed over several trips containing over 
20K frames), proving it is capable of providing on-demand 
information in hazardous situations.  

 

CONCLUSION 
In this paper, we presented a novel approach for predicting 

the emergency brake signal for a vehicle based on a sequence 
of 20 images and corresponding velocity data. By leveraging 
a convolutional neural network (CNN) architecture and 
incorporating both visual and velocity inputs, we 
demonstrated improved accuracy in identifying hazardous 
situations and enhancing the robustness of the prediction 
model. Our findings indicate the effectiveness of utilizing end-
to-end learning techniques in the context of autonomous 
driving. 

Through our experimental evaluation, we showcased the 
advantages of our proposed method. The combination of 
image data and velocity information provided a 



comprehensive representation of the driving context, enabling 
accurate and timely emergency brake predictions, even with 
velocity input sensor failure. We have implemented a new 
method to generate an emergency brake signal extracted from 
the original brake pedal pressure that was used to train the 
proposed CNN. 

Our research contributes to the growing field of 
autonomous driving, where advancements in deep learning 
and computer vision techniques play a vital role. By 
addressing the crucial task of emergency brake prediction, we 
provide valuable insights into the development of intelligent 
systems capable of proactive response to critical situations. 
Future work could explore additional input modalities and 
investigate the integration of multiple sensor data sources to 
further improve the accuracy and reliability of the prediction 
model. 

In conclusion, our study highlights the significance of 
leveraging CNNs and sequential data analysis for real-time 
emergency brake prediction, ensuring safer journeys for all 
road users. 
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