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Abstract—We propose Area Disagreement, a novel uncertainty
estimation method for Active Learning in the context of Semantic
Segmentation, which capitalizes on the unique characteristics of
the task. It relies on the assumption that slight alterations to
the learner model’s parameters should not produce significant
differences in the output, specifically in terms of predicted shapes
and objects given the same input image. While a small amount
of contradiction is natural, larger inconsistencies suggest that
the model’s internal representation of the world is perplexed by
those images, thus making them valuable for further training.
Our uncertainty estimation method prioritizes images with a
smaller Dice Coefficient relative to the average prediction, based
on multiple Monte-Carlo Dropout inferences. Utilizing this ap-
proach, we outperformed baseline methods by a wide margin on
the Cityscapes dataset, achieving 95% of the full-scale training
performance using only 36% of the dataset and 97.5% of the
full-scale training performance using 47% of the dataset.

I. INTRODUCTION

In the past decade, the field of Deep Learning has been
supercharged by the abundance of data and the availability of
powerful computing hardware such as GPUs. It has managed
to revolutionize multiple areas, most notably Computer Vision.
However, most approaches require huge amounts of manually
annotated data, which has become a significant bottleneck
in the development of large-scale Neural Network models,
especially for fine-grained tasks like Semantic Segmentation,
where pixel-wise labels must be obtained for every ground
truth image. The annotation process for Semantic Segmen-
tation typically involves delimiting each object in an image
using a polygon, a process that may take up to 1.5 hours for
a single image, thereby increasing the need to minimize the
number of images requiring manual processing.

Active Learning (AL) is a framework that aims to address
this challenge by proposing mechanisms to select only the
most promising images for annotation, usually by evaluating
each sample from an unlabeled pool based on the model
output and a query method. It has been successfully applied
in classification [1]–[5], segmentation [6]–[14], object detec-
tion [15]–[17] and task-agnostic settings [18], [19], reaching
higher performance levels than would otherwise be possible
with the same number of randomly chosen images.

Most of the recent papers on AL for Semantic Segmenta-
tion focus on leveraging Semi-Supervised Learning, selecting
only regions of images, or coping with weakly labeled data.
While these approaches do decrease the necessary effort for
annotation by orders of magnitude, they still heavily rely on
uncertainty estimation functions.

The purpose of this work is to introduce a novel uncertainty
estimation method tailored for Semantic Segmentation, taking
advantage of the particularities of this task, mainly the spatial
dependencies between pixels. More specifically, by leveraging
the concept of Bayesian Neural Networks implemented using
Monte-Carlo Dropout [20], multiple segmentation masks are
predicted for each image in the unlabeled pool. The Dice
Coefficient is computed between the different predictions
and their average, and the images causing the lowest Dice
Coefficient are deemed to be the most informative.

The contribution of this paper is the creation of a superior
uncertainty estimation function tailored for Semantic Segmen-
tation, which may be used either in isolation, as a query
method, or in conjunction with any other method that needs
an uncertainty estimation baseline.

II. RELATED WORK

A. Active Learning

The first comprehensive survey on active learning (AL) was
conducted by Burr Settles [21]. In his work, he identified
the three main scenarios of AL: membership query synthesis,
stream-based selective sampling, and pool-based sampling.
Among these, the most widely used is the latter, which will be
the focus of this paper. The pool-based sampling method treats
the AL process as a loop, where at every iteration, a large pool
of real, unlabeled data is queried for the most useful samples
to be manually annotated and added to a smaller labeled set,
which will constitute the training set for the next iteration of
the learner model. The process is illustrated in Fig. 1.

Multiple approaches for assessing the usefulness of samples
have been studied over the years, with the most prominent
being Uncertainty Sampling, where the model’s predictions on
the unlabeled images are evaluated for uncertainty using vari-
ous functions, such as Entropy [22] and Margin [23]. Other ap-
proaches include Query-By-Committee [24], Expected Model
Change [25], and Core-Set [4]. Additionally, Yarin Gal et al.979-8-3315-3997-9/24/$31.00 ©2024 IEEE



Fig. 1: Pool-Based Active Learning Process.

introduced the concept of using Bayesian Neural Networks to
assess uncertainty [3] by approximating Bayesian Inference
using the Monte-Carlo (MC) Dropout method [20]. This was
confirmed by BALD [5] and its successor BatchBALD [2],
which compute the Mutual Information between individual
and average predictions on both sample and batch levels,
respectively. Furthermore, the Bayesian framework, as dis-
cussed in a survey conducted by Di Fiore et al. [26], is
particularly well-suited to address some challenges explored
by Active Learning. Consequently, a synergy has recently
begun to emerge between the two domains.

More modern approaches have emerged, aiming to inte-
grate advances from other fields of Deep Learning, such as
Autoencoders [18], [19], Reinforcement Learning [6], [27],
GANs [28], [29], and NAS [30]. Unlike classical AL meth-
ods, these contemporary approaches typically use additional
networks to estimate image usefulness and are generally task-
agnostic, making it relatively straightforward to adapt them to
any new Deep Learning task, including Semantic Segmenta-
tion.

B. Active Learning for Semantic Segmentation

For the Semantic Segmentation task, the most prevalent
approaches used Semi-Supervised Learning [10], [12] and
Region-Based querying [9] to maximize the utility of unla-
beled data and reduce the labeling effort as much as possible
by not requiring whole images to be annotated. Taking this
effort reduction further, the work of Hwang et al. [8] aimed to
reduce the labeling effort to just a few clicks. Their method
involved the model requesting all existing classes in a small
region of interest, and adapting the learning procedure to sup-
port such a multi-class labeling scheme. Here, the annotator’s
effort is reduced to simply selecting the visible classes from
a list. Another approach to minimizing annotator workload is
PixelPick [13], where the authors propose a framework where
only individual pixels of interest are queried by the model,
and annotators only need to pick the class of each pixel.

Two other methods that use approaches similar to ours are
EquAL [7] and ViewAL [14]. EquAL suggests that ensuring
self-consistency between model predictions on the same input
image, with equivariant transformations applied, helps training
by adding this enforcement as a loss component. However, the
consistency was not applied as a criterion for sample selection.

ViewAL is tailored for 3D environments, where there are
multiple shots of the same object from different viewpoints. By
analyzing predictions from different viewpoints, the authors
could identify regions (projected into 3D) causing the most
contradictions between viewpoints.

In a manner similar to ours, Dechesne et al. [31] ap-
plied the Bayesian framework, specifically the Monte-Carlo
Dropout(MCD) method, in order to train a semantic seg-
mentation model end-to-end, achieving promising results. In
addition, they utilized the multiple predictions generated by the
MCD process to assess uncertainty by computing pixel-wise
entropy. They did not use it, however, as an active learning
goal.

Although targeted at Semantic Segmentation, existing meth-
ods mainly aim to enhance the process by leveraging the
unlabeled set or reducing the labeling effort per data point,
but do not focus on the acquisition itself and the means to
compute the most informative data points. Moreover, most of
them select their data points using simple Entropy or slightly
modified variants of Entropy. Therefore, we construct and
evaluate our method without such additional augmentations,
positioning it as an alternative to classical query functions like
Entropy and Margin.

III. METHOD

In order to take advantage of the properties of the Semantic
Segmentation’s output (e.g.: locality, shape, size), we shall
look at the way IoU and Dice Coefficient use them. Instead of
averaging pixel-wise difference between the network output
and ground truth, these methods compute the ratio of the
intersected areas (how much the model got right) over the
union of areas (how much the model missed relative to the
size of the objects). This formulation pushes the model to
learn the shapes of the objects irrespective to their sizes,
as the applied penalty is the proportion of the coverage, as
opposed to the pixelwise penalty which would be strongly
biased towards bigger objects. But in order to compute an IoU
or a Dice Coefficient, a Term of Comparison, in this case, the
Ground Truth, is needed, and when computing uncertainty,
nothing else but the output of the model is available, so such
a comparison cannot be done and the uncertainty has to be
assessed within the output itself.

The Bayesian Framework enables predicting multiple
slightly modified variants by the same model, by tweaking
the parameters. In classifier based AL, an entropy would be
measured on these inferences afterwards, or disagreement by
computing mutual information. For semantic segmentation,
it means that for a single image we could have multiple
masks for the same scene, but with the objects within them
having slight differences in properties (e.g.: slightly dislocated,
marginally smaller or bigger) compared to the homologous
objects in the other predictions. This enables us to observe
exactly which objects and properties the model tends to
confuse, by what degree, even if the true composition of the
image is not known yet. Therefore, we borrow the concept
of ”Disagreement”, as we want to compute how much the



predictions contradict with each other, and we apply it to ”Ar-
eas” resulted by the Semantic Segmentation process, though
not exactly in the same way described in the original BALD
method, yet still similar. We aim to measure the spread in
terms of Dice Coefficient of the Bayesian inference given
by the model, as the Dice Coefficient is able to capture the
rich information contained in the surfaces described by the
segmentation outputs. This implies computing the average
prediction of the MC Dropout ensemble, and averaging the
Dice Coefficients between each of the individual predictions
against the average one, essentially capturing the variance of
the predictions with respect to their mean. While the exact
methodology for each step will be detailed further in the
section, the intuition behind the Area Disagreement concept
may be visualized in Fig. 2.

Fig. 2: Illustration of the Disagreement using 2 classes (fore-
ground, background) for better visibility. Each iteration of
the MC Dropout process inferences on the same input image
and outputs a similar segmentation mask. When these masks
are overlaid, a shady output mask results which is the actual
prediction of the overall network.

A. Uncertainty Estimation

As presented in Fig 1, the distinctive part of the Pool-Based
Active Learning (AL) process is the querying step, where
an acquisition function scores the unlabeled data samples by
estimating the model’s uncertainty for each one. The focus
of this paper is to describe the methodology behind Area
Disagreement, a superior uncertainty estimation method for
the AL process in semantic segmentation.

Let fi(x) be the prediction of the model in the i-th MC
Dropout iteration for a given sample x. As mentioned earlier
in the section, to apply the Dice Coefficient, a one-hot encoded
tensor is needed to act as the ground truth. In our case, we
will construct fagg(x) as the one-hot encoded final prediction
of the network by averaging all the MC Dropout predictions
together and one-hot encoding the result.

Having the final aggregate prediction of the network, the
computation of the Dice Coefficient for each MC iteration is
straightforward:

Dice(fi(x), fagg(x)) = 2×
∑

(fi(x) · fagg(x))∑
fi(x) +

∑
fagg(x)

(1)

Finally, the Area Disagreement of the sample will be the
average of the Dice Coefficients between every MC iteration’s
prediction and the aggregate prediction:

AD(x) = − 1

N

N∑
i=1

Dice(fi(x), fagg(x)) (2)

where AD(x) is the Area Disagreement of the model for input
sample x, and N the number of MC iterations. However,
the Dice Coefficient value is smaller for images where the
disagreement is higher, meaning the actual uncertainty of the
model for a given sample is inversely proportional to its
average Dice Coefficients. Therefore, a minus sign is needed at
the beginning to make AD proportional to the true uncertainty
for the sample.

IV. EXPERIMENTAL SETUP

A. Dataset

Cityscapes [32] is a comprehensive large-scale dataset used
for semantic urban scene understanding. It comprises 5,000
high-quality annotated images (1024x2048 pixels) captured
in 50 different cities under varying weather conditions and
seasons, providing diverse urban street scenes. Each image is
finely annotated with pixel-level labels for 30 different classes,
encompassing common urban objects such as pedestrians,
vehicles, and road markings. In our experiments 1500 of the
images were randomly held out for ensuring fair testing among
the different acquisition methods and 3500 were used for
training. Furthermore, the number of classes was reduced to
8 by mapping similar classes to a single centroid.

B. Comparison Baseline

The overwhelming majority of the recent AL studies for
Semantic Segmentation experiment with augmenting the clas-
sic AL framework and use either Entropy or Margin for
uncertainty estimation when selecting images. For this reason,
the baseline chosen for our experiments consists in Random
Acquisition, Entropy Acquisition and Margin Acquisition. As
it is the case for the majority of the related papers, our
implementation consists in averaging the pixel-wise Entropy or
Margin values for the Segmentation output of a given image.

C. Implementation Details

For each experiment, we randomly select 10% (350 images)
of the dataset as the initial labeled set. In each iteration, we
hold out 20% of the available labeled images for validation.
We then train a reduced U-Net model (as described in [33])
from scratch on the remaining labeled images. The model
consists of four downsampling blocks, starting with 32 filters
and doubling the number of filters at each subsequent block
(64, 128, 256). This is followed by a bottleneck layer with 512



Fig. 3: Comparative performance analysis. The plot compares
the four active learning strategies—Area Disagreement, Ran-
dom, Entropy, and Margin—in terms of Mean Intersection
over Union (IoU) performance across 30 iterations. The x-axis
represents the iteration number of the active learning process,
and the y-axis corresponds to the test performance (IoU).

filters, and a symmetric upsampling path. At acquisition time,
we introduce an additional dropout layer with 20% dropout
rate after the last parameterized layer of the network. We use
this model to predict the uncertainty of each unlabeled image
and select the 50 images with the highest predicted uncertainty
computed on the basis of 10 MCD predictions. These images,
along with their ground truth annotations, are added to the
labeled set for the next iteration. We perform 27 iterations,
adding 50 images in each iteration until no more than 50%
of the total dataset (1750 images) is labeled. We repeat each
experiment 10 times to ensure statistical stability.

During training, we employ data augmentation (random
cropping, flipping, and brightness adjustment) to mitigate
overfitting due to the limited number of images. We train with
a batch size of 4 for a maximum of 50 epochs but utilize
early stopping, halting training if the validation loss does not
improve for 5 epochs, to further prevent overfitting.

V. RESULTS

A. Performance Evaluation

In Fig. 3 we analyze the comparison between the perfor-
mance in mIoU of Area Disagreement and the baseline meth-
ods at each AL step. It may be seen that after 26 iterations,
the Area Disagreement method leads to a performance of the
model of 0.67 IoU. This marks an important increase of 0.023
over the Random Selection and over 0.032 over the Entropy
and Margin methods, or a 3.4% increase in performance. Fur-
thermore, considering that a full training yields 0.685 IoU 1, it

1The reported figure was obtained by the described U-net model in our
training and augmentation setting. It is worth noting that the state-of-the-art
at the time of writing is 0.864, achieved by VLTSeg [34]

TABLE I: Number of iterations needed (percentage of dataset)
for each method to pass a certain IoU threshold, given selec-
tion sizes of 50 images per iteration.

IoU Area Disagreement Random Entropy Margin
0.6 9 (23%) 12 (27%) 11 (26%) 11 (26%)

0.625 12 (27%) 20 (37%) 15 (31%) 22 (40%)
0.65 19 (36%) - - -
0.67 26 (47%) - - -

means that the introduced method only lags behind the full use
of the dataset by 0.015 with only half of it. In comparative
terms, as opposed to the Random Acquisition, which trails
the full training by 0.038, Area Disagreement closes 60%
of the performance gap to full-scale training. However, the
presented figure also suggests a decrease of the advantage in
performance which seems to follow after half of the dataset has
already been acquired, as the gain naturally starts to plateau,
possibly because the most informative samples have already
been selected and the remaining ones do not provide much
new knowledge to the model.

Another benefit of the Area Disagreement approach is the
faster growth in performance, which may also be noticed
in Fig. 3. As it is able to more effectively select the most
relevant samples, especially in the beginning, it manages to
hit milestones in mIoU much faster than the other methods,
translating in less images used and fewer AL iterations needed.
This behavior is detailed in the Table I. Area Disagreement
manages to hit an mIoU of 0.6 with 100-150 less images, 0.625
with 150-500 less images and manages to hit 0.65 (95% of
full-scale training) within 36% of the dataset and 0.67 (97.5%
of full-scale training) within 47% of the dataset while the other
methods do not within the first half.

An additional observation is the underperformance of the
Entropy and Margin approaches. As noted in [7], training on
a small number of images can lead to weak generalization,
contributing to a poor choice of new samples. Thus, the
margin and entropy methods likely picked more redundant
samples initially due to overfitting, causing each iteration
to have weaker generalization than the previous one and
generating a compounding underperformance. The relative
superiority of the random process, on the other hand, may
be because the choice of new samples does not depend on the
quality of already chosen samples, thus having no reason to
degrade over time. Nevertheless, even in this context, the Area
Disagreement method managed to pick more relevant samples
and avoid being affected by overfitting, likely due to the high
diversity and difficulty of the chosen samples.

B. Selection Interpretation

To continue the investigation into the effectiveness of Area
Disagreement, it makes sense to also take a deeper look into
the properties of the selected images, to understand the ways in
which they stand out and enforce the superiority of the method
by basing it on observable facts. The composition of images
was studied in terms of the number of objects they contain,
and the number of classes represented in them. A comparative



(a) Average number of objects (b) Average number of classes

Fig. 4: Diversity of selected images for Random, Entropy and Area Disagreement methods: Each graph depicts the statistics
for the batch chosen in the specified iteration (i.e.: for the 50 images selected in that step), for the first 6 iterations.

plot is illustrated in Figure 4 which measures for the first 6
selection iterations the average number of distinct objects and
the average number of distinct classes present throughout the
batch of 50 images’ masks selected by each method. What is
considered a distinct object is an area in the mask containing
connected pixels of the same class (i.e.: any two pixels in
that area may be connected by an uninterrupted sequence
of neighboring pixels), as the annotations of the Cityscapes
dataset do not have instance id for different objects. This
definition causes the inclusion of object fragments also (the
same object disconnected in space will be double counted), or
the merging of objects which are overlapping from the point
of view of the camera (multiple overlapping objects will be
counted as one).

The Area Disagreement method consistently selects more
complex scenes, as demonstrated by the increased object and
class diversity in the chosen images. Figure 4a shows that
selected images contain 50% more objects than those chosen
by Random Selection and 10-20% more than those chosen by
Entropy Selection. This exposes the model to more instances
of the same class in each batch, allowing for more effective
feature learning with fewer images. Furthermore, Figure 4b
reveals that our method tends to select images with more
classes, averaging nearly 8 classes per image in most iterations.
In contrast, the other two methods typically choose images
with one fewer class. This difference provides the model
with greater exposure to various classes, facilitating better
differentiation over time.

VI. CONCLUSIONS

In this paper, we introduced Area Disagreement, a novel
uncertainty estimation method for Active Learning in Seman-
tic Segmentation. By leveraging the unique characteristics

of the task and the concept of Bayesian Neural Networks
with Monte Carlo Dropout, our method effectively identifies
informative images for annotation. Our experiments on the
Cityscapes dataset demonstrate that Area Disagreement signif-
icantly outperforms baseline methods, achieving 95% of full-
scale training performance with only 36% of the dataset and
97.5% with 47%. These results highlight the potential of our
approach to reduce annotation efforts while maintaining high
performance in semantic segmentation tasks. Furthermore, due
to its strong performance and general applicability, the method
is well-suited to be used as a base acquisition function for
more complex methods which augment the AL process. Future
work should explore the integration of Area Disagreement with
other Active Learning strategies, its application to different
datasets and segmentation models, and its potential adaptation
for object detection tasks.
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