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Introduction, context and motivation 
 
The development of modern advanced driver assistance systems (ADAS) has grown 

in the latest years due to the recent technological advancements. ADAS have been developed 
even as early as the 1960s when they were very rudimentary. Sistems based on perception 
of the scene using computer vision have been developed since the 1980s and especially in 
the 1990s. The main interest of these systems is to increase the overall safety of all the 
participants in road trafic by reducing the number of accidents. The main active and passive 
safety systems for vehicles include: safety belts, trajectory or lane keeping systems, forward 
collision systems. These are based on different types of sensors that are used to measure 
and to perceive the surrounding scene: video cameras, laser or lidar sensors. ADAS using 
cameras have the advantage of being cost efficient and due to the dense data that cameras 
provide. The disadvantage is given by the need of a clear and unobstructed view of the 
observed scene, but perception solely on cameras can also be influenced by adverse weather 
conditions. However, the main advantage is that adding a video camera assistance system 
can be done much more easily than other sensors, meaning that existing and older vehicles 
can be improved. One of the easiest ways of to add a perception system to a vehicle is through 
the use of mobile platforms that can be equipped with additions sensors, such as mobile 
phones or tables.  

 
Smart mobile devices are omnipresent and they come equipped with one or more 

cameras at different resolutions, but also with increasing processing power. Also, modern 
mobile devices feature a variety of additions sensors such as: satellite positioning sensors 
(GPS, GLONASS), accelerometer, gyroscope, geomagnetic sensor, compass, which means 
that they can be used for driver assistance systems or as systems for road traffic analysis or 
monitoring. However, the analysis or perception of the surrounding scene will require a 
calibrated camera in order to compare the features of the 3D scene of the world and the 2D 
features in the camera image. This calibration step is often neglected or even omitted by the 
average end-user. 

 
 

Objectives 
 

 The main objective of the thesis is to design and implement a road traffic perception 
system based on monocular vision and additional sensors, that is capable of running in various 
lightning conditions, in motorway scenarios and especially in urban traffic scenarios.  

 
To achieve the main goal, I have identified a number of secondary objectives: 
1. creating an image and sensor data acquisition and processing system 
2. obstacle detection: 

- identifying the presence of obstacles in the image space using semantic 
segmentation with convolutional neural networks 

- extract 3D information from the monocular image by analysing the image with 
the perspective effect removed (the bird’s eye view image) 
3. tracking and estimating obstacle position by using 3D models: 

- using occupancy grid based particle filters for tracking 
- tracking at a cuboid level 

4. automatic camera calibration 



- initial automatic calibration 
- dynamic adjustment of the camera parameters 

 
A modern driver assistance system requires a very good perception of the scene. I 

chose to use a single camera that is mounted in the vehicle behind the windscreen. The 
advantage of a mobile device (phone or tablet) for capturing images is that it offers good image 
resolution, but also a wide range of additional sensors, all integrated into a small size device 
that can be easily positioned, maneuvered and installed. The acquisition system consists of 
accessing the live image feed from the mobile device’s camera and by using the available 
sensors (GPS, accelerometer, gyroscope, etc.) and by processing them directly on the device, 
or by saving the data and sending it to a faster and more efficient processing system. In order 
to use cameras from different manufacturers in different vehicles, a more efficient and less 
elaborate calibration methodology is needed. I initially developed a manual calibration system 
that requires minimal user intervention and input, and then I introduced various automatic 
camera calibration approaches where no user action is required. Thus, a system that is 
capable of self-calibration is more portable and can be easily installed and retro-fitted in old 
vehicles, which usually do not have any kind of driver assistance systems.    

 
Semantic segmentation of a traffic scene means interpreting the image from a 

monocular camera based system and understanding what it contains. For this objective, I 
chose to use processing techniques based on artificial intelligence, more specifically I have 
use a convolutional neural network capable of providing predictions of the driveable road area 
surface from images. This approach is robust and invariant to the scale of the images and 
provides very good results, requiring only a step of resizing the input images (to the size with 
which the original network was trained). I chose to detect the road surface, the free space on 
which the vehicle can circulate safely, because it can be assumed that everything that is not 
driveable (free space) can be considered an obstacle.  

 
Areas that are not part of the road will be analysed and tracked over time using 3D 

perception models based on particle filters. A scene occupancy grid is built based on a particle 
filter, where each obstacle in the scene is represented by a set of particles. This is a dynamic 
representation model because each particle has a component for speed estimate, one for the 
position in the occupancy map, and one for the "age" from the moment the particle is created. 
This information is used to predict and update the particle grid when certain particles that are 
possible objects are added or removed.  

 
 
By integrating all components into a single project, I have succeeded in implementing 

a monocular perception system. The system developed and presented in this thesis is based 
on ideas and algorithms that have been published in journals, book chapters and specialized 
conferences. 
 
 
 
Thesis structure 
 

In this doctoral thesis I have implemented a perception and obstacle tracking system 
in road traffic using a monocular camera.  The thesis is structured in four chapters: the first 



contains an introduction to the field and the need for driver assistance systems and the 
objectives of this thesis, the second chapter presents methods for detecting and tracking 
obstacles, and the third chapter describes the camera calibration techniques. The last chapter 
of the thesis refers to conclusions and further developments, followed by bibliography and 
annexes.  

 
The first chapter describes statistic of traffic accidents in the recent years, from which 

results a clear need to have more intelligent and advanced vehicles on the road. I presented 
a brief history of intelligent vehicles: the first ones dating from the 1960s that used rudimentary 
techniques to maintain their lane, continuing with those of the late 1980s and 1990s that were 
already using artificial vision using cameras and computers. In the 2000s there were major 
leaps in this field that were mainly driven by the DARPA competition, and after 2010 vehicles 
with a higher level of automation have already been launched. The current international 
standards describe a total of 5 degrees of automation, and the sensors used to get traffic data 
are also presented in the first chapter. The proposed objectives, the structure of the thesis and 
the acknowledgments are presented in sections 1.2-1.4. 
  

Chapter 2 describes methods for detecting and tracking obstacles. I have presented 
approaches for tracking obstacles using probability, where several hypotheses about the 
current position or status of obstacles or vehicles are maintained, and each hypothesis has a 
different probability. I presented the Bayes filter and then other approaches based on it: 
Kalman filter, expanded Kalman filter and particle filter (useful for Gaussian models). Sections 
2.5 and 2.6 represent an introduction to artificial intelligence and artificial neural networks 
based on a model inspired by the biological neuron. I presented and exemplified the 
convolution operation and in Section 2.7 I described the difference between classification and 
regression and then in section 2.8 I presented different types of activation functions that can 
be used for the two types of learning and also for semantic segmentation. Section 2.9 contains 
a summary of the backpropagation algorithm and the "gradient descent" technique and section 
2.10 describes the cost functions for neural networks. The semantic segmentation using 
neural networks is described in 2.11, while in Section 2.12 I introduced techniques for 
monocular perception. The first part (2.12.1) is a study of current solutions based on smart 
mobile devices. In 2.12.2 I described the techniques used to estimate depth in images 
captured using a single camera and then I presented a technique that I used in other papers 
to detect obstacles in monocular images where the perspective effect is eliminated. The main 
contributions are described starting with section 2.13, where I first presented the existing traffic 
image databases (2.13.1) that I used to develop a complex traffic perception system. My own 
software for acquiring new images is described in section 2.13.2. The following subchapter 
(2.13.3) broadly describes a neural network that I used to segment road traffic images to 
extract only the road area from an image. The obtained results are very good, even on my 
own dataset (which was not used at all during training). On the validation datasets from the 
other databases the results are good even if the evaluation metric is lower than other similar 
approaches. By analysing the images where the segmentation results were not as expected I 
found that there are some errors in the labelling of the existing databases, but the network that 
I have developed actually offered good predictions of the driveable road area. There were also 
the opposite situations, where the network predictions were worse than the labelling, and all 
of these situations are described and illustrated in the thesis. In section 2.13.4 I have described 
the particle filter based tracking algorithm that uses a dynamic occupancy map. This approach 
is not an original one and has already been published, but the way I have extended it and how 



I built the measurement part of the filter is unique. The measurement map is used to generate 
new particles that are grouped into cells from which cuboids can be extracted. The cuboids 
can represent the obstacles detected and tracked in the scene. This measurement map is in 
fact a binary map built from the driveable road image segmented by the convoluted neural 
network. By having new measurements in each frame, the particles can be created, moved or 
destroyed, therefore the obstacles can be tracked. The uncertainty of the measurement is 
determined by the distance to the obstacles that can be computed in the IPM image. In the 
final step, the particles are grouped according to their similarities (proximity, velocity vectors) 
and then cuboids are extracted from them. Another contribution to the work that was published 
in the past is given by the refinement of the occupancy map by segmented image processing: 
I have developed an algorithm to join (combine) the histogram peaks that belong to an 
obstacle. The effect on particle formation is well illustrated and exemplified in subchapter 
2.13.5 (a). Another contribution is the refining of camera parameters by generating IPM 
images with different pitch angles and then by comparing occupancy maps with the current 
particle filter. In Section 2.13.6 I have described a method to estimate the local orientation of 
objects and their dimensions using a convolutional neural network. This implementation is not 
unique, but the contribution consists in integrating it with the particle filter based perception 
system. Thus, the orientation and size of the cuboids extracted from the particle filter are 
adjusted using the CNN. Further details on the implementation of the technologies used and 
the architecture of the system are presented in section 2.13.7. Chapter 2 ends with 
conclusions and a list of published papers. 

 
In chapter 3 I have described camera calibration techniques. In the first subchapter 

(2.1) I presented the camera model and then intrinsic parameters (2.2) and extrinsic 
parameters (2.3). The main goal behind the calibration is to determine the camera parameters 
in order to compute the projection matrix, which can be used to generate images with the 
perspective effect removed, a top view of the road scene (“bird’s eye view”). In section 3.4, I 
conducted a study of current of camera calibration techniques, and in section 3.5 I presented 
methods to automatically calculate the focal length. Section 3.6 contains IPM imaging 
algorithms, whereas in section 3.7 I presented an intuitive interface for assisting end users for 
manual calibration of extrinsic parameters. Another contribution is given by the implementation 
of a self-calibration algorithm to determine the translation vector parameters by analysing a 
sequence "offline" frame by frame. The height of the camera from the ground is adjusted so 
that the lane width detected in the IPM image corresponds to the pixel value corresponding to 
a standard width of 3.5 meters. In this section I also briefly presented how to determine the 
lane width from traffic images. In section 3.9 I have described techniques for determining the 
vanishing point from images captured in road traffic. I presented existing approaches and then 
my own algorithm, based on image processing which analyses the orientation and magnitude 
of edge points belonging road markings. Using a voting system, I create a vote map for the 
vanishing point. The results were good enough to create a database of images and vanishing 
points that I then used to train a convolutional neural network that provides predictions of the 
image x and y coordinates of the vanishing point (section 3.10). The method was published at 
an international conference. I have used several techniques to augment the database and 
then I have extended this approach by using a network for the prediction of the x coordinate, 
and the same network for the y axis coordinate. The results from the dual CNN approach are 
better than the initial version (section 3.11). I also implemented and tested this solution on 
Android mobile devices (3.11.4). In section 3.12 I described a camera self-calibration solution. 
From the analysis of vehicle trajectories, I determined the height of the camera from the ground 



and the pitch angle using an EKF filter. I also determined the vanishing point, which is used to 
adjust the IPM image. The whole solution was published at an international conference and 
implemented on both desktop and Android mobile devices. Chapter 3 ends with conclusions 
and contributions and a list of published papers.  

 
 

Contributions 
 

The main original contributions described in chapter two are: creating a proprietary 
data acquisition system using the sensors available on a smart mobile device (camera, 
satellite position sensors, accelerometer, gyroscope, etc.), creating my own databases and a 
modality to view and process them on desktop systems, and the implementation of a road 
traffic perception and tracking system based on a particle filter and convolutional neural 
networks. 

 
The device’s main camera (generally the rear facing one) is used to capture images, 

as these cameras provide a better sensor. The acquisition system will also store additional 
information during the vehicle movement: acceleration and travel speed data, position 
(expressed in latitude and longitude coordinates), magnetic orientation (from the 
magnetometer) and the local orientation angles of the device (obtained from the gyroscope). 
All this information is stored in the internal memory and synchronized with the images using 
timestamps. 

 
I have developed a monocular camera vision based system, combining convolutional 

neural networks to detect objects in the scene and then using particle filters to track them. The 
first step is to implement an artificial network for semantic segmentation that based on the U-
NET architecture [Ronneberger2015]. The modified U-Net convolutional network has the 
following structure: 5 encoding layers, one central layer, and 5 decoding layers. After the 
training, the network features excellent performance of predictions in complex traffic scenarios 
where there are many vehicles in the scene (figure 1). This precise delimitation of what is 
driveable road surface and what is not, is very useful for creating a monocular perception 
system where we do not have depth information or other information of the scene. 

 
 

 
Figure 1. Example of semantic segmentation using the artificial network. 
 

      



The segmented images are integrated into a probabilistic framework based on a 
dynamic map of the scene in front of the vehicle. From the detection of the free space area, 
we can assume that everything that is not a road is a possible obstacle and it can be 
interpreted and tracked. Therefore, this solution is useful for detecting any type of obstacle 
and is not limited to just pedestrians or vehicles. To implement this functionality, I chose to 
use an occupancy grid based particle filter. The binary occupation map is generated from the 
CNN segmented image in which the perspective effect (IPM) is eliminated. This image is then 
analysed using an algorithm that scans the front of the vehicle using the rays originated at the 
point where the camera is mounted. Objects in IPM images will be feature radial distortions, 
therefore this property can be used. 
 

 
Figure 2. Binary occupancy map (right), generated from the segmented road image (left). 
Illustrated on the left are part of the rays along which intensity transitions are searched. 

 
 

The particle filter uses a dynamic occupation map, which is not an original 
implementation (it was originally published in [Dănescu2011]), but it has been extended (the 
occupancy map is of a double size to allow tracking and obstacles leaving the visible area of 
scenes). I have also adapted and enhanced for the occupancy grid tracker in order to use it 
with monocular images. I have also refined the obstacle detection by analysing each 
obstacle’s radial histogram and also by generating more IPM images in order to refine the 
camera parameters. The first step of the tracking algorithm is the prediction and is applied to 
each particle. The position of the particles in the set is modified according to their speed (they 
move in accordance with their own velocity vector) and depending on the movement 
parameters of the ego-vehicle (the velocity and the "yaw rate”) read from the sensors of the 
vehicle or mobile device: GPS, accelerometer and gyroscope. The second step of the 
algorithm is the update process, more specifically the processing of the measured information, 
and is based on the binary occupancy map of the cells created from the processed IPM image. 
Measurement information is used to weigh the particles and then to resample them in one 
step. By weighting and resampling, the particles in a cell can be either multiplied or destroyed. 



The final step is to calculate the speed and then estimate the probability of a cell being 
occupied by an obstacle. 

The individual cells of the occupancy map contain particles that can be grouped 
according to their similarities, so that cuboids can be extracted from them. The grouping 
algorithm takes into account the proximity of cells, their velocity vectors, and their 
displacement to extract the connected regions that will represent an object. Finally, a 
rectangular shape is extracted from these connected areas and the 3D cuboid will be built (the 
cuboid height is fixed fixed with 1.5 meters for all objects). 
 
 

 
Figure 3. The scene perception probabilistic framework. 

 
 

Figure 3 illustrates the processing steps within the probabilistic framework. In the left 
image we can see the processing steps and the creation of the dynamic occupancy map: the 
first image represents the scene with the perspective effect eliminated (IPM), the second 
image is the IPM segmented image (obtained from the convolutional neural network), the third 
image illustrates the particles with their color coded by the velocity vectors (as in 
[Dănescu2011]: the hue of the color represents the direction of travel, the saturation is the 
magnitude of the velocity and the intensity encodes the occupancy probability). The image on 
the right shows the result of the processing and grouping of particle cells in obstacles. The 
particles are also projected and illustrated in the initial perspective image of the scene. 
 

A contribution and improvement to the work published in [Danescu2016] is the pre-
processing of the measurement image. To improve the vehicle detection in the segmented 
image I have used a technique based on some ideas from the [Bertozzi1998] paper. 

Obstacles only touch the asphalt with the wheels and this is amplified in IPM images, 
resulting in a false perception of the distance to obstacles (especially in the distant ones). I 
have solved this problem by analysing the radial histogram of each vehicle and by joining the 
peaks by filling the empty area between the wheels of a vehicle. The histogram peaks are 
identified by calculating local maxima and then they are processed to identify pairs of lines 



describing the edges of an object. Having these pairs of lines corresponding to an object, the 
next step is to fill the area between the peaks. This operation has the role of significantly 
improving the measurement process in the particle filter and the occupancy map, because 
determining the distance from the ego-vehicle to the other vehicles is important. The effect of 
these operations is illustrated in the following figure (Figure 4), where a significant 
improvement in how the particles are generated in the occupation map (they will form an object 
similar to the real one) can be observed. 
 

 
Figure 4. Improvement of the dynamic occupancy grid.  

 
 

Another contribution is the refinement of the camera parameters. Extrinsic parameters 
relating to pitch and yaw angle can be corrected and refined during the processing of each 
image. For each image in a sequence, a total number of N perspective images (IPMs) are 
generated, each having a different pitch angle. Similarly, I also generate N IPM images having 
different N yaw angles. This step is applied only after the camera has been self-calibrated. In 
the monocular perception system, we generated N=10 IPM images using variations of 0.1 
degrees around the pitch angle that was calculated using the extended Kalman filter (section 
3.12.2). In the 10 IPM images generated, the obstacles in the scene are then detected using 
the algorithm described in section 3.6. These binary images are compared to the dynamic 
binary occupancy grid (generated from CNN segmented image) and then I compute the 
percentage of pixels that overlap between them. The image with the highest percentage larger 
than a fixed threshold will represent a better fit of the data from the observed scene, which 
means that the pitch angle can be adjusted to increase the accuracy and robustness of the 
system. The same technique was applied for the yaw angle. The particle filter occupancy grid 
is used to validate and adjust the parameters as it will estimate the movement of the vehicles 
in the scene as close as possible to the reality and will be less influenced by the camera's 
tremors and small movements while driving. 
 

I've also implemented my own version of an existing [Mousavian2017] network to 
provide predictions about the size of the objects detected in the scene and also predict their 
orientation. This information is merged with the particle filter to improve the robustness and 
accuracy of the system and is an important contribution to the monocular perception system. 
To determine the size and orientation of vehicles, I chose to use a network similar to 
[Mousavian2017] with small changes to the cost function presented in the article. The 
convolutional neural network has the first 5 layers the same as the VGG16 [Simonyan2014] 



network. I used the transfer learning technique to initialize the weights of the first 5 layers with 
those of the VGG16 network trained to classify objects in the images. The output of the last 
convolution is then used for regression of dimensions, orientation, and probability of 
orientation. Estimating 3D dimensions and object orientation is accomplished by expanding 
an object detection network that provides rectangular bounding boxes for each detected 
obstacle. The main constraint is that the three-dimensional object in the scene is inside the 
2D rectangle in the image, so its 3D projection will be within the same bounding box obtained 
from the object detector. The CNNs used for object detection is outlined in Section 3.12.1 
(SSD MobileNet [Wei2016], [Howard2017]). Figure 5 shows the vehicle detection results using 
the MobileNet SSD, whereas Figure 6 presents the orientation and size prediction for each 
vehicle. 
 

 
Figure 5. The input image with the detected obstacle bounding boxes using SSD MobileNet. 

 
 



 
Figure 6. The predictions for vehicle orientation and dimensions. 

 
The local size and orientation of a vehicle is integrated into the particle filter, more 

specifically in the particle grouping algorithm that extracts cuboids from the particles in similar 
cells. The correspondence between the vehicles detected by CNN and those tracked by the 
particle filter is made by calculating the Sorensen Dice (IoU) coefficient. I computed the IoU 
between the front and back sides of the cuboid from the particle filter and the bounding boxes 
predicted by the SSD MobileNet convolutional neural network. Situations with an IoU score 
higher than 0.5 are considered valid and the dimensions and local orientation of the cuboid 
are changed to the values from the CNN. Therefore, I obtain the data fusion between the 
convolutional neural network and the particle filter tracking. 
 

The result of the data fusion is illustrated in Figure 7 where a top view of the scene in 
which the cuboid (from the particle filter) is displayed next to the adjusted and improved cuboid 
(from the CNN). 
 



 
Figure 7. Using a CNN for adjusting the orientation and dimension of the vehicles. The first 

image represents the cuboids extracted from the particle filter, in center is illustrated the 
same image with the adjusted cuboids (from the CNN). The image on the right represents a 

top view of the scene with the same objects (cuboids from the particle filter vs. cuboids 
adjusted by CNN). 

 
 The purpose of the perception system is to use both artificial vision by image 
processing and convolutional neural networks, and to integrate them and fusing the data from 
these processing modules. 

 
 

The original contributions that result from the solutions proposed in chapter three are: 
automatic determination of focal lengths on mobile devices, creation of a manual and intuitive 
calibration system on mobile devices where the user can adjust extrinsic camera parameters. 
Another contribution is to create an "offline" calibration system by analysing traffic images and 
determining the width of a traffic lane. The lane width is used as the correlation between the 
3D world scene and 2D image space. This method determines the height of the camera above 
the ground (which is part of the translation vector of the camera). 
 

One of the main contributions refers to the development of a new algorithm for 
calculating the vanishing point from road traffic images. These images have a perspective 
effect in which the lane lines will intersect at the vanishing point. The proposed algorithm 
exploits all points in the images that have a certain magnitude and orientation and uses them 
to build a vote map that is analysed and validated using sliding windows. The point in the 
window with the most votes will be the vanishing point. Figure 8 illustrates the vote map and 
the validation windows used (on the left), and the final result of the algorithm with the 
calculated vanishing point (the image on the right). 
 



 
Figure 8. Left: the window with the most votes (max) from the vote map along with the 

validation windows that are used (numbered 1 to 4). Right: The final result of the algorithm 
with the computed vanishing point. 

 
 

Having this method, I built a database of images and vanishing points that I then used 
to train a convolutional neural network in order to have predictions about the location of a 
vanishing point. The network has the resized scene image as input, whereas the output will 
consist of the two coordinates of the vanishing point. The network structure is as follows: 5 
convolutional layers with a different number of filters and having a variable size kernel, and 
the last levels are three fully-connected levels. The last fully connected layer contains two 
neurons that actually represent the x and y coordinates of the predicted vanishing point. An 
example of the vanishing point prediction is illustrated in the following figure: 
 

 
Figure 9. Example where the vanishing point calculated by CNN (white circle) is better than 

that obtained by traditional algorithms (green circle). 
The results of this approach were very good and then the entire method was extended 

to use multiple training images and two different convolutional neural networks: one to predict 
the position on the horizontal coordinate and the other to predict the vertical coordinate of the 
vanishing point. I have presented an evaluation of the CNN based methods, and the use of 
two networks has been more effective and has significant improvements. This solution has 
also been implemented on mobile devices, and Figure 10 shows how to test and develop the 
algorithm in a controlled environment where the mobile device is located at a fixed point and 
oriented towards a screen where a test sequence is displayed. Determining the vanishing 



point from road traffic imagery using convolutional neural networks represents an original 
contribution. 
 

 
Figure 10. Determining the vanishing point directly on a mobile device. At the top right is the 

source image, and on the bottom right is a screen capture from the mobile device. 
 
 

The last section represents an implementation of a self-calibration solution based on 
the trajectories of the vehicles. Vehicle detection was accomplished by using a convolutional 
neural network, more specifically the SSD and MobileNet, which provide a good detection 
precision and execution speed ratio. The result of the network will be a list of rectangles 
(bounding boxes) for each vehicle in the scene. These rectangles are tracked from one frame 
to another, and only a certain number of detected vehicles are required for calibration. From 
the coordinates of the detected rectangles, the widths of the objects in the scene and their 
coordinate on the vertical axis (y-axis of the image) are extracted. The next step is to determine 
the linear dependency between the widths and the vertical coordinate. The linear relationship 
can be computed using RANSAC, but I actually used a modified Hough algorithm. The 
algorithm for estimating the height of the camera and the pitch angle uses an extended Kalman 
filter, and the measuring vector Z is formed by width w1 and w2 of the vehicles at the horizontal 
coordinate (x-axis) v1 = 310 and v2 = 360, determined from the linear relation calculated in the 
previous step. We chose 2 points in the 3D space to represent a theoretical vehicle with a 
fixed width (standard) of 1750 mm at a distance of Z1 = 7000 mm and another set of 3D points 
for a vehicle at a distance Z2 = 20000 mm . These 4 points describing 2 vehicles at 2 different 
distances are projected into the 2D space of the image, and the pairs of lateral coordinates 
will form two lines that will intersect at the vanishing point. In the next step, the coordinates of 
the points at v1 = 310 and v2 = 360 will be calculated. Basically, the EKF algorithm will attempt 
to match these 4 theoretical points of the two vehicles and the 4 vehicle points in the 
measurement vector. The algorithm will adjust the camera height and pitch angle until the 
result is stable and the best match is reached (usually after 10 EKF iterations). 



The algorithm based on vehicle detection results from a convolutional neural network 
is able to estimate the extrinsic parameters of a camera relative to a reference frame based 
on a standard vehicle. The system works precisely and robustly when there are long 
sequences in various traffic situations and when sufficient data is available. Since vehicle 
detection influences the estimation of parameters, in the future I intend to improve this aspect. 
 
 

By integrating all the solutions, I have succeeded in implementing a monocular 
perception system and the processing flow is illustrated in Figure 11. 
 

 
Figure 11. Processing flow of the monocular perception system. 

 
 

The first step is to acquire images and auto-calibrate the camera's extrinsic 
parameters, which are used to generate the image with the perspective effect eliminated (from 
the image segmented by the neural network). The next step is to detect the obstacle 
delimitations and this image is used to generate a measurement model that is used to create 
particles in an occupancy grid. In the last step, the cells that are similar are grouped and 
cuboids are extracted from them and they are displayed in the original image of the road 
scene. 
 
 

In conclusion, the thesis introduces contributions in the field of robotics and 
autonomous vehicles in which the perception is made using a single camera. Perception 
algorithms are based on image processing techniques, but also on artificial intelligence by 
using convolutional neural networks. The thesis presents a complete solution for the 
perception of the road traffic scene, starting with the image acquisition and ending with the 
data processing and displaying the results. The monocular system is capable of calibrating 
itself after a certain time and the processed data can be used and integrated into advanced 
driver assistance systems, such as collision prevention systems that can act for the driver or 
that can only provide acoustic or visual warnings. The solutions presented in the thesis have 
been implemented both on mobile systems (smartphones or tablets) and on PCs (desktop or 
laptop). The methods described in this paper can bring a major benefit by improving road 
traffic safety, with the advantage that such systems can be easily integrated in any existing 
vehicle at a low cost (using a single video camera for scene analysis). In conclusion, in the 



future I wish to implement together with Professor Dănescu a complete system that is easy to 
integrate into any vehicle. 
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