
Image Processing - Laboratory 1: Introduction to the OpenCV library 

 

 

1 

1. Introduction to the OpenCV library 
 

1.1.  Introduction 
 

The purpose of this laboratory is to acquaint the students with the framework application 

which will be used in the practical works related to the Image Processing course. 

 

The background knowledge necessary to successfully complete the image processing 

laboratory are: 

 Compulsory: C, Computer Programming, Data Structures and Algorithms. 

 Optional (recommended): C++, Visual C++ 12.0 (Visual Studio 2013),  Object 

Oriented Methods, Fundamental Algorithms, Programming Techniques, Linear 

Algebra and Geometry, Discrete Mathematics,  Numerical Calculus, Special 

Mathematics  

 

1.2.  The bitmap image format 
 

The bmp format is used to store images in uncompressed form. It uses raster graphics to store 

digital images independently of the display device. It is capable of storing monochrome and 

color images with different encoding depth. The depth determines the number of possible 

colors and determines the image size. The file itself has the following structure: 

 

 a bitmap file header - which contains a signature field, the file size and the offset to 

the pixel array;  

 DIB header - which stores various information such as image dimensions, bits per 

pixel;  

 color table (or look-up table) - for images with a color palette;  

 the pixel array - contains the actual image information stored in a linearized manner 

and padded. 

 

The following image illustrates the bitmap format for a 24bit color image. The image height 

and width are denoted dwHeight and dwWidth respectively.  

 
Figure 1. Bitmap image format 

 



Universitatea Tehnică din Cluj-Napoca, Catedra de Calculatoare 

 

 

2 

1.3.  Overview of the OpenCV framework 
 

The framework on which you will be working on contains the OpenCV libraray 2.4.13 

bundled together with a Visual Studio 2013 solution. Include settings have been 

preconfigured, all static and dynamic libraries are included with the solution.  

 Your task is to create new functions and call them from the main function. You should 

group your work according to laboratory sessions and give suggestive names to functions. All 

code examples assume that you have included the cv namespace (using namespace cv), 

otherwise prepend cv:: to all OpenCV classes and methods. A guideline for introducing 

new functions is given in the following code snippet (gray text indicates what you need to 

introduce): 

 
void negative_image(){ 

 //implement function 

} 

int main(){ 

 int op; 

 do{ 

  printf("Menu:\n"); 

  //... 

  printf(" 7 - L1 Negative Image \n"); 

  //... 

  printf(" 0 - Exit\n\n"); 

  printf("Option: "); 

  scanf("%d",&op); 

  switch (op) 

  { 

   //...   

   case 7: 

    negative_image(); 

    break; 

  } 

 } 

 while (op!=0); 

 return 0; 

} 

 

You should save your work from each session. The project can be cleaned with the clean.bat 

executable which deletes all build outputs and reduces the project size considerably. 

Alternatively, to save space, just backup the main cpp file since the project solutions should 

not change. 

 

1.4.  The Mat class 
 

Images are stored as Mat objects in OpenCV. It is class for a generic matrix that can be used 

to hold other data as well, such as a normal 2x2 matrix or higher dimensional matrices. 

 

Important fields of the Mat class are: 

 rows - the number of rows of the matrix = the height of the image; 

 cols - the number of columns of the matrix = the width of the image; 



Image Processing - Laboratory 1: Introduction to the OpenCV library 

 

 

3 

 data - pointer to the memory location of the actual image; it is of type unsigned 

char *, so it must be cast to the correct type for accessing operations 

 

The simplest and cleanest way to create a Mat object called img is to use the 3 parameter 

constructor: 

 
 Mat img(rows, cols, type); 

 

The last parameter encodes the type of data that is stored in the matrix. An example type 

would be CV_8UC1, which it represents: 8 bit, unsigned char, single channel. In general the 

first number after CV_ represents the number of bits required; the letter indicates the data 

type; and Cx shows the number of channels. 

 

type code data type used for 

CV_8UC1 unsigned char grayscale image (8bits/pixel) 

CV_8UC3 Vec3b color image (3x8bits/pixel) 

CV_16SC1 short data storage 

CV_32FC1 float data storage 

CV_64FC1 double data storage 
Table 1. Common OpenCV data type codes 

Example 1 - create a grayscale matrix of size 256x256: 
 Mat img(256,256,CV_8UC1); 

 

Example 2 - create a color image of dimension with 720 rows and 1280 columns: 
 Mat img(720,1280,CV_8UC3); 

 

Example 3 - create a 2x2 real matrix with values [1 2; 3 4], and print it: 
float vals[4] = {1, 2, 3, 4}; 

Mat M(2,2,CV_32FC1,vals); //4 parameter constructor 

std::cout ≪ M ≪ std::endl; 
 

Notice, you can use the standard output stream with a Mat object. 

 

For a detailed decription of the Mat class, see the official documentation at: 

http://docs.opencv.org/2.4.13/modules/core/doc/basic_structures.html#mat  

 

1.5.  Opening/reading an image 
 

To open an image and to store it as a Mat object use the imread function: 

 
 Mat img = imread("path_to_image", flag); 

 

The first parameter contains the relative or absolute path to the image file; the second flag 

parameter can be: 

 CV_LOAD_IMAGE_UNCHANGED (-1) - load the image in the same format as it 

was saved; 

 CV_LOAD_IMAGE_GRAYSCALE (0) - load the image as a grayscale image; 

loading converts it to 8UC1 (1 channel unsigned char) image and performs grayscale 

conversion if required; 

http://docs.opencv.org/2.4.13/modules/core/doc/basic_structures.html#mat


Universitatea Tehnică din Cluj-Napoca, Catedra de Calculatoare 

 

 

4 

 CV_LOAD_IMAGE_COLOR (1) - load the image and convert it to a 8UC3 (3 

channel unsigned char) image; it copies the grayscale channel to all color channels if 

required. 

 

Example 1 - open an image in the current folder in the format it was saved: 
 Mat img = imread("cameraman.bmp", -1);  

 

1.6.  Accessing the data from an image  
 

Matrix elements are indexed according to standard mathematical matrix notation. This means 

that the origin will be positioned at the top left corner of the image. The first index will 

indicate the row (increasing downwards) and the second index will indicate the column 

(increasing to the right). The following figure illustrates the indexing scheme: 

 

 

 

 
Figure 2. Indexing scheme for images 

Always follow this convention to avoid indexing mistakes. When processing an image, first 

loop over the rows then over the columns.  

 

To access the data from a grayscale image at row i and column j use the at method: 
 unsigned char pixel = img.at<unsigned char>(i,j); 

 

Notice, that you need to provide the data type which is stored in the matrix (unsigned 

char). 

 

For faster access, we can use the data pointer and the step field directly: 

 unsigned char pixel = img.data[i*img.step[0] + j]; 

 

All data is stored in a linearized manner, row after row and from left to right, starting from the 

data pointer. Padding may be introduced so avoid accessing via i*img.cols+j because 

it might give wrong results for padded images. 

 

You can also use a pointer to the data from the i-th row: 
 unsigned char pixel = img.ptr(i)[j]; 

 

j, x, width, cols 

i,  

y,  

height,  

rows 



Image Processing - Laboratory 1: Introduction to the OpenCV library 

 

 

5 

To access the 3 component color at row i and column j from a color image, use the proper 

type: 
Vec3b pixel = img.at< Vec3b>(i,j); 

unsigned char B = pixel[0]; 

unsigned char G = pixel[1]; 

unsigned char R = pixel[2]; 

 

Vec3b is a vector with 3 byte (unsigned char) components. |It is recommended for 

manipulating color images. 

 

Code can be simplified by using the Mat_<T> templated subclass of the Mat class, which 

enables omitting the type for access operations. At the creation of a Mat_<T> object you 

must provide the underlying type that is stored in the matrix. 

 
Mat_<uchar> img = imread("fname",CV_LOAD_IMAGE_GRAYSCALE); 

uchar pixel = img(i,j); 

 

Here we have also used the type definition uchar which stands for unsigned char. 

Accessing a value from a certain position permits both reading and writing operations. 

 

1.7.  Viewing an image 
 

To view a  loaded image use the imshow function followed by a waitKey call: 

 
imshow("image", img); 

waitKey(0); 

 

This shows the image in a new window called image and waits for the user to input a key 

indefinitely. The waitKey function has only one parameter: how long it waits for a user 

input (measured in milliseconds). Zero means to wait forever. 

 

Always follow each imshow operation with a waitKey command. Image windows can be 

moved and resized, which is desirable if you want to illustrate input and output side by side in 

the same configuration many times. 

 

1.8.  Saving/writing an image 
 

To save an image to the disk use the imwrite function: 

 
 imwrite("fname", img); 

 

The file name contains the path, the name and the extension, which determines the format of 

the image. You can save in multiple formats such as: bmp, jpg, png. 

 

  



Universitatea Tehnică din Cluj-Napoca, Catedra de Calculatoare 

 

 

6 

1.9.  Sample function  
 

The following sample code loads a grayscale image and transforms it into its negative image: 

 
void negative_image(){ 

 Mat img = imread("Images/cameraman.bmp",     

         CV_LOAD_IMAGE_GRAYSCALE); 

 for(int i=0; i<img.rows; i++){ 

  for(int j=0; j<img.cols; j++){ 

   img.at<uchar>(i,j) = 255 - img.at<uchar>(i,j); 

  } 

 }  

 imshow("negative image",img); 

 waitKey(0); 

} 

 

The image file must reside in the Images folder next to the project solution file. 

 

1.10. Practical work 
 

1. Download and build the OpenCV application. 

2. Test the negative_image function. 

3. Implement a function which changes the gray levels of an image by an additive factor 

4. Implement a function which changes the gray levels of an image by a multiplicative 

factor. Save the resulting image. 

5. Create a color image of dimension 256 x 256. Divide it into 4 squares and color the 

squares from top to bottom, left to right as: white, red, green, yellow. 

6. Create a 3x3 float matrix, determine its inverse and print it. 

 

References 
[1] http://docs.opencv.org/2.4.13/modules/core/doc/basic_structures.html   

 

 

 

 

http://docs.opencv.org/2.4.13/modules/core/doc/basic_structures.html

