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Abstract— Digital elevation maps are simple yet powerful 

representations of complex 3D environments. These maps can be 

built and updated using various sensors and sensorial data 

processing algorithms. This paper describes a novel approach for 

modeling the dynamic 3D driving environment, the particle-

based dynamic elevation map, each cell in this map having, 

besides height, a probability distribution of speed in order to 

correctly describe moving obstacles. The dynamic elevation map 

is represented by a population of particles, each particle having a 

position, a height and a speed. Particles move from one cell to 

another based on their speed vectors, and they are created, 

multiplied or destroyed using an importance-resampling 

mechanism. The importance-resampling mechanism is driven by 

the measurement data provided by a stereovision sensor. The 

proposed model is highly descriptive for the driving 

environment, as it can easily provide an estimation of the height, 

speed and occupancy of each cell in the grid. The system was 

proven robust and accurate in real driving scenarios, by 

comparison with ground truth data. 

 
Index Terms— digital elevation map, particle filtering, 

environment modeling, tracking, stereovision. 

 

I. INTRODUCTION 

The traffic scene is a complex 3D environment, with many 

relevant objects, which can be difficult to model by the classic 

3D oriented bounding box. Many objects do not fit well in 

boxes, and sometimes a more detailed description of the 

object’s shape is required [1], or they may not be observable 

enough to accurately fit a box to them, and the data association 

problem specific to box-based tracking is not easily solved [2]. 

The nature of the relevant traffic objects is hugely 

heterogeneous: cars, pedestrians, bicycles, traffic isles, 

shrubbery, curbs, and many more. They can also be static or 

dynamic, or they can quickly change between static and 

dynamic. For these reasons, many researchers have tried to find 

generic representations, which are not bound to the object’s 

type or nature. One such a solution is to simply store the raw 

sensorial points, and use them to discriminate between road and 

obstacles, or even for mapping, provided that these points are 

highly accurate, such as those delivered by a laser scanner [3]. 
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6D vision [4] is an ambitious attempt to model the environment 

as a set of 3D points, each point having its own speed vector. A 

more compact representation is the dynamic stixel set [5], 

which models the visible sides of obstacles as a set of dynamic 

vertical structures. 

Digital elevation maps (DEM) are a simple yet powerful 

way of modeling complex 3D environments. The environment is 

represented as a 2D grid, each cell in the grid being described 

by its height. The digital elevation maps can be large data 

structures, used for terrain mapping [6], a function which makes 

them extremely useful for planetary exploration tasks [7], but 

they can also be local structures, used for robotic navigation 

[8], environment representation for driving assistance systems 

[9], or even indoor pedestrian tracking [10]. The digital 

elevation maps can be built in real time, using multiple types of 

3D sensors, the most popular being of the laser [2] and of the 

stereo vision  [9] [10] family. The cells of the elevation map 

can be then analyzed and classified into traversable, obstacles 

and others [8] [9].  

The elevation map representation of the environment is 

sometimes described as having 2.5 dimensions [11], because 

the description is not complete – bridges and tunnels, for 

example, cannot be fully represented. For this reason, 

researchers have proposed several extensions. One of the 

problems of elevation maps, described in [11], is that when 

they are built using the average (or maximum) height of the 

sensorial points in each grid cell, structures such as bridges and 

tunnels will appear as non-traversable. Assuming the 

overhanging structure is of no concern, the same paper presents 

an optimized map building algorithm which looks for gaps in 

the vertical structures and generates the map of the drivable 

surface below. In [12], we find a further extension of the 

elevation map, called Multi Level Surface Map, which can 

successfully model the overhanging structures. The environment 

is organized as a 2D map, but instead of storing occupancy or 

height, each cell stores a set of surface patches, which are 

defined as Gaussian distributions of height and depth. This way, 

the surface under a bridge will be one surface patch, and the 

bridge itself another. The heights are defined by their mean and 

standard deviation, which are updated in a probabilistic 

fashion. An even more general extension, presented in [13], is 

the multi-volume occupancy grid, which is a probabilistic 

representation of height volumes for each map cell, each 

volume having a starting position from the ground and a height, 

the crucial difference being that the volume can be either 

occupied or empty, the occupancy being a probability value. 

This way, free and occupied volumes can be modeled, and 

uncertainty can be associated. Another solution that combines 

elevation and occupancy, using the uncertainty element (called 
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“credibility”), can be found in  [1]. 

Another class of solutions for representing and perceiving 

freeform 3D environments as 2D bird-eye view maps is the 

occupancy grid family. Similarly to the elevation map, the 

occupancy grid is also based on discrete cells, but, instead of 

height, it holds the probability that the cell is occupied or free - 

a more pressing concern for real-time robotic applications. Due 

to their simpler nature, and to the fact that they can be adapted 

to work with a wide variety of sensors, the occupancy grids are 

featured in multiple scientific contributions, and many 

sophisticated probabilistic techniques have been developed 

around the concept. 

 Maybe one of the first uses of occupancy grids, under the 

name of probabilistic local maps, is presented by Elfes in [14], 

in the context of sonar based robot navigation. Adding speed 

information to the environment representation can significantly 

increase the complexity of the probabilistic reasoning, as the 

grid cells are now strongly interconnected. The work of Coue et 

al, presented in [2], uses a 4D occupancy grid, where each cell 

has a position and two speed components along each axis. By 

estimating the occupancy of each cell in the 4D grid, the speeds 

for the classical cells in the 2D grid can be computed. Another 

solution for the representation of speed is presented by Chen et 

al, in [15]. Instead of having a 4D grid, this solution uses the 

classical 2D representation, but each cell has a distribution of 

speeds, in the form of a histogram. The Bayesian inference 

mechanism relies on sensor data and antecedent cells, the list of 

antecedents being decided by the speed hypotheses. 

Several occupancy grid approaches handle the dynamic 

obstacle regions of the environment separately from the static 

regions. In [16], the Dempster-Shafer evidence theory is 

employed in order to update the occupancy grid from 

laserscanner measurement data, and the obstacle regions are 

identified as regions with conflicting evidence and high 

uncertainty. A similar approach, using stereovision instead of 

laser, is presented in [17]. The obstacle regions, identified 

from evidence uncertainty, are grouped and tracked as oriented 

box dynamic objects, separated from the grid. A method that 

computes the occupancy grid directly in the stereovision 

disparity space, and uses GPU parallelization for real-time 

performance, is presented in [18]. 

A combination between the digital elevation map and the 

probabilistic occupancy grid seems to be a natural extension of 

both environment modeling techniques. In [19], we find a 

stereovision-based solution which maintains two maps, one for 

occupancy and one for height, while in [20] the elevation map 

is used as an intermediary processing step towards achieving 

the occupancy grid representation. 

This paper proposes a novel probabilistic solution for 

modeling and tracking dynamic 3D environments, which 

combines the elevation map’s power of static 3D representation 

with the dynamic occupancy grid’s power of cuboid-free 

representation of dynamic obstacles. While papers such as [12] 

and  [13] present sophisticated techniques for probabilistic 

modeling of static 3D environments, and solutions such as [19] 

and [20] use occupancy grids along with elevation maps, this 

work describes a solution for modeling and tracking fully 

dynamic elevation maps. All cells in the map, static or 

dynamic, occupied or free, are updated using the same 

mechanism, and the tracking results can be easily estimated into 

static instantaneous elevation maps or dynamic occupancy 

grids. 

The unified modeling and tracking solution is based on 

particles, which are not simply state hypotheses, as in classical 

particle-based tracking solutions, but are the building blocks of 

the 3D world. The particles can move from one cell to another, 

providing an elegant and intuitive mechanism for prediction, 

and can be created and destroyed based on their agreement with 

the measurement data (the state update). In [21], we used this 

particle mechanism for modeling and tracking dynamic 

occupancy grids. The moving particle, however, can carry 

many items of information: speed, position, and height. A 

population of particles having speed and height becomes a 

probabilistic model for a fully dynamic elevation map. This 

paper describes this original world model and its use for 

tracking, also highlighting the derived original contributions, 

necessary for transforming the concept into a working solution: 

the moving particle based prediction, the handling of 

discontinuous variations in the measurement height due to the 

observation vehicle’s pitching, the computationally efficient 

integration of the stereovision measurement model in the 

particle weighting process, the particle resampling mechanism 

that reduces the particle population in a cell when these 

particles do not agree with the measurement.  

The measurement data is an instantaneous, static elevation 

map constructed from dense stereo data, using a method 

described in [9]. However, the tracking solution is sufficiently 

general that any type of dense 3D sensor can be used.  

The new world model and the dynamic environment tracking 

method based on the new model were evaluated for accuracy 

and reliability in describing the static and dynamic aspects of 

real traffic scenarios. High accuracy laser scanner data was 

used as ground truth, and standard metrics for dense 3D data 

accuracy evaluation, such as the percent of badly reconstructed 

heights or the root mean square error, were employed. The 

accuracy of the 3D reconstruction was considerably improved, 

in comparison to the raw map, as was the density (the number 

of cells having a valid state estimation). Also, the system was 

able to correctly estimate the speed of moving obstacles. 

II. THE PARTICLE-BASED DYNAMIC ELEVATION MAP 

An elevation map representation of a 3D scene in the 

coordinate system XYZ (consider a coordinate system with the 

origin on the ground in front of the vehicle, the X axis pointing 

forward, the Y axis pointing to the left, and the Z axis pointing 

up) is a function Z(X,Y), which assigns to every point (X,Y) of 

the horizontal plane XOY a height coordinate Z. This continuous 

mapping is further approximated by dividing a finite region of 

the XOY plane into cells, each cell i being identified by a 

position in a finite matrix, described by a row ri and a column 

ci. A height value hi is assigned to each cell, and thus the 

elevation map approximation becomes an array of height 

values. 



Accepted for publication, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS © IEEE 3

 
Fig. 1. a) The dynamic elevation map, a 3D surface with attached speed vectors; b) 

the continuous surface is approximated by a grid of fixed size cells, with heights and 

speeds for each cell. 

 

If the 3D scene is dynamic, each cell of the discrete elevation 

map can have an assigned speed. If the application is limited to 

the driving scenario, it can be assumed that the objects in the 

scene move mainly in the horizontal plane, and the speed vector 

has only two components, v
x and v

y. Thus, in the continuous 

case we have two functions, v
x(X,Y) and v

y(X,Y), and in the 

discrete case we can speak of vr
i and vc

i – the row speed and 

the column speed for each cell i in the map, as shown in Fig. 1. 

Thus, a dynamic digital elevation map can be described by 

three arrays of values, hi, v
r
i and vc

i. In an ideal world, all these 

values can be measured, and an accurate world description can 

be generated. In the real world the sensors have limited range, 

limited precision, limited reliability, and all these problems 

lead to some cells of the map to be unobservable, or to have a 

poor measurement of their height. All these limitations cause 

uncertainties, and these uncertainties have to be represented in 

the world model. Thus, instead of computing single values for 

height and speed components, the system must compute 

probability densities. A cell i in the dynamic elevation map is 

associated to a random variable ( , , )r c T
i i i ih v v=X , which has 

three dimensions (height, row speed, and column speed). The 

objective of the tracking algorithm is to compute the probability 

density of Xi, for each cell i in the map, based on a sequence of 

measurements Z(0)…Z(t). The measurement Z includes all 

available sensorial data for the time instant t, not limited to the 

current cell. 

( ( ) | (0), (1),..., ( ))

( ( ) | ( )) ( ( ) | (0),..., ( 1))
i

i i

p t t

p t t p t t

∝

−

X Z Z Z

Z X X Z Z
  (1) 

The tracking problem is formulated as a Bayesian recursive 

estimation of probability densities, as described by (1). The 

past state density ( ( 1) | (0),..., ( 1))ip t t− −X Z Z and the state 

transition model ( ( ) | ( 1))ip t t −X X are combined to form the 

predicted state density ( ( ) | (0),..., ( 1))ip t t −X Z Z , and the 

sensorial information at time t is used to update the state 

through the observation model ( ( ) | ( ))ip t tZ X . 

Assuming that only the immediate past matters (the first order 

Markov model assumption), the prediction for a cell i can be 

computed from the past estimated states of all the cells j in the 

grid, ( ( 1) | (0),..., ( 1))jp t t− −X Z Z , and the dynamic model 

( ( ) | ( 1))i jp t t −X X . 

( ( ) | (0),..., ( 1))

( ( ) | ( 1)) ( ( 1) | (0),..., ( 1))
i

i j j

j

p t t

p t t p t t

− =

− − −∑
X Z Z

X X X Z Z (2) 

The most commonly used techniques for approximating 

probability densities in tracking applications are the Gaussian 

function (mostly used in Kalman filtering) and the particle 

(sample) set of values. A description of the most popular 

solutions for representing and tracking probability density 

functions (PDF) can be found in [22]. The particle-based 

solutions are preferred when the PDF is multi-modal or its 

shape is not known a priori. Another reason why this work is 

based on particles is that a mechanism for moving them from 

one cell to another can be intuitively defined.  

The dynamic elevation map will be described, at time t, by a 

set S(t)of particles, each particle k being described by a state 

vector xk(t): 

1 2 ( )( ) { ( ), ( ),..., ( )}, where

( ) ( ( ), ( ), ( ), ( ), ( ))
SN t

c r T
k p k p k p k p k p k

S t t t t

t c t r t h t v t v t

=

=

x x x

x
 (3) 

Each particle k is located in the grid cell identified by the 

row prk, and the column pck. The grid is a map of 250 rows x 

120 columns, and each cell in the grid is a rectangle of 20 cm x 

20 cm. Thus, the grid spans a surface of 50x24 meters in the 

horizontal (XOY) plane. Each particle represents a hypothesis 

of the state of the cell: a possible height phk(t), a possible 

forward speed pv
r
k(t) and a possible lateral speed pv

c
k(t), as 

depicted in Fig. 2. The row, column and speed of a particle are 

expressed as multiples of the cell size DX and DY (currently 20 

cm), and the height is expressed as a multiple of the height 

element of size DH (currently DH=1 cm).  

Based on the particle set S(t), the probability densities 

involved in the tracking process can be approximated. The 

multi-modal probability density of the state of a cell i is 

derived from the particles whose position pck and prk coincides 

with the row and column of the cell i, ri and ci. 

The dynamic model is described by (4). Assuming that the 

past state of a cell j is described by the particle 

value ( 1)k t −x , the current state can be described by a sample 

drawn from a normal distribution centered in ( ( 1))k t −f x  and 

having a covariance matrix ( )i tQ . The function f encodes the 

uniform motion model of a particle and the translation and 

rotation motion of the observation platform, while the 

uncertainty matrix encodes the possible differences between the 

assumed models and the real world. The equations of the 

motion model, used for state prediction, will be described in 

section IV. 

 
( ( ) | ( 1) ( 1))

( ( ( 1)), ( ))
i j k

k i

p t t t

N t t

− = − ≈

−

X X x

f x Q
    (4) 

The prediction described by (2), based on the past state and 

the dynamic model, will take the form of altering the position 

and velocity of all particles, by applying the motion model 

equation f (a process called particle drift) and adding random 

quantities controlled by the matrix Qi(t), a process called 

particle diffusion.  
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The measurement model ( ( ) | ( ) ( ))i kp t t t=Z X x is defined 

for each cell i, and depicts the probability density of the 

measurement Z(t) under the assumption that the state of the cell 

is described by the particle k. This density is assumed to be a 

normal distribution centered in ( , , ( ))i i p kr c h t  and having an 

error covariance matrixΣ ( )i t , which describes the uncertainty 

of the sensor: 

Σ

( ( ) | ( )) ( ))

(( , , ( )) , ( ))

i k

T
i i p k i

p t t t

N r c h t t

= ≈Z X x
    (5) 

The measurement model based update, described by (1), will 

take the form of assigning to each particle a weight proportional 

to the agreement between the particle’s state and the 

measurement. This weight is not included in the proposed 

world model, because as soon as the particles are weighted 

they are re-sampled, a process which generates a new particle 

population from the weighted one, the particle’s weight 

controlling the chances of it being replicated [23]. Thus, the 

new, weight-free particle population encodes the updated 

probability density. 

III. SOLUTION OVERVIEW 

The purpose of the dynamic elevation map tracking algorithm 

is to continuously estimate the probability density for the height 

and speed of each cell in the grid. As the probability densities 

are represented by particles, the purpose of the tracking 

algorithm described in this paper is to continuously update the 

particle population of the scene, a process driven by the 

measurement data. A flowchart of the tracking algorithm is 

presented in Fig. 3. 

In the following, a short description of each functional block 

of Fig. 3 is presented. A detailed description of the most 

important algorithm blocks will be provided in the next section 

of the paper. The main tracking steps follow the drift-weight-

resample mechanism of the particle filter variant called 

CONDENSATION, described in [23]. 

The first step of the tracking cycle is the Particle Drift, a 

process that takes the particle population resulted at the end of 

the previous cycle and applies the motion equations of the host 

vehicle and of the particles themselves in order to predict their 

present positions. The particles are moved from one cell to 

another due to the motion of the host vehicle relative to the 

observed scene, and due to the speed values of the particles 

themselves. 

After drift, the particles are subjected to the process of 

Diffusion. The states of the particles (position, height, and 

speed) are altered by small random amounts, which reflect the 

uncertainties that affect the evolution of the scene in time (or the 

difference between how a real scene alters its state as the time 

passes, and the way we predict the evolution of states). Drift 

and Diffusion form the prediction, preparing the particle 

population to meet the measurement and be altered by it. The 

details of the prediction process are presented in section IV.A. 

 

c

h

r

Height

Position

Speed

 
Fig. 2. The particle dynamic elevation map. Each cell has a population of particles, 

each particle having height and speed. The particle population can approximate a 

multi-modal probability distribution of heights and speeds for each cell in the map. 

 

 

 
Fig. 3. Dynamic elevation map tracking algorithm. 

 

The measurement comes in the form of a Raw Elevation 

Map, a static height map of the same size as the one that is 

tracked, derived directly from dense stereo information 

processing. This raw map is affected by the sensor-specific 

errors, which need to be taken into consideration. More details 

about this map are presented in section IV.B. 

The first collision between the particle population and the 

measurement data is in the process of Pitch Compensation. The 

pitch angle can change quite abruptly, in an unpredictable way, 

due to imperfections in the road surface. Changes of this angle 

affect the height of the cells in the map significantly, and for this 

reason the system must estimate a pitch difference between 

frames, and adjust the particle heights to the new pitch, a 

method described in section IV.C.  

After the pitch-based height adjustment, the particles are 

subjected to Particle Weighting. This process assigns to each 

particle a weight which reflects the quality of the match 

between the height of the particle in a specific cell and the 

measurement height of the raw elevation map. This process 

must take into account the specific uncertainties of stereovision 

(the observation model). For computation speedup, the 
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probabilistic observation model is built as a height weight 

look-up table for each grid cell, a process called Height 

Weight Computation. Then the particle weighting process 

becomes a simple assignment of a value from a Look-Up Table 

(LUT). Details about this process are found in section IV.D.  

After each particle receives a weight based on their 

agreement with the measurement data, a new population of 

particles is generated for each cell, in the process of 

Resampling. The weight of a particle influences the chances of 

this particle to be selected. This way, the particles having the 

height closer to the height of the measurement survive and 

multiply, while the others are destroyed (section IV.E). 

If a cell in the grid has very few particles (or none), the 

measurement data, already pre-processed in the form of a height 

weight LUT, will be used to create new particles, which will 

have random speeds, and a height distribution consistent with 

the height weight LUT (section IV.F).  

With the updated particle population, the system is ready for 

the next tracking cycle. While the result of the tracking process 

is the particle population itself, the useful result is a dynamic 

elevation map, containing a height value and a speed vector for 

each cell. The Estimation and Output step will compute these 

values, and will generate a scene description using a popular 

3D modeling language, for analysis and visualization (section 

IV.G). 

IV. ALGORITHM DESCRIPTION 

A. Particle Drift and Diffusion 

The state transition probability model is implemented by the 

deterministic drift and the stochastic diffusion. The 

deterministic drift changes the state of the particles by taking 

into account two factors: the movement of the observing 

vehicle, which causes a relative movement of the whole scene 

in the vehicle’s coordinate systems, and the movement of the 

mobile particles, according to their speed. The observing 

vehicle’s movement in the horizontal, XOY plane, can be 

computed from its speed v, and its yaw rateψɺ , which are read 

from the CAN bus, and which are integrated over the time 

interval between two measurement frames, t∆ . During this 

time, the vehicle rotates by an angle ψ and travels a distance d. 

tψ ψ= ∆ɺ          (6) 

2 sin
2

v t

d

ψ

ψ

∆
=         (7) 

Taking into account the map cell size, DX x DY (currently 0.2 

m x 0.2 m), the origin of the coordinate systems is moved by dc 

columns and dr rows:  

sin /
2

c
Yd d D

ψ
=        (8) 

cos /
2

r
Xd d D

ψ
=       (9) 

Due to the motion of the observation platform, a particle k of 

the particle set S(t-1), located at coordinates prk(t-1) and pck(t-

1), will be moved to a new location, at coordinates pck
*(t) and 

prk
*(t) which can be computed as: 

*

*

( ) cos sin ( 1)

sin cos ( 1)( )

c
p k p k

r
p kp k

c t c t d

r tr t d

ψ ψ

ψ ψ

     − −         = −       −         
 (10) 

The speed vector of the particle, consisting of the two 

components pv
c
k(t-1) and pv

r
k(t-1), is also related to the 

observing vehicle’s coordinate system. For this reason, when 

the observing vehicle rotates, the speed vector of the particle 

must rotate in the opposite direction, so that its direction in the 

scene remains unchanged. The new speed vector will have the 

components pv
c
k

*(t) and pv
r
k

*(t): 

*

*

( ) cos sin ( 1)

sin cos( ) ( 1)

c c
p k p k

r r
p k p k

v t v t

v t v t

ψ ψ

ψ ψ

     −    =    −  −     
   (11) 

After the observation platform motion corrected particle 

positions and speeds are computed, the drift process is 

completed by adding the particles’ motion caused by their own 

speed.  

After drift, the particles are subjected to diffusion. The state 

of each particle is altered by random 

quantities ( )pc tδ , ( )pr tδ , ( )ph tδ , ( )c
pv tδ and ( )rpv tδ , drawn 

from a normal distribution of zero mean and experimentally 

adjusted covariance matrix Qi(t), depicting the state transition 

uncertainty. The complete prediction process is described as: 

*

*

*

*

( ) ( )1 0 0 0

( ) 0 1 0 0 ( )

( ) 0 0 1 0 0 ( )

( ) 0 0 0 1 0 ( )

0 0 0 0 1( ) ( )

p k p k

p k p k

p k p k

c c
p k p k

r r
p k p k

c t c tt

r t t r t

h t h t

v t v t

v t v t
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( )
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( )
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p
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p

r
p
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δ

δ
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δ
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(12) 

After (12) is applied for each particle in the scene, a final 

step is to ensure that each cell in the grid has a number of 

particles less or equal to NC, the maximum allowed number of 

particles in a grid cell (a constant of the system, currently 200). 

For this reason, if prediction assigns to a cell more particles 

than the maximum allowed number, excess particles are 

destroyed. The destruction process is random, having no 

preference for existing particles in the cell or for newcomers. 

B. The Sensorial Information: the Raw Elevation Map 

The main source of sensorial data for elevation map tracking 

is a dense stereovision system  [24], which is able to extract 

3D information for the (mildly) textured areas in the stereo 

image pair. The 3D points are subsequently assigned to 

corresponding cells in the XOY grid, the height of a grid cell i 

being the Z coordinate of the highest point assigned to the cell. 

The density of 3D points per cell is also computed, and used 

for basic validation, under the assumption that road cells will 

have a lower point density than obstacle cells. This validation 

allows the elimination of erroneously high elevation values, 

which are mostly caused by stereovision mismatches. A 
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detailed description of the raw elevation map computation 

technique can be found in [9]. For the elevation map tracking 

algorithm, the following items of information from the raw 

elevation map are used: 

- Measurement height of each cell i, denoted by zi. For 

convenience, the heights are organized as a 2D array of 

values that can be accessed by specifying the row and the 

column coordinate, thus zi is also written as z(ri, ci).  

- Data availability for each cell, denoted by di. di=1 means 

that height for this cell is available, and di=0 means that 

no measurement data is available for cell i. For 

convenience, the di values are organized as a 2D array 

that can be accessed by specifying the row and the column 

coordinate, thus di is also written as d(ri, ci). 

Due to the fact that not all pixels in the image will obtain 3D 

coordinates from the stereovision engine, and not all areas in 

the grid are visible, due to occlusions and limited field of view, 

not all cells in the raw map have a measured height. The 

tracking algorithm is made aware of this situation by di. Fig. 4. 

shows an example of raw elevation map. 

C. Pitch Angle Compensation 

According to the world model described in section II, a 

particle k is located in the elevation grid at the row coordinate 

prk and column coordinate pck, and has a height phk. Due to the 

continuous nature of the observation process, the heights of the 

map are not expected to change abruptly from one frame to 

another, except when the observation vehicle performs a 

pitching motion. The effect of a pitch angle variation between 

two frames, α∆ , translates into a difference between the height 

of a particle and the measured height for the cell containing the 

particle: 

1
( ( , ))

tan
p k p k p k H

k

X p k

h z r c D

D r
α −

 −  ∆ =    
    (13) 

Naturally, (13) is valid only when the particle is part of a 

static structure, and its height is close to the true height of the 

structure in the scene. These conditions are not valid in the 

general case, but we can make several assumptions: 

- The vast majority of the particles in the scene belong to 

static structures. These structures include the road surface. 

- The average height in each cell is close to the real one, 

even if the individual particles have significant deviations 

from this height. 

- The changes in height due to motion in the scene are minor 

compared to the abrupt changes due to pitching. 

Based on these assumptions, equation (13) can be averaged 

for all particles located in cells that have valid data, and a 

reasonable estimate of the pitch variation between frames can 

be computed. 

 

Fig. 4. The raw elevation map, extracted from dense stereovision: a) original 

grayscale image; b) top view of the grid, with heights encoded as grayscale values. 

The sensorial information covers only a part of the world map, and the areas that 

are not sensed are depicted in light gray; c) 3D representation of the raw map. The 

non-textured cells represent missing height data in the raw map, due to field of view 

limitations or errors of stereo reconstruction, such as those caused by dark 

shadows. 

1

1

1

( ( , ))
tan ( , )

( , )

S

S

N
p k p k p k H

p k p k

k X p k

N

p k p k

k

h z r c D
d r c

D r

d r c

α

−

=

=

 −      
∆ =

∑

∑

(14) 

After the pitch angle variation is estimated, the height phk of 

each particle k can be corrected: 

( )p k H p k X

p k

H

h D r D
h

D

α−∆
=       (15) 

D. Height Weight Computation and Particle Weighting 

The process of particle weighting is the particle filter 

instantiation of the measurement (observation) model 

( ( ) | ( ) ( ))i kp t t t=Z X x , introduced in section II. This model 

describes the conditional probability density of the 

measurement Z(t) given a possible cell state value 

( ) ( )i kt t=X x . A particle is a state hypothesis, and the 

probability of the measurement given this state will be encoded 

as a particle weight, which will describe how well the particle 

hypothesis matches the measurement data. 

The sensorial information, the raw elevation map, is just a 

conveniently modified version of the stereovision-derived 3D 

point data, therefore the probabilistic observation model will 

be derived from the observation model of stereovision, a three-

dimensional normal distribution centered in the real world 3D 

coordinate, and having a covariance matrix defined by the 

distance error standard deviation Xσ , the lateral error standard 

deviation Yσ and the vertical error standard deviation zσ .  

The expected error standard deviations of the three 

coordinates computed by a stereo reconstruction process 

depend on the system’s baseline (distance between cameras) b, 

the focal distance in pixels f, and disparity computation 

uncertainty (matching uncertainty) dσ . The stereo reconstruction 

process is seen as a non-linear transformation of the vector 

(u,v,d), containing a point’s position (u,v) in the image space 

and the disparity d, into the vector of 3D coordinates (X,Y,Z). 
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The error is thus computed by propagating the covariance 

matrix of (u,v,d) through the Jacobian linearization of the 3D 

reconstruction transformation [25]. The error standard 

deviation for the distance coordinate X can be computed as: 

2
d

X

X

bf

σ
σ =           (16) 

The error standard deviations for the lateral coordinate Y and 

for the vertical coordinate Z depend on the distance error 

standard deviation Xσ and the image position (pixel 

uncertainty) standard deviation Pσ . 

2 2
2 2 2

2 2Y P X

X Y

f X
σ σ σ= +        

 (17) 

2 2
2 2 2

2 2Z P X

X Z

f X
σ σ σ= +        

 (18) 

The values of the first terms of the sums in (17) and (18) are 

much lower than the values of the second terms, therefore these 

terms can be ignored. Thus, Yσ  and Zσ can be computed as: 

X
Y

Y

X

σ
σ =          (19) 

X
Z

Z

X

σ
σ =          (20) 

Equations (16) to (20) refer to the 3D coordinates X, Y, and Z 

in the camera reference frame. In order to apply these equations 

to the elevation map, each cell in the map has to be associated 

to a 3D coordinate in the camera reference frame. A look-up 

table, computed offline with the help of the camera parameters 

(rotation and translation with respect to the world coordinate 

system) accomplishes this task. Also, the uncertainties for X 

and Y can be computed completely offline, as they are fixed for 

each position in the map and the height is the only thing that 

changes. The uncertainties of X, Y and Z are converted in 

uncertainties of row, column and height, using the following 

equations: 

0
X

r r

X
D

σ
σ σ= +         (21)

 

0
Y

c c

Y
D

σ
σ σ= +         

 (22) 

0
Z

h h

H
D

σ
σ σ= +         (23) 

The offsets 0rσ , 0cσ and 0hσ are added so that other 

measurement errors besides matching uncertainty (for example, 

incorrect stereo matching due to non-textured or repetitive 

surfaces), can be accounted for. These offsets are tuned 

experimentally. 

After the measurement uncertainties for each cell are 

computed, they can be transformed into weights that will be 

assigned to the particles. The measurement model is depicted 

as a Gaussian distribution centered in the true row, column and 

height, having the covariance matrix formed by the three 

standard deviations, rσ , cσ and hσ . As these standard 

deviations depend on the cell i, in the following equations they 

will be referred as ,r iσ , ,c iσ and ,h iσ . 

The classical approach for particle weighting, in this 

situation, is to compute the distance from the particle’s position 

and height (prk, pck, phk) to the measurements (r, c, z) inside an 

acceptable search zone, and transform this distance into a 

probability value using the Gaussian equation. This approach is 

not computationally efficient. Instead, the process of Height 

Weight Computation creates, for each cell i in the map, a 

weight LUT for all possible heights (which are represented as 

integers, multiples of 1 cm, thus a LUT size of 300 positions 

will accommodate all relevant heights found in the scene). 

The creation of the weight LUT is a data-driven approach, 

which will approximate the computation of weight by distance 

to the measurement in a more computationally efficient way. 

For each cell i, an influence region of 4 ,r iσ x4 ,c iσ around the 

central position (ri, ci) is analyzed. Each measured height z 

inside the search region will receive as weight the value of a 

Gaussian function Gi centered in (ri, ci), having the standard 

deviations ,r iσ and ,c iσ . This is a straightforward application of 

the Gaussian observation model, in the horizontal plane. 

Formally, the histogram value for a height candidate h, at 

coordinates (ri, ci), for the cell i, is computed as: 

, ,

, ,

2 2

2 2

( )

( , ) ( , ) ( ( , ) )
i r i i c i

i r i i c i

i

r c

i i i

r c

H h

d G r c z h

σ σ

τ σ κ σ

τ κ τ κ δ τ κ

+ +

= − = −

=

− − −∑ ∑

 (24) 

In (24), d is the data availability map, described in sub-

section IV.B, and δ is the Kronecker delta function. The 

multiplication terms ( , )d τ κ and ( ( , ) )z hδ τ κ − indicate that only 

the valid cells in the raw map, having the height z equal to the 

height candidate h will be taken into consideration. 

According to the measurement model, the particle’s weight 

will depend on its distance to the measurement along all three 

coordinate axes. Equation (24) only accounts for the 

displacement in the horizontal plane. The distance between the 

particle’s height and one of the heights in the histogram Hi can 

be transformed into a probability value by using a Gaussian 

function. The same result can be achieved more efficiently by 

convolving the height histogram Hi with a 1D Gaussian kernel 

Ki, of standard deviation ,h iσ . Equation (25) transforms the 

sparse height histogram Hi into a continuous weight LUT, Wi: 
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*i i iW K H=         (25) 

A particle k, in a cell i, will get the following weight: 

( )k i kw W h=          (26) 

E. Resampling 

The resampling process creates a new population of 

particles, using the current population and their weights. This is 

the process that makes the particle population reflect the 

posterior probability of the state of the scene that is tracked, a 

probability which is the result of the prediction (drift and 

diffusion) and of the measurement (weighting). 

Resampling is applied for each cell i, at each time instance t, 

after the particles are weighted. The total number of allowed 

particles for a cell is NC, a constant which is currently set at 

200. The real number of particles in the cell, NR,i, resulted by 

drift and diffusion, may be lower than NC. For re-sampling, it is 

assumed that the cell holds a higher number of particles, NA = 

1.25 NC. The difference between the real number of particles in 

the cell, NR,i, and the augmented maximum number of particles 

NA is the number of “empty” particles, particles which are in 

fact empty places. The re-sampling mechanism will perform the 

following steps: 

1. Weight the empty particles with a default low weight, 

which we chose to be the average value of the height 

weight LUT, Wi. 

2. Normalize the weights of all NA particles so that their sum 

becomes 1. 

3. Perform NC random extractions from the total particle 

population, real and empty. The weight of the particle 

controls its chances of being selected – high weight 

particles will be selected multiple times, lower weight 

ones may not be selected at all. If empty particles are 

selected, the final number of particles in the cell will be 

lower than NC. 

The resampling mechanism completely replaces the particle 

set at each measurement time t (each frame). Therefore, there is 

no need for particle deletion, as the particles with low weight 

(the unfit particles) will not be selected, and thus they will be 

automatically removed. 

This resampling algorithm differs slightly from the classical 

solution [23] due to the presence of empty particles. The effects 

of having empty particles are the following: 

1. If most of the real particles of a cell have a low weight 

due to their lack of fitness to the measurement data, the 

particle population in that cell decreases. 

2. The difference between NA and NC ensures that even if a 

very good fit between the particles and the measurement 

data occurs, there is always a chance to make some room 

for new particles. 

The main reason for designing the mechanism for reducing 

the number of particles in a cell, a mechanism that acts in an 

accelerated manner when the data does not fit the prediction, is 

the need for a mechanism to clear the way for the particles 

belonging to moving objects. If a vehicle moves across a road 

surface, the particles that have a low height must be cleared so 

that the particles of the moving object have a place to go. 

Without an accelerated elimination of the unfit particles, the 

convergence of the particle population to the new height of the 

obstacle will be slow, and the system will not react quickly 

enough to a dynamic scene. 

F. Creation of New Particles 

If the number of particles in a cell, NR,i, is lower than NC/2, 

and the cell i has a valid height z(ri,ci) in the raw measurement 

map, the algorithm will create a number of NC/2-NR,i new 

particles. The speeds of the new particles will be sampled from 

a normal distribution centered in 0, and the heights will be 

sampled from the multi-modal distribution of height 

measurement influencing cell i, represented by the weight LUT 

Wi. The process of creating new particles is applied after each 

resampling step.  

G. Estimation and Output 

If the particle population in a cell i is higher than a threshold 

that we set at 2NC/3, the height and speed of the cell can be 

estimated by averaging the values of all particles k that are 

located inside the cell, using equations (27) and (28). The 

operator |S| denotes the cardinality of a set S. The particles 

involved in the estimation are those generated by resampling, 

therefore the particle weights are no longer needed. 
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 (28) 

The estimated dynamic elevation map is then transformed 

into a Virtual Reality Modeling Language (VRML) scene [26], 

for visual inspection, as seen in figure 5.a and 5.b. From the 

tracked elevation map one can also derive an occupancy grid, 

the occupancy probability for each cell being computed as the 

ratio between the number of particles having a height higher 

than a threshold T and the total number of particles in the cell. 

Figure 5.d shows the occupancy grid derived from the dynamic 

elevation map, for a sample threshold T=50 cm. 

| { | , , } |
( )

| { | , } |

k p k i p k i p k
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x
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(29) 
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Fig. 5. Estimation results for the tracked scene: a) 3D rendering of the tracked elevation map, with speed vectors, perspective view; b) 3D rendering of the tracked elevation 

map, with speed vectors, lateral view; c) top view of the tracked map, with heights encoded as grayscale values; d) occupancy grid estimation from the tracked map, darker 

values encoding a higher occupancy probability. 

 

 

 
Fig. 6. A snapshot of the evaluation sequence. a) grayscale left image; b) laser 

3D points, top view; c) stereo 3D points, top view; d) laser 3D points, lateral 

view; e) stereo 3D points, lateral view. 

V. TESTS AND RESULTS 

A. Evaluation of Scene Reconstruction Accuracy 

The most important goal of an elevation map algorithm is 

to accurately depict the scene being observed. For this 

reason, we have to compare the computed map with a ground 

truth map, a map generated by using a sensor that is both very 

precise and delivers a data density compared to that of 

stereo. Luckily, the Karlsruhe Institute of Technology 

compiled the KTTI Vision Benchmark Suite [27], a large set 

of data consisting of grayscale and color image pairs, 

Velodyne laser points, and GPS data, all synchronized and 

calibrated. For the evaluation process, we have performed 

the following steps: 

1. Stereo reconstruction, using our algorithms, on the 

rectified image pairs of the KITTI dataset. 

2. Raw elevation map computation, using the 

reconstructed stereo points. 

3. Elevation map tracking, using the raw elevation map as 

measurement. 

4. Raw elevation map computation, using the Velodyne 

points. This map is regarded as ground truth. 

5. Computation of the differences between the ground truth 

map and the raw stereo map, and of the differences 

between the ground truth map and the tracked map. The 

differences are computed only when both the ground 

truth and the evaluated map have valid heights. 

The error analysis presented in this section was done on 

the sequence 2011_09_26_drive_0009, part of the raw data 

sequences available for download at [28]. Fig. 6 shows a 

comparison between the stereo reconstructed 3D points and 

the laser 3D points, for a frame in this sequence. 

Based on the differences between the stereo-derived maps 

(raw and tracked) and the laser ground truth map, we 

compute two types of errors: 

- The Badly Computed Heights (BCH) percent, which is 

the ratio between the estimated heights that have the 

absolute difference from the ground truth higher than a 

threshold T (currently 0.15 m), and the total number of 

heights that can be compared to the ground truth. 

- The Root Mean Square Error (RMSE), an average 

error of height estimation compared to the ground truth. 

- The Density percent, the ratio between the number of 

estimated cell heights and the total number of cells that 

can have a height in the raw map (the theoretically 

observable cells). 

The first two error indicators are inspired from [29], a 

paper which defines common accepted measures for 

evaluation of dense stereo algorithms, measures that we 

consider to be also suited for evaluation of dense elevation 

maps. 

 

TABLE I  

PERFORMANCE COMPARISON FOR HEIGHT ESTIMATION 
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Elevation Map % Density % BCH RMSE (m) 

Raw Map 41.12 27.99 0.19 

Tracked Map 60.96 24.19 0.17 

 
The results are presented in Table I. What is clearly 

visible is that tracking the elevation map provides a 

reduction in BCH, and in RMSE, while achieving a nearly 

50% increase in density. This means that the tracked map is 

a much more complete description of the scene, increasing 

the number of cells that have a valid height, and this increase 

in data density comes with no precision cost, but with a 

slight precision gain. 

The graphs in Fig. 7 show the BCH situation for different 

distances and heights. It is of no surprise that the errors 

increase with the distance, as this is an intrinsic property of 

stereovision. Also, the errors increase with the height being 

estimated, a phenomenon which we suggest is related in fact 

to distance uncertainties, a high structure being estimated at 

the wrong distance having a very large error with respect to 

the nearby ground. 

The graphs in Fig. 8 show the RMSE situation for 

different distances and heights. As expected, the errors go up 

with the distance, and with the height. 

From figures 7 and 8 it is apparent that the tracked 

elevation map improves the raw map results consistently, on 

almost all distances and heights. 

B. Evaluation of Speed Estimation Accuracy 

In addition to a denser and more accurate estimation of the 

heights of the perceived scene, the tracked elevation map 

adds dynamic information to this description. For each cell 

in the map we can estimate its speed vector magnitude and 

orientation using the speed vectors of its associated 

particles. In order to evaluate the quality of the speed 

estimation, we use several sequences recorded in controlled 

environments, with known speed of the tracked obstacles. In 

what follows, we present an analysis of eight sequences, 

four with the obstacle coming from the front at 45 degrees 

orientation (Fig. 9.), and four with the vehicle coming from 

behind us, at the same orientation (Fig. 10.). Each scenario 

was repeated with four different speeds, 30, 40, 50 and 60 

km/h. The target vehicle’s stable speed is reached outside of 

the observer’s field of view. 

Each test sequence is 2 to 5 seconds long (40 to 100 

frames), and, depending on its speed, the vehicle is observed 

for 50 to 70% of the sequence’s duration. As the scene 

consists only of the test vehicle and the road, we analyze the 

speed of the particles that have a height higher than 50 cm. 

First, for each frame we construct a speed magnitude 

histogram, which counts the number of particles for each 

speed value candidate, from 0 to 100 km/h. 

 

 
Fig. 7. Badly calculated heights (BCH) % comparison. Blue – raw map, green – 

tracked map. Top: BCH comparison per distance from the observing vehicle. 

Bottom: BCH comparison per height. 

 

 
Fig. 8. Root Mean Square Error (RMSE) comparison. Blue – raw map, green – 

tracked map. Top: RMSE comparison per distance from the observing vehicle. 

Bottom: RMSE comparison per height. 

 

Figures 11 and 13 show time sequences of these 

histograms, plotted as 3D surfaces, for the ground truth 

speeds of 30 km/h and 60 km/h (ground truth shown on the 

plots as the narrow vertical spike), on the two vehicle 

orientation scenarios. The speed value clustering behavior 

can be observed from these plots: as the vehicle enters the 

scene, the histograms become narrower around the ground 

truth value, and then they become diffuse again as the vehicle 

goes out of the field of view (but not completely out of the 

map). 

From the speed histograms, we can make an estimation of 

the perceived speed of the moving obstacle. For the two 

orientation scenarios, we have plotted the estimated speeds 

against the ground truth, as shown in Fig. 12. and Fig. 14. 
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Fig. 9. Speed estimation test, with the target vehicle approaching at 45 degrees. 

a) left grayscale image; b) raw elevation map; c) tracked elevation map; d) 

tracked elevation map with speed vectors. 

 

 
Fig. 10. Speed estimation test, with the target vehicle receding at 45 degrees. a) 

left grayscale image; b) raw elevation map; c) tracked elevation map; d) tracked 

elevation map with speed vectors. 

 
Fig. 11. Particle speed histograms, for the incoming vehicle scenarios. Top: time 

evolution of the histograms for the 30 km/h test speed; Bottom: time evolution 

for the 60 km/h test speed. 

 

An error analysis of the speed estimation was performed 

per sequence, taking into consideration only those frames 

where the object was actually visible. The estimated mean 

speeds, and the root mean square errors against the ground 

truth, are presented in tables II and III. 

The graphs in figures 11-14, and tables II and III, show 

that the elevation map tracking algorithm can reliably 

estimate the speeds of moving objects. The error of speed 

estimation increases with the speed of the target object, a 

behavior which is to be expected, as a higher speed of the 

object means a higher deviation from the initial average zero 

speed of the cell (when a cell is first populated with 

particles, they receive random values from a probability 

distribution of zero mean). The process of drift and 

resampling will gradually remove the wrong speeds, and 

multiply the correct ones, but this is not an instantaneous 

process. Another reason for higher errors at higher speeds is 

that the faster moving object is observed for a smaller period 

of time, meaning that the speed stable time in the graph is 

lower with respect to the transitional times. 

 

 

 

 
 

Fig. 12. Estimated object speed, for 30, 40, 50 and 60 km/h ground truth 

speeds, for the incoming vehicle scenario. 

 
Fig. 13. Particle speed histograms, for the receding vehicle scenarios. Left: time 

evolution of the histograms for the 30 km/h test speed; Right: time evolution for 

the 60 km/h test speed. 

C. Qualitative Evaluation 

The elevation map tracking system has been tested on 

multiple sequences of real traffic scenes, acquired in Cluj-

Napoca, Romania. The resulted 3D models of the perceived 

environment were compared to the acquired images, as we 

looked for: likeness of the resulted model to the real scene, 

speed vectors orientation and rough magnitude, describing 

the general motion characteristics of the objects in the scene, 

density of estimation, obvious errors. The system proved to 

be able to handle the complex traffic scenes in a robust 

manner, increasing the quality of the height perception of the 

raw stereo-derived elevation map. In figures 15, 16 and 17 

some of the observed scenes are illustrated. 
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Fig. 14. Estimated object speed, for 30, 40, 50 and 60 km/h ground truth 

speeds, for the receding vehicle scenario. 

 
TABLE II 

SPEED MEASUREMENT EVALUATION - INCOMING VEHICLE SCENARIO 

Ground truth speed 

(km/h) 

Mean estimated speed 

(km/h) 

RMSE (km/h) 

30 29.2650 1.9720 

40 38.9354 3.9316 

50 46.9964 6.5184 

60 50.0729 11.7318 

 
TABLE III 

SPEED MEASUREMENT EVALUATION – RECEDING VEHICLE SCENARIO 

Ground truth speed 

(km/h) 

Mean estimated speed 

(km/h) 

RMSE (km/h) 

30 29.6231 1.6149 

40 37.8779 2.6842 

50 45.2310 4.9515 

60 53.1327 8.2875 

 

A high resolution video file, showing the system’s 

behavior for a two minutes driving sequence can be 

accessed at [30]. 

 

 

 
Fig. 15. Large, continuous static structures. a) left grayscale image; b) raw map, 

intensity encoding for height; c) tracked map, intensity encoded for height; d) 

occupancy grid estimation; e) raw map, 3D visualization, perspective view; f) 

raw map, 3D lateral view; g) tracked map, 3D perspective view; h) tracked 

map, 3D lateral view. 

 

 
Fig. 16. Pedestrian tracking, with estimated speed vectors. a) left grayscale 

image; b) raw map, intensity encoding for height; c) tracked map, intensity 

encoded for height; d) occupancy grid estimation; e) raw map, 3D visualization, 

perspective view; f) raw map, 3D lateral view; g) tracked map, 3D perspective 

view; h) tracked map, 3D lateral view. 

 

 
Fig. 17. Tracking vehicles at an intersection. a) left grayscale image; b) raw 

map, intensity encoding for height; c) tracked map, intensity encoded for height; 

d) occupancy grid estimation; e) raw map, 3D visualization, perspective view; f) 

raw map, 3D lateral view; g) tracked map, 3D perspective view; h) tracked 

map, 3D lateral view. 
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Fig. 18. Cuboid-based world perception (top) versus dynamic elevation map 

based perception at a roundabout (bottom). 

 
TABLE IV 

COMPARISON OF THE DYNAMIC ELEVATION MAP WITH OTHER ENVIRONMENT 

MODELING METHODS 

Method Flexible shape 

description 

Speed 

estimation 

Density Height 

estimation 

Oriented boxes [17] No Yes Low Yes 

Elevation map[11] 

[12] 

Yes No High Yes 

Dynamic occupancy 

grid[2] [21] 

Yes Yes High No 

6D vision [4] Yes Yes Low Yes 

Dynamic stixel [5] Yes Yes Low Yes 

Dynamic elevation 

map 

Yes Yes High Yes 

 

Fig. 18 shows a comparison between the classical cuboid-

based representation of the environment and the perception 

based on the proposed particle-based dynamic elevation 

map, in a situation extremely relevant for driving assistance 

– navigating a roundabout. One can see that the curved nature 

and the low height of the roundabout are not faithfully 

described by the oriented boxes, while the dynamic 

elevation map describes the environment geometry 

accurately. 

VI. COMPARISON OF WORLD MODELING TECHNIQUES 

While the classic representation of the obstacles as 3D 

oriented objects remains the most popular choice for the 

environment perception systems, especially in the field of 

driving assistance, various alternatives have been proposed 

in the recent years, aiming to increase the flexibility of the 

representation of the environment and the level of perceived 

detail. 

The method proposed in this paper is a completely 

dynamic probabilistic elevation map, having multi-modal 

probability density of the cell states. Table IV presents a 

non-exhaustive comparison with existing environment 

description methods, in terms of flexibility (the capability of 

describing free-form obstacle areas as seen from the bird-

eye view), speed estimation capability, density (in the bird-

eye view space) and height estimation capability. The table 

shows that the dynamic elevation map combines the 

advantages of the elevation map with those of the dynamic 

occupancy grid, being the most faithful reproduction of the 

real world.  

VII. CONCLUSION AND OUTLOOK 

This paper describes an elegant environment modeling 

and tracking technique, the particle-based dynamic elevation 

map. The building block of the proposed model is the 

dynamic particle, having position, speed, and height, which 

can populate the grid cells, can migrate between cells, and 

can be created, multiplied, and destroyed based on the 

measurement data. Using the particle set, an elegant, intuitive 

and easily adaptable system was designed to solve the non-

parametric PDF Bayesian tracking problem for a dynamic 

digital elevation map. While the basic moving particle-based 

idea was described previously in [21], the solution 

presented in this paper brings significant changes, required 

by the challenge of the additional dimension, the height. The 

most important change is the type of measurement used: a 

raw elevation map instead of a raw occupancy grid, which 

requires an efficient measurement model. Also, the 

particularities of the vehicle environment required that the 

discontinuous event of vehicle pitching was taken into 

consideration. Coping with moving elements in an elevation 

map required also original alterations to the particle 

resampling mechanism, to reduce the particle population in a 

cell when the particles do not agree with the measurement, 

thus making room for the moving obstacle. 

The resulted system unifies the dynamic cell-based world 

tracking specific to occupancy grids, with the power of 3D 

representation of elevation maps. While other contributions 

described in the literature combine these two types of 

representation, the system presented in this paper is able to 

track dynamic elevation maps directly, in a uniform manner, 

without discriminating between empty cell, occupied cell, 

static cell or dynamic cell. The dynamic elevation map is a 

general dynamic 3D world representation, which can easily 

be transformed into less general ones, such as the classic 

elevation map, or the dynamic occupancy grid, using the 

simple steps described in the paper. 

The particle-based dynamic elevation map can easily be 

adapted to other sensorial data sources, such as the 

laserscanner. We have, in fact, tried to apply the algorithm 

directly to the Velodyne data that we used as ground truth, 

and the results look very promising. For this reason, we 

expect that we may use this representation as a convenient 

sensor fusion platform, which will combine stereo and laser. 

The particle-based dynamic elevation map and the 

dynamic environment tracking algorithm based on this model 

form a generic intermediate level perception system, capable 

of enhancing the performance of the dense stereovision 

through improving its accuracy and density, and providing 

speed information for the elements of the scene. A better 

generic 3D description of the 3D environment can be applied 

to better extract the road surface for the purpose of lane 

detection, to better identify the static and the dynamic 
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obstacles for detection, tracking and classification, or to 

provide a detailed 3D map of the environment. 

There is still future work to be done. The current system 

is, so far, not a real time algorithm, the processing time per 

frame being around 500 ms, on a single thread of a classical 

CPU processor. However, multi-threaded implementation, or 

even a massive parallel port to a CUDA-compatible GPU 

can achieve huge speedups. 
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