
  

  

Abstract— This paper presents an occupancy grid tracking 

solution based on particles. The particles will have a dual 

nature – they will denote hypotheses, as in the particle filtering 

algorithms, but they will also be the building blocks of our 

modeled world. The particles have position and speed, and they 

can migrate in the grid from cell to cell depending on their 

motion model and motion parameters, but they will also be 

created and destroyed using a weighting-resampling mechanism 

specific to particle filter algorithms. An obstacle grid derived 

from processing a stereovision-generated elevation map is used 

as measurement information, and the measurement model takes 

into account the uncertainties of the stereo reconstruction. The 

resulted system is a flexible, real-time tracking solution for 

dynamic unstructured driving environments. 

I. INTRODUCTION 

hen the observed environment is highly structured, 

and its components have a standard geometry, model-

based tracking is the natural choice to be employed. The 

obstacles can be modeled as cuboids having position, size 

and speed, and the driving surface delimiters can be modeled 

as parametrical curves. The highway and most of the urban 

and rural sections of road can be regarded as structured 

environments.  

The conditions change when the environment to be 

tracked is an intersection, a busy urban center, or an off-road 

scenario. Even if parts of this environment can be tracked 

under the structured assumption, many essential parts of the 

environment will not fulfill the model. For these situations, 

the natural solution is to use occupancy grids. 

An occupancy grid is a probabilistic map of the driving 

environment, which encodes the present and past knowledge 

available from processing the sensor data, and which can be 

dynamically updated when new information becomes 

available. 

A Bayesian occupancy filter [1] is a probability based 

tracker for the unstructured environments that are best 

modeled as occupancy grids.  

The occupancy grids can be static, encoding only the 

occupancy probability, or dynamic, adding speed 

information for each cell. Three types of static occupancy 

grids are presented in [3], and these types are used for 
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environment tracking based on stereo measurements: 

Cartesian (rectangular cell), column/disparity, and polar. 

Dynamic programming is used to compute the free space 

ahead of the vehicle, and the ego-motion of the camera is 

compensated by the integration of motion sensor 

information. 

A dynamic occupancy grid is used in [2], where the speed 

of each cell is modeled as a distribution of possible values, 

and the tracker computes the probability of each value, along 

with the occupancy probability of the grid cell. The Bayesian 

reasoning process uses a set of possible antecedents, which 

are the cells that can influence the current cell based on the 

speed hypotheses, and the probabilities of the antecedents 

are combined with the sensor information. Another solution, 

presented in [9], handles the problem of moving objects by 

identifying occupancy variations (“trails”) along an object’s 

path, thus removing the need for antecedents. 

In [4] the dynamic Bayesian occupancy filter solution 

introduced in [2] is combined with the use of map 

information, which guides the hypotheses of the cell speeds 

to the allowed trajectories on the road. This solution prevents 

the system to consider unreachable positions, and enables it 

to better predict the vehicle paths when the road is curved. 

The occupancy grid model of the world is well suited for 

collaborative updating, using the information from multiple 

sensors or multiple observers. A solution that integrates the 

observations of multiple mobile observers into a unified 

description of the environment is presented in [5]. 

This paper presents an occupancy grid tracking solution 

based on particles. The particles will have a dual nature – 

they will denote hypotheses, as in the particle filtering 

algorithms such as CONDENSATION [6], but they will also 

be the building blocks of our modeled world. The tracking 

algorithm described in this paper will be particle-oriented, 

not cell oriented. The particles have position and speed, and 

they can migrate from cell to cell depending on their motion 

model and motion parameters, but they will also be created 

and destroyed using the same logic as the weighting-

resampling mechanism described in [6]. The measurement 

data is the raw obstacle grid obtained by processing the 

elevation map, as described in [7], a measurement source 

which we have previously used for model-based object 

tracking, a technique described in [8]. 

The tracking solution presented in this paper has the 

benefit of simple integration of motion and measurement 

models, provides an easy mechanism for introducing 
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additional constraints or information, and, by controlling the 

number of particles, allows the user to reach a tradeoff 

between accuracy and time performance. 

II. THE WORLD MODEL 

The world is represented by a 2D grid, mapping the bird-

eye view 3D space into discrete 10 cm x 10 cm cells. The 

size of the grid is 400 rows x 128 columns (this corresponds 

to a scene size of 40x12.8 meters).  Like in other grid 

tracking solutions, the aim is to estimate the occupancy 

probability of each grid cell, and the speed components on 

each axis. However, these values are not key concepts in the 

workings of the algorithm that will be proposed in this paper, 

but they will be derived from a particle-based tracking 

mechanism.  

Considering a coordinate system where the z axis points 

towards the direction of the ego-vehicle, and the x axis points 

to the right, the obstacles in the world model are represented 

by a set of particles 

}...1),,,,(|{ Siiiiii NivzvxzxppS === , each particle i 

having a position in the grid, described by the row zi (a 

discrete value of the distance in the 3D world) and the 

column xi (discrete value of the lateral position), and a speed, 

described by the speed components vxi and vzi. The total 

number of particles NS is not fixed, but depends on the 

number of obstacles in the scene. Having the population of 

particles in place, the occupancy probability of a cell C is the 

ratio between the number of particles whose position 

coincides with the position of the cell C and the total number 

of particles allowed for a single cell, NC. 
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The number of allowed particles per cell NC is a constant 

of the system. In setting its value, a tradeoff between 

accuracy and time performance should be considered. A 

large number means that on a single cell multiple speed 

hypotheses can be maintained, and therefore the tracker can 

have a better speed estimation, and can handle fast moving 

objects better. However, the total number of particles in the 

scene will be directly proportional with NC, and therefore the 

speed of the algorithm will decrease. 

The speed estimation of a grid cell is the average speed of 

its associated particles.  
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Thus, the population of particles is sufficiently 

representative for the probability density of occupancy and 

speed for the whole grid. Multiple speed hypotheses can be 

maintained simultaneously for a single cell, and the 

occupancy uncertainty is represented by the varying number 

of particles associated to the cell. The goal of the tracking 

algorithm can now be stated: using the measurement 

information to create, update and destroy particles such that 

they accurately represent the real world. 

III. PREDICTION 

This step will derive the present particle distribution from 

the past information, preparing the particle set for 

measurement. The prediction equations will use odometry 

and motion model information. 

The basic odometry information available through the 

CAN bus of a modern car is the speed v and the yaw rateψ& . 

Together with the time interval t∆ elapsed between 

measurements, these parameters can be used to compensate 

for the ego-motion, and separate it from the independent 

motion of the objects in the scene. Between measurements, 

the ego-vehicle rotates with an angleψ , and travels a 

distance d. 

t∆=ψψ &                  (3) 
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The origin of the grid representation is displaced along the 

two coordinate axes by dx and dz. 

 

DXdd x /cosψ=              (5) 

DZdd z /sinψ=              (6) 

 

We denote by DX and DZ the cell size of the grid. A point 

in the grid is displaced by the following equation: 
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The prediction is achieved using equation 8, which 

combines the deterministic drift caused by the ego-motion 

compensation and the particle’s own speed, with the 

stochastic diffusion caused by the uncertainties in the motion 

model. The quantities xδ , zδ , vxδ and vzδ are randomly 

drawn from a Gaussian distribution of zero mean and a 

covariance matrix Q equivalent to the state transition 

covariance matrix of a Kalman filter. 
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From the grid model point of view, the prediction has the 

effect of moving particles from one cell to another, as seen in 

figure 1. The occupancy probability is thus dynamically 

adjusted using the particle’s motion model and the vehicle 

odometry. 

 

   
Fig. 1.  Particles in the grid, before and after prediction 

IV. MEASUREMENT 

The classical steps of a particle filter based tracker are 

resampling, drift, diffusion, and measurement (weighting). 

This behavior replaces a population of a fixed number of 

particles with an equal number of particles, which 

approximates an updated probability density function over a 

space of parameters. However, this approach works when the 

particles are hypotheses of the state of a system, not when 

the particles are the system itself (we can see our tracked 

world as physically composed of particles).  

Our algorithm tries to use the particles in a dual form – as 

hypotheses, and as building blocks of the world that we 

track. Their role as building blocks has been already 

explained. However, if we restrict our reasoning to a single 

cell in the grid world, we can see that the particle is also a 

hypothesis. A particle in a grid cell is a hypothesis that this 

cell is occupied, and that the cell has the speed equal to the 

speed of the particle. More particles in the cell mean that the 

hypothesis of occupancy is strongly supported. Less particles 

in the cell means that the hypothesis of the cell being free is 

supported. We can regard the difference between the number 

of particles in a cell and the total number of particles allowed 

in a cell as the number of particles having the occupancy 

hypothesis zero. 

A. Weighting the particles 

If we regard the number of particles in the cell to be 

constant, and some of them having the occupancy value 

“true” while some having it “false”, we can apply the 

mechanism of weighting and resampling.  

If we assume that the measurement data does not contain 

speed information, the weight of the particle depends only on 

the “occupied” hypothesis. Also, this means that all the 

particles having the same occupied hypothesis will have the 

same weight. 

 

)|( occupiedtmeasuremenpwoccupied =     (9) 

)|( freetmeasuremenpw free =         (10) 

The computation of p(measurement|occupied) and 

p(measurement|free) is detailed in section V. 

The number of particles having the “occupied” hypothesis 

true is the number of “real” particles in the cell.  
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The number of particles (hypotheses) having the 

“occupied” value false is the complement of NOC. 

 

OCCFC NNN −=               (12) 

 

The total posterior probability of a cell being occupied 

and of a cell being free can be computed from the number of 

free/occupied hypotheses, and their corresponding weights: 
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The aggregate particle weights POC and PFC are used for 

particle resampling. The resampling of the particle 

population is done at the end of the measurement step, so 

that the next cycle can start again with an updated population 

of particles without concerning about their weight.  

B. Resampling 

The classical resampling makes NC random draws from 

the previous particle population of a cell, and the weight of 

each particle controls its chances of being selected. Because 

we don’t care for the “cell free” hypothesis particles, our 

resampling will instead decide for each real particle (particle 

having the occupied hypothesis true) whether it is destroyed 

or multiplied (and, if multiplied, how many copies of it are 

created). 

The following algorithm describes the process of 

resampling, which is materialized as duplication or removal 

of particles from the particle set.  

 

Algorithm Resample 

For each cell C 

 Compute NOC and POC 

 Compute resampled number of particles NRC 

 NRC=POCNC 

Compute ratio between actual number of particles and the 

number of resampled particles 

 

OC

RC
C

N

N
f =  

End For 



  

For each particle pi 

 Find corresponding cell C  

 If (fC>1) – number of particles will increase 

  Fn = Int(fC)   Integer part 

  Ff = fC -Int(fC)  Fractional part 

  For k=1 to Fn-1  

   S.Add(pi.MakeCopy) 

  End For 

  r = random value between 0 and 1 

  If (r<Ff) 

   S.Add(pi.MakeCopy) 

  End if 

End if 

 

 If (fC <1) – number of particles will decrease 

  r = random value between 0 and 1 

  If (r> fC) 

   S.Remove(pi) 

  End if 

End if 

 

End For 

 

The system will compute the number of particles that each 

cell should have after the process of resampling has been 

completed. The ratio fC between this number and the existing 

number of particles in the cell will tell us if the particles have 

to be duplicated or removed. If fC is higher that 1, the 

number of particles has to be increased. The integer part of 

the difference between fC and 1 tells us the number of certain 

duplications a particle must undergo (for instance, if fC is 2, 

each particle will be doubled). The fractional part of the 

difference is used for chance duplication: each particle will 

have a probability of being duplicated equal to the fractional 

part of this difference. 

If f is lower than 1, the number of particles has to be 

decreased, by removing some of the particles. Each particle 

has 1- fC chances of being eliminated. 

At this point the cycle is complete, and the tracking 

algorithm can process a new frame. Secondary estimations 

for occupancy, speed, or clustering the cells into objects can 

be performed at the end of this step. 

 

  
Fig. 2.  Weighting and resampling. The weight of the 

occupied hypothesis is encoded in the darkness of the cell of 

the left grid. 

V. MEASUREMENT MODEL 

The measurement model will relate the measurement data, 

which is a binary occupied/free condition derived from the 

stereovision-generated elevation map [7], to the conditional 

probabilities p(measurement | occupied) and p(measurement 

| free), probabilities that will weight the real and the virtual 

particles presented in the previous section.  

In order to compute these probabilities, we start by 

computing the uncertainty of the stereo reconstruction. First, 

the uncertainty of the distance reconstruction, in the case of a 

rectified system, is given by: 
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In the above equation, z denotes the distance, b is the 

baseline of the stereo system, f is the focal distance in pixels, 

and dσ is the error in disparity computation (usually about 

0.25 pixels, for a good stereo reconstruction engine).  

The error in lateral positioning (usually much smaller than 

the error in z), can be derived from the distance error: 
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The 3D errors are mapped into grid cell errors, by 

dividing them with the grid cell size on x and z. 
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In order to compute the conditional probability of the 

measurement cell, under the occupied or free assumption, we 

have to take into account a reality that is specific to 

stereovision sensors. The stereo sensor does not perform a 

scan of the scene, and therefore it does not output a single 

bird-eye view point for a real-world obstacle cell. We’ll take 

as example a pillar, which has almost no width, and no depth 

spread. The representation of a pillar in the occupancy grid 

should be a single cell. If the pillar were observed by a 

scanner-type sensor, this sensor will output a cell, displaced 

from the true position by an amount specific to the sensor 

error. For the stereo sensor, things are different, because the 

camera observes the whole height of the pillar, and therefore 

each pillar pixel will get a distance and a lateral position. 

This means that once we “collapse” the pillar information in 

the 2D grid representation, each part of the pillar may fall in 

a different cell, and the pillar will generate a spread of cells. 

The size of the spread area is controlled by the grid 

uncertainties on the x and z axes. 



  

This property leads us to find a reasonable approximation 

for the conditional probabilities of the measurement cells 

under the occupied/free assumption. We’ll count the obstacle 

cells in the measurement grid around the current cell 

position, in an area of zgrid _σ height and xgrid _σ width, and 

divide the number of found obstacle cells by the total 

number of cells in the uncertainty area. This ratio will be our 

approximation for p(measurement | occupied). 
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By O(row, col) we denote the “occupied” value of the 

measurement grid, at position row and col. This value is 1 

when an obstacle cell is present and 0 when not. 

The conditional probability of the measurement given the 

“free” assumption is: 
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These conditional probability values will be used to 

weight the particles. A graphic comparison between the raw 

measurement data and the conditional probability of the 

measurement under the “occupied” assumption is given in 

the following figure. 

  

 

 
Fig. 3.  From the occupancy grid to the particle weights. The 

bottom-right image encodes the weights of the occupied 

hypothesis. 

VI. INITIALIZATION 

Although the measurement step takes care of particle 

creation and deletion, this step only works if there are 

particles to be duplicated or deleted. For the prediction-

measurement cycle to work, the particle population has to be 

initialized.  

From a strictly probabilistic point of view, each cell’s state 

is unknown at startup, which means that the cell has equal 

probability of being occupied or free. In our tracking system, 

this would mean that each cell should be assigned a number 

of particles equal to half the total number of particles 

allowable in a cell. However, this approach would 

significantly reduce the speed of the system, and would 

require permanent re-initialization.  

Our solution is to use the measurement occupancy grid to 

create particles. If a measurement cell is of type obstacle, its 

p(measurement | occupied) is high, and there are no particles 

in the corresponding tracked grid cell, a small number of 

particles will be created. The initial speed components vx 

and vz of the created particles will be sampled randomly 

from an initial range of possible values, and the initial 

position is confined to the creation cell. In this way, the 

initialization is a continuous process.  

Particles are automatically removed when they go outside 

the grid area, in the prediction phase. Another case of 

“administrative” removal (removal not caused by the 

probability mechanism described in section IV) is when, due 

to particle drifting, the number of particles in a cell exceeds 

the allowed value. 

VII. TESTS AND RESULTS 

We have designed two types of tests in order to validate 

the tracking algorithm: qualitative tests and quantitative 

(numerical) tests. 

The qualitative assessment proves that the system is 

capable of building an occupancy probability grid from the 

measurement data, and is capable of identifying the motion 

associated with the cells in the grid. The qualitative 

assessment has been performed on real traffic scenes. 

Some results, from two traffic scenes, are shown in figure 

4.  In the top row, the perspective image of the scene is 

given, and in the bottom row the three panels are, 

respectively: the measurement data (obstacle cells computed 

from the elevation map), the occupancy probability, and the 

speed labels, identifying the motion of the cells. In the left 

scene, we can identify two incoming vehicles (red), one 

outgoing vehicle (blue), and a stationary parked vehicle 

(black). In the right scene, we can identify a stationary 

parked vehicle, an outgoing vehicle, the stationary traffic 

sign on the isle, and the pedestrian group with a combination 

of stationary and lateral motion. 

 



  

  

  
Fig. 4.  Qualitative assessment of the algorithm performance. 

Speed labels: black – stationary, red – incoming, blue – 

outgoing, yellow – lateral motion. 

 

For numerical evaluation, we have chosen a “follow the 

leader” scenario, with only one obstacle in the scene, so that 

a reasonable estimation of the object’s speed can be done in 

the absence of a cell clustering algorithm. The ego-vehicle is 

following the target vehicle, matching its speed. Therefore, 

the speed of the ego-vehicle is a benchmark for the estimated 

speed of the target. Figure 5 shows that after an initial lag 

(10 frames, 0.5 seconds), the estimated speed converges to 

the ego-speed. The absolute mean error after the lag period is 

1 km/h. 

 

 
Fig. 5. Left – Ego-speed (blue) versus the estimated target 

speed (green), in km/h. Right – image of the target vehicle. 

 

A second test implies a static object, observed from a 

moving vehicle traveling along a circular path. The circular 

path increases the difficulty of the estimation, due to the fact 

that the static object is in the field of view for only 3.5 

seconds. The results of the speed estimation are shown in 

Figure 6, against the speed of the observing vehicle. The 

static nature of the object can be inferred almost 

immediately. 

 

 
Fig. 6. Ego-speed (blue) versus the static object’s estimated, 

in km/h. Right – the static object. 

 

The time performance depends on the obstacle load of the 

scene, which influences the total number of particles. For a 

typical urban scene, and a total number of particles in a cell 

of 50, the total running time is about 40 ms per frame. 

VIII. CONCLUSION AND FUTURE WORK 

We have presented a grid tracking technique that models 

and tracks the driving environment using a set of particles 

with position and speed. Our solution proves capable of 

identifying occupancy and motion in unstructured traffic 

scenes, without the need of feature grouping or obstacle 

model matching or data association. Future experiments with 

the grid size, speed and position uncertainties of prediction, 

and a refinement of the measurement model to include the 

error of the occupant cell extraction besides the uncertainties 

of the stereo algorithm, will allow us to optimize this 

system’s performance and accuracy. 

REFERENCES 

[1] C. Coue, C.Pradalier, C.Laugier, T.Fraichard, P.Bessiere, “Bayesian 

Occupancy Filtering for Multitarget Tracking: An Automotive 

Application”, The International Journal of Robotics Research, 

25(1):19, 2006. 

[2] C. Chen, C. Tay, K. Mekhnacha, C. Laugier, “Dynamic environment 

modeling with gridmap: a multiple-object tracking application”, in 

proc of International Conference on Automation, Robotics and 

Computer Vision (ICARCV) 2006. 

[3] H. Badino, U. Franke, R. Mester, “Free Space Computation Using 

Stochastic Occupancy Grids and Dynamic Programming”, Workshop 

on Dynamical Vision, ICCV, 2007. 

[4] T. Gindele, S. Brechtel, J. Scrhoeder, R. Dillmann, “Bayesian 

Occupancy Grid Filter for Dynamic Environments Using Prior Map 

Knowledge”, in proc of IEEE Intelligent Vehicles Symposium 2009. 

[5] J. Y. Chen, J. Hu, “Probabilistic Map Building by Coordinated 

Mobile Sensors”, in proc of IEEE International Conference on 

Networking, Sensing and Control 2004. 

[6] M. Isard, A. Blake, “CONDENSATION -- conditional density 

propagation for visual tracking”, Int. J. Computer Vision, 29, 1, pp.  

5-28, (1998). 

[7] F. Oniga, S. Nedevschi, M-M. Meinecke, T-B. To, “Road Surface and 

Obstacle Detection Based on Elevation Maps from Dense Stereo”, 

IEEE Conference on Intelligent Transportation Systems, 2007. 

[8] R. Danescu, F. Oniga, S. Nedevschi, M.-M. Meinecke, “Tracking 

Multiple Objects Using Particle Filters and Digital Elevation Maps”, 

in proc of IEEE Intelligent Vehicles Symposium 2009. 

[9] T. Weiss, B. Schiele, K. Dietmayer, “Robust Driving Path Detection 

in Urban and Highway Scenarios Using a Laser Scanner and Online 

Occupancy Grids”, in proc of IEEE Intelligent Vehicles Symposium 

2007. 


