
 

 

 

  

Abstract— This paper presents an algorithm for tracking 

the cuboids generated from grouping the 3D points obtained 

through stereovision. The solution described in the paper 

takes into consideration the particularities of the scenario and 

of the sensor, and brings considerable improvement in all the 

phases of tracking: initialization, prediction, measurement 

and update. The corner of the cuboid becomes the central 

working concept, thus improving the handling of partially 

occluded objects, of objects partially out of the field of view, 

and of objects whose measurement is fragmented by the sensor 

inaccuracies. After association at corner level, multiple 

measurements or validated parts of a measurement form a 

virtual object, the meta measurement, which is used for track 

update. The size of a vehicle is tracked using a histogram 

voting method. The resulted algorithm shows robustness and 

accuracy in the crowded urban scenario. 

I. INTRODUCTION 

rban area is a crowded place, not only because of cars, 

pedestrians and other mobile units, but also because of 

the complex scenery, which is never too far away from the 

traffic lanes. The success rate of a tracking algorithm 

depends greatly on its capacity to ensure that the same 

object is tracked in all the frames. This means no confusion 

between objects, no losing of the object, and no merging of 

independent objects. Therefore, the most difficult part of the 

urban traffic object-tracking algorithm is the measurement-

track association. 

Depending on the sensor and on the problem to be 

solved, the demands and the complexity of a tracking 

algorithm may vary. All tracking algorithms try to evaluate 

the state of a system over a period of time, using the 

available sensorial information and some knowledge about 

the intrinsic properties of the system. Many trackers rely on 

the mathematical framework of the Kalman filter [2], which 

provides a consistent and computation effective way of 

handling the stages of prediction, association and update. 

The use of Kalman filter for tracking is described in many 

works, the most representative being [1]. 

The Kalman filter requires that the probability models of 
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all the tracking stages are known, and are of Gaussian type, 

described by mean value and covariance matrix. In order to 

overcome these restrictions, researchers have invented 

several variants of the Kalman filter, such as the Extended 

Kalman Filter (EKF) of the Unscented Kalman filter (UKF) 

[5], and even tracking methods that work with any type of 

probability density, such as the CONDENSATION 

algorithm [3], which describes the probability as the density 

of a set of particles. 

Many of the works in the field of tracking focus on the 

mathematical aspects related to the manipulation of 

probability values, and say little about the way in which the 

tracking algorithm is adapted to a given sensor in order to 

make a functional system. This is especially true for the 

vision sensors, which deliver complex, but less reliable data. 

The error model of a ranging sensor is simple, and is 

related to the sensor’s inaccuracies only, while the vision 

sensor may provide occasional false or incomplete results, 

which may not be suitable for association using probability 

laws only (or they would be if the error probabilities were 

perfectly modeled). 

The purpose of this paper is not to present a new 

mathematical model for tracking, but to show how we can 

solve the problems associated to the output of a stereovision 

sensor (or any vision sensor) in a classical Kalman filter 

tracking framework. The work relies on the results of the 

stereovision algorithm for lane and object detection, 

developed by the Technical University of Cluj-Napoca and 

Volkswagen AG [4].  

II. MEASUREMENT 

 

The tracking algorithm is the final stage of a stereovision 

based object recognition system. The 3D points obtained 

through stereo processing of a synchronized pair of images 

are placed in two categories: road points and obstacle 

points. The road points are used for lane detection, and the 

obstacle points are grouped into cuboids, based on vicinity 

criteria. The result of the grouping algorithm, which is also 

the measurement data for tracking, is a list of non-oriented 

3D cuboids. 
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Fig. 1. Grouping the 3D points into cuboids – perspective view 

 

 
Fig. 2. Grouping the 3D points into cuboids – bird-eye view 

III. OBJECT MODEL 

 

A model for the vehicle object must be general enough to 

account for all the object of interest, and yet simple enough 

to be handled in a robust fashion. The 3D cuboid is our 

proposed object model. Its components are:  

- The size components Sx, Sy and Sz, along each of the 

coordinate axes  

- The position components X and Z. 

- The velocity components Vx and Vz, which also 

provide the object’s orientation. 

The Y coordinate will not be tracked, as the only objects 

that we want to track are the ones on the road. 

Our coordinate system has the origin in the front of the 

ego vehicle, at the ground level. The X axis points to our 

left, the Y axis points down towards the road, and the Z axis 

points forward along our direction of travel. The size 

components Sx, Sy and Sz can also be called width, height 

and length of a tracked vehicle. 

 

IV. CUBOIDS AND CORNERS 

 

The point grouping algorithm delivers a set of non-

oriented cuboids, aligned with the coordinate axes. One of 

the problems we face is that we don’t know if these objects 

represent whole objects in the real world, or they are 

fragments. Fragmented vision has many causes, some 

avoidable through algorithm optimization, and some 

unavoidable. One of the unavoidable fragmentation causes 

is the field of view clipping. If an object intersects with the 

field of view, we have no possibility of knowing whether it 

is a fragment or a full object, in the absence of a 

classification algorithm.  

Figure 3 shows a set of cuboids, in bird-eye view. There 

is no indication whether these objects are whole or 

fragments. Figure 4 shows the position of these objects 

against the field of view, and the position of the 2D 

projection of these objects in the image space. We can easily 

notice that the objects touching the limits of the 3D field of 

view are also touching the limits of the image. 

 

 
Fig. 3. Bird-eye view of a set of cuboids. Are they complete or partial views of 

larger cuboids? 

 

 
Fig. 4. Cuboids versus the field of view (left) and in the image space (right). 

 

By analyzing the position of the object in the image 

space, we can decide which object has great chances of 

being fragmented. Even more, we can say which of the 

corners of the object are trustworthy.  

We divide the image into several zones, as in figure 5. 

Depending on the position of the object with respect to these 

zones, we have five possibilities: 

- Center object: the projection of the back side of the 

object falls within the central left and right limits 

- Moderate left object: the projection of the back side of 



 

 

 

the object crosses the first left limit, but does not touch the 

second (extreme) left limit 

- Extreme left: the projection of the back side of the 

object crosses the extreme left limit 

- Moderate right object: same as the moderate left, but 

with respect to the right limits 

- Extreme right object: same as the extreme left, but with 

respect to the right limits 

In figure 5 we have exhibited three such situations: 

center, extreme left and moderate right.  

Depending on what situation described above an object is 

in, we can establish its relevant corner list. The object 

viewed from above is a rectangle with four corners, but not 

all these corners are visible – the invisible corners are 

considered irrelevant, and will play no part in the stages of 

the tracking algorithm. 

 

 
Fig. 5. Image zones used for establishing the list of visible corners 

 

The relevant corners of a central object are the left and 

the right backside corners, as we cannot see the front of the 

vehicle. A moderate lateral object has both corners from the 

backside visible, and also one corner of the front side (the 

moderate left object will have the front right corner as 

relevant, and the moderate right object will have the right 

front corner as relevant). The extreme objects will have only 

one relevant corner, the front left or right corner.  

The corner based reasoning will affect all the stages of 

the tracking algorithm, which will be presented in the 

following sections. 

V. TRACK INITIALIZATION 

A measurement cuboid may initialize a track if several 

conditions are met:  

1. The cuboid is not associated to an existing track;  

2. The cuboid is on the road (we compare its Y position 

with the profile of the road);  

3. The cuboid’s back side position in the image does not 

touch the image limits – the object is either a central object 

or a moderate side object (as described in the previous 

section) 

4. The height and width of the cuboid must be consistent 

to the standard size of the vehicles we expect to find on the 

road. The classification based on size is also useful for 

initialization of the object’s length, as in most cases the 

camera cannot observe this parameter directly.  

If a cuboid obeys these conditions, it creates a track 

hypothesis, which becomes a confirmed track after three 

consecutive successful associations with the measurement 

data, in the next frames. 

VI. MEASUREMENT-TRACK ASSOCIATION 

 

The association (matching) process has two phases: a 3D 

matching of the predicted track cuboid against the 

measurements, which is performed as a simple intersection 

of rectangles in the bird-eye space, and a corner by corner 

matching in the image space, when each active corner is 

matched against the corners of the measurement cuboids 

that passed the 3D intersection test.  

We refer to the 3D matching phase as the “coarse” 

matching, and to the corner-level matching as the “fine” 

matching. 

For the coarse matching, the predicted cuboids are 

“enhanced” with the measurement error on the Z axis, error 

which can be evaluated from the parameters of the optical 

system. 

 

 
Fig. 6. The measurement error of the stereo reconstruction is added to the 

prediction length 

 

The enhanced object is then verified against the 

measurement objects, by computing the intersections in the 

bird-eye view projection space. 

 

 
Fig. 7. Intersection between the enhanced prediction and the measurement 

 

The ratio between the area of the intersection and the 

area of the enhanced prediction is a measure of the quality 

of the association. If a measurement intersects multiple 

predicted objects, it will be associated to the one it had the 

best intersection measure. A predicted object may associate 

to multiple measurement objects, but not the other way 

around. 



 

 

 

After the 3D association is completed, each track 

prediction is compared to each of the associated 

measurements corner by corner, using their 2D projection, 

for the relevant corners only. The relevant coordinate is the 

image lateral coordinate (the x coordinate), as it is more 

stable than y, which is influenced by the random pitching of 

the ego vehicle. Once we have established that the objects 

that we consider are on the road (airborne objects are 

rejected in all stages of tracking), and once we have 

established the fact that the objects to be associated are in 

the same distance range, there is no need for an image y-

coordinate test.  

The comparison distance is the difference in the image x 

coordinate between the measurement and the prediction 

corners, normalized by the width of the predicted object in 

the image space. Only corners of the same type are 

compared (that is, the forward left corner of the prediction 

is compared only to a forward left corner of the 

measurement). If a relevant corner of the prediction 

associates to at least one relevant corner of a measurement, 

this corner becomes an “active” corner. The active corners 

form a virtual object which we’ll call “meta-measurement”. 

The meta measurement is the sum of all measurement 

objects associated to a predicted object. This process is 

described by the figures 8, 9 and 10. When two or more 

measurements associate at corner-level to the same side of 

the prediction, we expand the meta-measurement in such a 

way as to create an envelope of the associated 

measurements, and this helps overcome fragmentation. 

 

 
Fig. 8. The relevant corners (left), meta-measurement (middle) and 

unassociated measurement data (right) 

 

 
Fig. 9. Association of the first measurement object. The forward left corner 

becomes an active corner, and the meta-measurement is bounded on two sides 

 

 
Fig. 10. All possible associations have been performed. The meta-

measurement is bounded in three sides. 

VII. TRACK STATE UPDATE 

 

The mathematical framework for updating the position 

and the speed of a vehicle is the Kalman filter, constructed 

upon a linear motion model and a linear measurement 

model. 

Depending on the situation of the meta measurement, we 

can have a direct observation of the position, or an inferred 

one. For instance, if the meta measurement is bounded to 

the left and to the right, we have a measurement of the X 

coordinate of the center of the object. If the meta 

measurement is bounded to one side only, we use the size 

information to compute the center’s position based on the 

position of the observed lateral side. The same reasoning 

applies for the Z coordinate of the object center. The speed 

of the object is not observed directly, as it is a hidden state 

variable. It will derive from the Kalman filter estimation. 

The size of the tracked object, formed by three 

components, Sx, Sy, Sz, is not suited for tracking with the 

Kalman filter, as it is not a continuous parameter. However, 

due to the fact that at one point the size of an object may be 

incorrectly evaluated due to measurement errors or lack of 

visibility, a mechanism of refining the size estimation had 

to be devised. This mechanism is a voting system based on 

histograms, one histogram per size component. The 

positions in the histogram correspond to each possible size 

value, in a discrete system (we have chosen a 10 cm 

increment). When a size component observation is made, 

the corresponding histogram value is incremented by a 

value which takes into account the reliability of the 

observation (if the object is too far, the increment is smaller, 

if the object is near the increment is higher). The size 

corresponding to the histogram cell with the highest value 

is taken as the current perceived size of the object. 

One size component is updated only if the meta 

measurement is bound on both sides of the corresponding 

axis. 

The results are output as cuboids, for the purpose of 

display in 2D and/or 3D fashion, and for communicating 

through the CAN bus, to the driving assistance application. 

Due to the fact that the urban environment is unpredictable, 

both tracked and non-tracked objects need to be considered. 

The difference between tracked and non-tracked objects is 

persistence and speed. Tracked objects have persistence, 



 

 

 

which means that they do not disappear if they are not 

detected in one or two frames. Non-tracked objects, detected 

in the current frame, are included in the results, but they 

will be removed if they are not detected in the next frames. 

Tracked objects also have speed information, derived from 

temporal analysis through the Kalman filter. 

VIII. RESULTS, CONCLUSION AND FUTURE WORK 

 

The system has been tested extensively on real urban 

traffic scenes, in many situations where a “classical” 

tracking algorithm, designed for highways, would have 

failed. The problems included persistent ghost objects, false 

associations due to 3D only vicinity criteria which failed on 

the city streets, and false object size due to field of view 

clipping. The new algorithm, characterized by a more 

elaborate and slower initialization, a complex, 3D based 

and 2D corner-based measurement-track initialization that 

is aware of the limitations of the field of view, and mixed 

tracked/non tracked objects output, solved the above 

problems in almost all scenarios.  

Figure 11 and 12 show some results in real world 

scenarios. The tracked vehicles are drawn with a lighter 

line, while the detected and not tracked objects are drawn 

with a dark line. 

 

 
Fig. 11. Tracking results – the side objects are correctly tracked as we pass 

them. 

 

 
Fig. 12. Tracking results – are tracked, and the scenery is seen as non-tracked 

objects 

 

Future work will address the problem of tracking the 

object orientation directly, instead of deriving it from the 

velocity components, and will combine the size 

classification with a shape classifier, for a more robust 

initialization. 
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