
Design with Microprocessors
Lecture 1

Year 3 CS
Academic year 2023/2024

1st Semester

Lecturer: Radu Dănescu

Introduction
Objectives
• Know, understand and use concepts like: microprocessor, bus, memory system,

I/O system and data transfer methods, interfaces.

• Analyze and design systems with microprocessors

Prerequisites

• Logic Design, Digital System Design, Computer Architecture, Assembly
Language Programming, Computer Programming (C/C++)

Discipline structure
• 2C + 1L + 1P / week

Lecture structure
• Part 1 – ATMEL (ATmega2560, Arduino) and applications

• Part 2 – ESP 32 based applications

Topic for lab works
• Hands on work using Arduino boards (ATmega2560 (MEGA2560),

ATmega328P(Uno)), ESP 32 boards, and multiple peripheral modules

Bibliography
Lecture slides, available on the website:

http://users.utcluj.ro/~rdanescu/teaching_pmp.html
Microcontrollers overview

G. Grindling, B. Weiss, Introduction to Microcontrollers, Vienna Institute of Technology,
2007.

https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf

Atmel AVR, Arduino
M. A. Mazidi, S. Naimi, S. Naimi, The AVR Microcontroller and Embedded Systems Using
Assembly And C, 1-st Edition, Prentice Hall, 2009.

Michael Margolis, Arduino Cookbook, 2-nd Edition, O’Reilly, 2012.

ESP 32
N. Kolban, Kolban’s Book on ESP 32, 2017

Additional documents
Data sheets Atmel, Intel etc, Arduino tutorials: http://arduino.cc/en/Tutorial/HomePage

Datasheet ESP 32
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

http://arduino.cc/en/Tutorial/HomePage
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

Bibliography
Laboratory guides – some laboratory works will be updated this semester!

https://biblioteca.utcluj.ro/carti-online-cu-coperta.html

Evaluation
Evaluation: exam mark (E) + lab/project mark (LP)
if (LP > = 5) AND (E > = 4.5)

Final_mark = 0.5 *LP + 0.5 * E
else

Final_mark = 4 OR Absent

Bonus - can be awarded for exceptional activity during lecture/lab, or for
participation in student competitions.

What is a microprocessor
A microprocessor is an integrated circuit that includes all or most of the
functions of a Central Processing Unit.

A Central Processing Unit (CPU) is a logic machine that can execute
computer programs.

The program is a sequence of instructions, stored in a memory. The
instructions are usually executed in four steps: reading the instruction (fetch),
decoding the instructions (decode), executing the instruction (execute), and
writing the results (write back).

Intel 80486DX2 , interior Intel 80486DX2 – external view

http://en.wikipedia.org/wiki/Intel_80486DX2
http://en.wikipedia.org/wiki/Intel_80486DX2

Microprocessor based systems

Essential elements: CPU, Memory, I/O

Additional elements: Interrupt controller, DMA controller, coprocessor, etc

Example: PC Motherboard

Microcontroler (MCU)

Multiple components of a microprocessor based system are included on
the same integrated circuit - Microcontroller

• RAM and ROM (Flash) memories, for program and data

• Peripherals (Timer/ Counter, Serial/parallel communication interfaces, etc)

Design with Microprocessors

General objective: using the microprocessors (microcontrollers) to develop
electronic systems for solving specific problems.

Example applications: autonomous robots, intelligent sensors, mobile sensors,
audio or video signal processing, automatic control of processes, etc.

Steps towards the goal:
• Study of the CPU’s Instruction Set Architecture (ISA), and learning how to

use the programming tools;

• Study of the microcontroller’s integrated resources, and the resources of the
microcontroller’s development board – the built in peripherals;

• Study of the external devices required for solving the specific problems;

• Study of the communication interfaces, data formats, and timing diagrams,
required for connecting the microcontroller to the external devices;

• Setting up the mechanical and electrical connections between components;

• Programming the algorithms to solve the problem.

Design with Microprocessors

Example: design of a robot capable of autonomous movement with obstacle
avoidance, line following, or human guided operation.

Microcontroller: AVR ATMega328, Arduino board,
C/C++ programming

Internal resources: I/O ports, interrupts, serial
communication interface, timers

External components: 1 DC motor, 1 servo motor,
reflectivity sensors, H bridge, sonar distance
sensor, Bluetooth module.

Communication interfaces: UART serial between
MCU and the Bluetooth module, PWM between
MCU and the motors, analog signal from the
reflectivity sensors, digital pulse between sonar
and MCU.

Algorithms: scanning the environment for obstacle
detection, line following, wheel control for straight
line movement, etc.

Design with Microprocessors

Example: design of a robot capable of autonomous movement with obstacle
avoidance, line following, or human guided operation.

Design with Microprocessors

Example: design of a robot capable of autonomous movement with obstacle
avoidance, line following, or human guided operation.

We’ll focus on

Arduino family: Mega and Uno ESP32 Family: ESP32 Devkit V1

The (Atmel) Microchip AVR 8 bit
microcontroller family

• RISC architecture
• 1 instruction / cycle execution
• 32 general purpose registers
• Harvard architecture
• Voltage range 1.8 - 5.5V
• Software controlled frequency
• High density of code
• Wide range of devices
• Variable number of pins
• Code compatibility between
devices
• Compatible families of pins and
capabilities
• A single set of development tools
for all devices

tinyAVR
1–8 kB program memory
megaAVR
4–256 kB program memory
Extended instruction set (e.g. multiplication)
XMEGA
16–384 kB program memory
Extra: DMA, cryptography support
Application specific AVR
megaAVR with dedicated interfaces: LCD,
USB, CAN etc.

Generic architecture of an AVR
microcontroller

• RISC machine (Two address load-store)
• Modified Harvard architecture – special instructions allow reading data from

the program memory
• Two stage pipeline: Fetch & Execute

AVR timing diagrams
• Execution of arithmetic-logic instructions: 1 clock cycle/ instruction

• Pipelining for reading the next instruction while executing the current one

AVR timing diagrams
• Instructions that access the SRAM memory: 2 clock cycles/ instruction

General Purpose Registers – GPR

• Immediate values can be loaded only in registers R16-R31
• The registers R26 – R31 can be used as pointers, in pairs
• Each register is also mapped in the data memory address space – uniform

addressing

Register operations
• Data copy

mov r4, r7

• Working with immediate values – possible only with r16 – r31

ldi r16, 5
ori r16, 0xF0
andi r16, 0x80
subi r20, 1

• Logic and arithmetic operations between registers

add r1, r2
or r3, r4
lsl r5
mul r5, r18 – r1:r0 = r5*r18
rol r7
ror r9
inc r19
dec r17

Data memory
• The first 32 byte addresses – the register block
• Next 64 addresses – the I/O registers accessible by special I/O instructions
• Next 100+ addresses – extended I/O space, can be accessed by load/store

instructions. This space is dependent on the microcontroller type.
• SRAM, several Kbytes (2, 4, 8 …)
• External SRAM, can be up to 64 KB

The predefined constants RAMSTART and RAMEND mark the beginning and end
of the internal SRAM

RAMEND

ATmega 2560 data memory map

RAMSTART

Data memory operations
• Direct addressing

lds r3, 0x10FE
lsl r3
sts 0x10FE, r3

• Indirect addressing, using the pointer registers X, Y, Z

ldi r27, 0x10 The High byte of X is r27
ldi r26, 0xFE The Low byte of X is r26
ld r0, X
lsl r0
st X, r0

• Auto-increment/decrement indirect addressing

ld r0, X+ access location pointed by X, then increment X
ld r0, +X increment X, then access location pointed by X
ld r0, X-
ld r0, -X

Program memory
• Flash memory for storing the applications
• Organized in 16 bit words
• Two sections: Boot and Application
• At least 10000 write/erase cycles
• The constants can be declared in the code

segment, they will be stored in the program
memory

• Accessing the program memory:
Reading – Byte access, address is specified
by the Z pointer only

LPM r5, Z
LPM r5, Z+
LPM r0 is destination, Z address

ELPM uses a larger address: RAMPZ:Z, for
accessing the memory above 64 KB.

• Writing – word only

SPM PM(Z) <= R1:R0

State register SREG
• The SREG register (8 bit) contains information about the state of the

microcontroller, and about the result of operations
• Used for changing the behavior of the program, or for conditional jumps
• It is not saved automatically at subroutine calls or at interrupt servicing !

• I – global interrupt activation flag
• T – transfer bit, can be copied to and from register bits using the BLD and

BST instructions
• H – half carry (carry between half bytes, used for BCD operations)
• S – Sign bit, N xor V
• V – overflow flag, indicates if the sign bit is changed due to overflow
• N – indicates a negative result
• Z – indicates a null result
• C - carry

Jump instructions
• Unconditional jumps

RJMP – relative jump, PC +- 2KB
JMP – absolute jump
IJMP – indirect jump, address indicated by the Z pointer

• Conditional jumps (branch)
CP, CPI – compares two registers, or a register with an immediate
BREQ – branch if the Z flag is set (compared numbers are equal)
BRNE – branch if the compared numbers are not equal
BRCS – branch if the carry flag C is set
SBRS – skips the next instruction is a bit in a register is set

SBRS r5, 2 – if bit 2 of register r5 is set, skip over the next instruction
SBRC, SBIS, SBIC

• Procedure call
RCALL, CALL, ICALL - saves the return address on the stack, then makes
the jump

• Return from procedure
RET – extracts the return address from the stack, then jumps to this address

Examples
• C

• AVR ASM

Examples
• C

• AVR ASM

Examples
• C

• AVR ASM

Examples
• C

• AVR ASM

Examples
• C

• AVR ASM

Examples
• C

• AVR ASM

The AVR AtMega 2560 microcontroller

Atmega 2560 – Technical features
• 135 instructions, most are executed in 1 clock cycle
• 32 general purpose 8 bit registers
• 256 K Bytes re-programmable flash memory
• 4K Bytes EEPROM
• Internal SRAM 8K Bytes
• Read/write cycles: 10,000 Flash/100,000 EEPROM
• Up to 64 KB RAM addressable locations (if external RAM is used)

Integrated peripherals
• Two 8-bit timer/counters
• Four 16 bit timer/counters
• 4 PWM channels (8 bit), 12 PWM channels (16 bit)
• 16 Analog/Digital conversion channels (10 bit)
• 4 programmable USART interfaces
• 1 SPI interface
• Two Wire Interface (TWI), similar to I2C
• Interrupt generation by pin state change detection

Arduino

• Microcontroller boards and open source development tools
• Hides the microcontroller specific details, providing a unified API
• Wide range of boards, shields and accessories
• Vast quantity of documentation, most of it free
• Vast quantity of examples for most problems

Web: www.arduino.cc
Distributors in Romania:

www.robofun.ro – originals, more expensive
www.ardushop.ro – clones, cheaper

Arduino Mega 2560

• Based on the ATMega2560 8 bit microcontroller
• 54 digital I/O pins
• 16 analog input pins
• 4 UART serial communication ports
• Microprocessor frequency: 16 MHz
• USB powering and programming

Sample Arduino program

• Intermittent lighting of a LED, connected to an output pin (digital output)

Sample Arduino program

