
Design with Microprocessors
Lecture 3

Year 3 CS
Academic year 2023/2024

1st Semester

Lecturer: Radu Dănescu

Stack operations
• Stack pointer (16 biti) – indicates the top of the stack
• Can be accessed using its 8-bit halves, SPL si SPH, using I/O instructions
• Must be initialized at the beginning of each program that uses stack

operations, procedure calls, or interrupts
• Must point to a location in the SRAM
• Because SP is decremented when pushing data on the stack, it is

recommended to initialize it with the highest available SRAM address –
RAMEND

• Example for initializing SP
ldi R16, high(RAMEND)
out SPH, R16
ldi R16, low(RAMEND)
out SPL, R16

The default value is
not suitable for use!

Stack operations
• Stack related instructions

push Rx
Mem(SP) = Rx
SP = SP-1

pop Rx
SP = SP+1
Rx = Mem(SP)

rcall adresa
Mem(SP:SP-1:SP-2) = PC+1address of the next instruction, 17 bit
SP = SP-3
PC = address* *in fact, the PC is modified by adding an

offset value relative to the current address

ret
SP = SP+3
PC = Mem (SP:SP-1:SP-2)

Interrupts
• The interrupts mechanism allows the microcontroller to respond to external

events, or events caused by the integrated peripherals.
• In the absence of such events, the processor can execute the main program, or

enter a sleep state to save power.
• The interrupt system is activated or de-activated using bit 7 of the status register

SREG

• Instructions
SEI – activates the interrupt system (SREG(7) = 1)
CLI – de-activates the interrupt system (SREG(7)=0)

Interrupts
• Handling an interrupt

1. The peripheral device generates an interrupt request
2. The current finished its execution
3. PC is saved on the stack

TOS = PC
SP = SP – 3

4. The specific interrupt vector is accessed
5. A jump to the Interrupt Service Routine (ISR) is executed
6. The interrupt activation flag is cleared (CLI)
7. The ISR is executed
8. Return from ISR (reti)

SP = SP + 3
PC = TOS
The interrupt flag is activated (SEI) reti is equivalent to sei + ret

If inside an ISR the interrupt system is activated using SEI, nested interrupts can
be serviced.

Interrupts
• Interrupt sources are presented in the Interrupt Vector table
• Interrupts can be accepted after the finish of the currently executed instruction
• Response time:> = 4 .. 5 cycles

PC (2/3 bytes) saved on the stack (push)
Stack Pointer ß Stack Pointer – 2/3;
Jump according to the interrupt vector table
Interrupt system is blocked: bit I, SREG(7) ß 0

• After 4..5 cycles begins the execution of the ISR (optimal case)
• If the interrupt is used for waking up from sleep mode, the response time is
increased with 4..5 cycles

• Returning from ISR (RETI): 4..5 cycles
PC ß PC saved (pop from stack)
Stack Pointer ß Stack Pointer + 2/3;

Interrupt system is enabled: bit I, SREG(7) ß 1
• Bit I can be set/reset directly through instructions SEI & CLI
• Priority: decreases with the increasing of the interrupt number
• Maximum priority : Reset

Interrupts
• Sources of interrupts and their vectors (1)

Absolute addresses
in the program
(flash) memory

Interrupts
• Sources of interrupts and their vectors(2)

Interrupts
• External interrupts – caused by activity on the external pins INT7…INT0
• INT7:INT0 are pins of ports D and E – if the ports are configured as output,

software interrupts can be generated by writing these pins.
• Configuring the mode of sensing external interrupts – registers EICRA and

EICRB – a total of 16 bits, 2 bits / interrupt

Logic ‘0’ on INTn generates an interrupt request
Any change generates an interrupt request
Falling edge on INTn generates an interrupt request
Rising edge on INTn generates an interrupt request

Interrupts
• Accessing the external interrupts control registers

EICRB can be read/written using in, out
EICRA can be read/written using lds, sts

• Individual activation and de-activation of external interrupts – use of register
EIMSK

• Each interrupt is controlled by a bit of this register (8 bits – 8 interrupts)
• A ‘1’ to the corresponding bit activates the interrupt
• EIMSK can be read/written using in, out

Interrupts
• Example – incrementing a counter by pressing a button, using the external

interrupts mechanism
• The button is connected to INT0

.org 0x0000 ; vector for the reset interrupt
rjmp main

.org 0x0002 ; vector for the external interrupt INT0
rjmp isr_INT0

main:
ldi r16, high(RAMEND) ; stack pointer initialization – required with interrupts!
out SPH, R16
ldi r16, low(RAMEND)
out SPL, R16

ldi r16, 0b00000011 ; handling INT0 – rising edge triggered
sts EICRA, r16
ldi r16, 0b00000001 ; activating INT0
out EIMSK, r16

ldi r16, 0xFF ; set port E as output – to display the counter
out DDRE, r16

ldi r17,0 ; initial value of the counter is zero
sei ; global activation of the interrupt system

Interrupts
• Example – incrementing a counter by pressing a button, using the external

interrupts mechanism - continuation

loop:
out PORTE, r17 ; the main program – writes the counter to port E

; (assume LEDs are connected here)
rjmp loop

isr_INT0: ; beginning of the INT0 service routine
inc r17 ; just increment the counter

reti ; return from interrupt

• Exercise: how can you solve the problem of counting button presses, without
using the interrupt system?

• Exercise 2: Modify the previous example in order to use two buttons connected
to INT1 and INT2. The INT1 should increment the counter by 2, while the INT2
should decrement the counter by one.

• Exercise 3: Can you solve the problem of counting button presses, without
knowing what type of edge the button causes? (Rising or falling)

Interrupts with Arduino
• Detecting events on the pins, without permanently checking their state by digitalRead
• Depending on the Arduino board, the number of external interrupts is variable:

• For handling an interrupt, an Interrupt Service Routine (ISR) must be attached. This
is done by using the function attachInterrupt(), with the syntax:

attachInterrupt(interrupt, ISR, mode)
interrupt – number of the external interrupt (0, 1, 2, …)
ISR – name of the Interrupt Service Routine (a function of your program)
mode – triggering mode:

LOW – trigger on level ‘0’
CHANGE – trigger on pin level change
RISING – trigger on rising edge of the input signal
FALLING – trigger on falling edge of the input signal

Interrupts with Arduino
• De-activating the interrupt handling process is done by calling the function

detachInterrupt(), with the syntax:

detachInterrupt(interrupt)
interrupt - interrupt number

• If a temporary de-activation of all interrupts is desired, call the function
noInterrupts(), without parameters. For re-activating the interrupts, call the function
interrupts().

• The interrupt system is implicitly active! Deactivation must be done for short periods
of time only, otherwise the Arduino functions may be impaired.

Interrupts with Arduino
• Example: measuring the width of pulses of a signal (for example, if the signal is from

an IR remote receiver, the width of a signal signals whether the pulse is a ‘0’ or a ‘1’).

// Pin 2, connected to external interrupt 0
// Number of transitions that we’ll analyze

// Variable for keeping the number of microseconds since the program started
// Position in the transition array

// Interval time array – the result

// Set the interrupt pin as input
// USB Serial communication for result display
// Attach the ISR to interrupt 0, triggered when the signal changes levels

// Check if the maximum number of transitions has been reached

// If yes, display the measured intervals

// After display, re-set the transitions counter and start again

Interrupts with Arduino
• Example: measuring the width of pulses of a signal (for example, if the signal is from

an IR remote receiver, the width of a signal signals whether the pulse is a ‘0’ or a ‘1’).
• Continued:

• The function micros() returns the number of microseconds since the program was
started.

• For measuring bigger intervals, but with lower precision, you can use millis(), which
returns the number of milliseconds since the program was started.

// The interrupt service routine

// If we have not reached the end of the array

// But is also not the first detected transition

// Measure the time passed since the last transition

// Increment the index in the transition array

// Keep the current time, to be used as reference for the next transition

Interrupts with Arduino
Attention:

• All global variables that can be modified inside an ISR function must be declared as
“volatile”. This way, the compiler will know they can change at any moment, and will not
try to optimize them by assigning them to registers, or by assuming them constant. They
will always be mapped as a location in the RAM.

• Only one ISR function can run at any given time. All other interrupts are, during this time,
disabled.

• Since delay() and millis() rely on the interrupt system, they will not work properly during
the execution of an ISR.

• For short delays inside an ISR, one can use the function delayMicroseconds(), which
does not use interrupts.

• It is not recommended to use the Serial interface inside an ISR.

The interrupt number confusion

• The number specified as parameter to attachInterrupt() is not the same number as the
external interrupt number of the AVR microcontroller:

• It is also not the digital pin number.

• Solution: use of the digitalPinToInterrupt(pin) function
• Example:
attachInterrupt(digitalPinToInterrupt(21) , isr, FALLING) will attach to Arduino

interrupt 2, which is the AVR interrupt INT0, connected to digital pin 21, the
service routine isr, which will be triggered when the pin’s logic level will fall from ‘1’
to ‘0’.

• If a digital pin has no interrupt attached to it, the function digitalPinToInterrupt will
return the value -1 .

Exercises
• Display, using the serial interface, the number of the pins that can be used with external

interrupts.
• Write a program capable of receiving serial synchronous data, as shown in the figure

below:

• Change the program of the previous exercise, to use an additional signal which marks
the beginning and the end of the byte:

Using the AVR interrupts with Arduino

// Include the header for the avr interrupt system
#include “avr/interrupt.h”;

volatile int buttonVariable; //public variable that can be modified by the ISR

void setup(void)
{
buttonVariable = 0; // Init the variable shared between the ISR and the main program
pinMode(21 ,INPUT); // Set pin 21 as input (the pin corresponding to INT0)
EIMSK |= (1 << INT0); // Activate INT0
EICRA |= (1 << ISC01); // Specify INT0 triggering behavior: falling edge
sei(); // Global interrupt system activation
Serial.begin (9600);
}

void loop()
{
Serial.println(buttonVariable);
delay(1000);
}

// ISR for INT0, “INT0_vect” is a predefined name (address) for INT0 ISR
ISR(INT0_vect)
{
buttonVariable ++;
}

Falling edge generates request

