
Design with Microprocessors
Lecture 4

Year 3 CS
Academic year 2023/2024

1st Semester

Lecturer: Radu Dănescu

Timers

AVR timers
• 8 bit timers/counters
• 16 bit timers/counters

Characteristics

• Input clock prescaler
• Read / write counter status
• Waveform generator using a comparator (register)

• Frequency tuning, PWM generator (pulse width modulation)
• Generation of interrupts at regular time intervals
• Triggered by external events (capture)

Usage

• Waveform generator
• Program synchronization with regular time intervals
• Time intervals measurement

Timers
Atmega 328P
1x 8 bit Timer0 with PWM, 1x 8 bit
Timer2 PWM and Async. Operation,
1x 16 bitTimer1 with PWM

8 bit Timers specific features
• 2 Independent Output Compare
Units
• 3 Independent Interrupt Sources
(TOVx, OCFxA, and OCFxB)

Atmega 2560
1x 8 bit Timer0 with PWM, 1x 8 bit
Timer2 PWM and Async. Operation,
4x 16 bitTimer(1,3,4,5) with PWM

16 bit timers specific features
• 3 independent Output Compare Units
• 4 independent interrupt sources
(TOVx, OCFxA, OCFxB, OCFxC, ICFx,
• 1 Input Capture Unit
• External Event Counter

Common features
• Double Buffered Output Compare Registers
• Clear Timer on Compare Match (Auto Reload)
• Glitch Free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator

Structure of 8 bit timers
Control

Counting

Comparator

Waveform generator

Output Compare Registers

Timer Counter Control Registers

Internal clocking

External clocking

Clock source selection

Structure of 16 bit timers
Control

Counting

Comparator

Waveforms generator
Output Compare Registers

Timer Counter Control Registers

Internal clocking

External clocking

Clock source selection

Input Capture

8 bit timer configuration
TCCRnX registers control the timer’s working mode

Wave Generator
Mode control

Compare Output Mode:
Controls the way in which
the result of the comparison
unit is used – depends on
the wave generator mode

Clock signal configurationForce Output Compare

Clock signal selection
• Bits CS02 .. CS00 are

controlling the clkTOS division at
the counter’s input

• Tuning of the count speed
(frequency)

Counter unit

• count Increment or decrement TCNT0 by 1.
• direction Selects between increment and decrement.
• clear Clears TCNT0 (sets all bits to zero).
• clkT0 Timer/Counter clock.
• top Signals that TCNT0 has reached maximum value (0xFF).
• bottom Signals that TCNT0 has reached minimum value (zero).

• CPU – read/write the TCNTn value (override priority)
• The Timer/Counter Overflow Flag (TOV0) is set according to the mode of

operation selected by the WGM02:0 bits. TOV0 can be used for generating a
CPU interrupt.

Comparison unit
• Comparison between the count register (TCNT0) and the output compare

register (OCR0) Þ used to generate different types of waveforms

Output compare flag – at
equal, interrupt request is
generated

Output compare bit – here
the waveform will be
generated

Only non-PWM modes

Comparison unit (cont)
• Generated waveforms are visible through the l/O ports’ pins
• The I/O port pin corresponding to OCn should be configured as output

Waveform types (functioning modes)

WGM02:0 bits in combination
with
COM1:0 bits are defining the
timer behavior

Waveform types (functioning modes)
Normal

• Simple counting (incrementing): 0 … 255
• When the counter overruns (0xFF), a timer overflow interrupt is generated
and TOV0 flag is set then the counting is restarted from 0x00
Homework: compute the TOV0 frequency for various clock prescaler values

CTC – Clear Timer on Compare Match (variable frequency generator)
• When the counter value (TCNT0) reaches the OCR0 value, the counter is
cleared to 0
• Generated waveform frequency can be set by writing OCR0 register

• ex: COM01:COM00 = 01 – OC0 toggles at equality

N = prescale factor

(1, 8, 64, 256, 1024)

• Events that are generating interrupts:
• Overflow
• Compare match
• External event (capture) – available only for 16 bits timers

Timer generated interrupts

Address Description

• Enable / disable interrupts – TIMSKx register (accessible with I/O instructions)

• Accessing interrupt state –TIFRx register

• Possible usage of timer interrupts
• Generation of software waveforms
• Constant timing for different events – ex: SSD cells, LED matrix
Rows/Columns shifting etc.
• Parameters changing for hardware waveforms

Timer generated interrupts

Compare match Timer 0

Overflow Timer 0

• Example 1 – specified (constant) frequency waveform generation

• Problem statement: generate a 50 Hz signal
• Mode: CTC (Clear on Compare Match) – allows the setting of the signal period

by setting the OCR content
• Frequency computing:

Examples

• fOCn = 50
• N = 1024 = maximum division allowed by the prescaler
• Fclk_io = 16,000,000 = 16 MHz, MCU frequency
• OCR0 = 16,000,000 / (2*1024*50) – 1 = 154

• Example 1 – specified frequency waveform generation

.org 0x0000
jmp reset

reset:
ldi r16, 0b01000010
out TCCR0A, r16 ; configure Timer0A

ldi r16, 0b00000101
out TCCR0B, r16

ldi r16, 154 ; computed OCR
out OCR0A, r16

ldi r16, 0xff
out DDRB, r16 ; activates timer output OC0A

donothing:
rjmp donothing ; waveform can be monitored using an oscilloscope on OC0A

(PB7 for MEGA, PD6 for UNO) pin !!!

Examples

• Example 2 – usage of interrupts at compare match

• Problem statement: generate a signal with a 1 sec period / 1Hz (impossible by
directly setting the timer presacler: fMIN = 30 Hz with the prescaler at 1024)

• Configuration used in example 1
• Used frequency – 50 Hz, with Toggle on CTC mode Þ 2 equalities in 1/50 sec.
Þ 1 eq. at 1/100 sec. Þ one Comp Match Interrupt at every 10 ms

• We will use the interrupt generated by the compare match (TCNT = OCR)
• We will toggle a signal at every 50 such events and to generate a low signal of

500 ms long + 50 such events and to generate a high signal for a 500 ms
period

• The resulted signal will have a 1s period

Examples

• Example 2 – usage of interrupts at compare match
.org 0x0000
jmp reset

.org 0x002A ; address for Timer0 CompA ISR
jmp timercpm

reset:
ldi r16, low(RAMEND) ; interrupts are using the stack
out SPL, r16
ldi r16, high(RAMEND)
out SPH, r16

ldi r16, 0b01000010
out TCCR0A, r16 ; same configuration as in example 1
ldi r16, 0b00000101
out TCCR0B, r16
ldi r16, 154
out OCR0A, r16

ldi r16, 0xff ; Connect LEDs as outputs (1 sec period signal)
out DDRA, r16

Examples

• Example 2 – – usage of interrupts at compare match

ldi r16, 0b00000010 ; activate Timer0 CompA interrupt
out TIMSK0, r16

ldi r18, 0 ; event counter
ldi r19, 0 ; used for output signal toggle
sei ; global interrupt system activation

loop: ; main program will “stuck” here
rjmp loop

timercpm: ; ISR called at every 10 ms (at Timer0 CompA Match)
inc r18 ; increments the event counter
cpi r18, 50
brne exit ; not reached 50 Þ exit
; if reached 50 events
com r19 ; toggle r19 when reached 50 count (500 ms period)
out PORTA, r19 ; display content of LEDs
ldi r18, 0 ; reset event counter
exit: ; else (no events < 50) Þ do nothing
reti

Examples

• ?Some systems are requiring control trough the variation of the input voltage
(average input voltage / current / power)

• Ex: motor speed, LED power
• Digital systems can produce at output only 2 values: 0 (GND) si 1 (Vcc)
• Variable power can be reached through the duty cycle D (duty cycle) variation

• Average voltage (and consequently current / power)

Pulse Width Modulation (PWM)

offon

on

TT
TD
+

=

offon

on

TT
TD
+

=
Ton Toff

Vcc

Vgnd

GNDCCAVG VDDVV)1(-+=

•If VGND = 0:
CCAVG DVV =

• Low frequency analog signal (ex. sound) can be coded by PWM
• Steps: sampling, digitization, computing D based on the digital value

Pulse Width Modulation (PWM)

Analog signal Sampling

Digitization Computing the fill factor: D=k*X(n)

Using the PWM signal
• Can be used as it is, if the application allows it: variable LED power, DC
motor speed, etc (the device inertia produces the power averaging effect)

Ex:
- speed control of a robot driven by DC motors: speed ~ D
- brightness control of a LED: brightness ~ D

• Can be filtered using a Low-Pass filter to “rebuild” the analog signal:
•The upper limit of the analog signal frequency (cutoff frequency) is set
(much smaller than the frequency of the carrying signal)
•Simple low pass filter: RC

Pulse Width Modulation (PWM)

RC
fcutoff p2

1
=

Waveform types (functioning modes)
Fast Pulse Width Modulation (PWM) mode

• PWM signals generation (“modulare in latimea pulsului”) on OC0
• Fill factor (“factorul de umplere”) is set by writing the value of OCR0 register
• Frequency is fixed, given by the Clock Select (CS) bits (prescaler setting)
• Fill factor = OCR0 / 255 (Ton / T, T= Ton+ Toff)

OCR0
‘0’ at equality,
‘1’ at overflow

‘1’ at equality,
‘0’ at overflow

Waveform types (functioning modes)
• Phase Correct Pulse Width Modulation (PWM) mode

• PWM signals generation with phase correction
• The pulse is symmetric relative to the period’s mid point (TCNT = BOTTOM)
• Fill factor is set by writing OCR0 register
• Upward/downwards counting, output changes at successive equalities (compare
matches)
• Fill factor = OCR0 / 255

OCR0

Normal

Inverted

• Exemple 3 – PWM usage

• Problem statement: generate an analog signal
• Function will be defined by discrete values stored in a LUT (can be the result

of an ADC process)
• PWM phase correct mode
• OCR0 will define the pulse width
• We will change OCR0 at the end of each counting period
• Values of a period: 10, 20, 40, 90, 150, 255, 150, 90, 40, 20, 10

Examples

• Example 3 – PWM usage
.org 0x0000
jmp reset
.org 0x002E ; Timer 0 OVF ISR
jmp timerovf

reset:
ldi r16, low(RAMEND)
out SPL, r16
ldi r16, high(RAMEND)
out SPH, r16

ldi r16, 0b10000001
out TCCR0A, r16
ldi r16, 0b00000001
out TCCR0B, r16

ldi r16, 0xff
out DDRB, r16 ; activates OC0A output

ldi r16, 0b00000001 ; activatesTimer0 Ovf interrupt
out TIMSK0, r16

Examples

• Example 3 – PWM usage
ldi r18, 0 ; LUT index
sei ; global interrupt enable

loop: rjmp loop ; main program will “stuck” here

timerovf: ; Timer 0 Ovf ISR – called at the end of a counting period
ldi r17,0 ; compute address in the LUT
ldi zh, high(2*translut)
ldi zl, low(2*translut)
add zl, r18
adc zh, r17
lpm r17, Z
out OCR0A, r17 ; LUT value set into OCR
inc r18
cpi r18, 10 ; maximum address in the LUT
brne exit ; if r18 < 10 Þ go to exit label (do nothing)
ldi r18,0 ; else (r18 = 10) Þ reset the LUT index

exit:
reti
translut: ; LUT – defines the function
.db 10, 20, 40, 90, 150, 255, 150, 90, 40, 20, 10

Examples

• Example 3 – PWM usage

• By adding an RC low pas filter, R = 1K, C = 0.22 uF Þ an analogue waveform:

Examples

• Example 4
• Problem statement: measure the period between two external events
• Configuration – Normal, (minimum counting frequency)
• External event generates an external interrupt (rising edge)

.org 0x0000
jmp reset
.org 0x0002 ; ISR for ext. interrupt (nr=0)
jmp int0ISR

reset:
ldi r16, low(RAMEND)
out SPL, r16
ldi r16, high(RAMEND)
out SPH, r16

ldi r16, 0b00000000
out TCCR0A, r16
ldi r16, 0b00000101
out TCCR0A, r16

ldi r16, 0xff
out DDRA, r16 ; activate outputs (port A – LEDs)

Examples

• Example 4 – reading the timer status

ldi r16, 0b00000011 ; configure INT0 – rising edge
sts EICRA, r16
ldi r16, 0b00000001 ; activate INT0
out EIMSK, r16

ldi r17, 0 ; last value of the counter
sei

loop: rjmp loop

int0ISR:
in r16, TCNT0 ; read the counter register value
mov r18, r16
sub r16, r17 ; subtracts from it the previous value
mov r17, r18 ; new state becomes the old state
out PORTA, r16 ; display the difference
reti

Examples

Further study (for homework, lab & project)

Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi.

The AVR Microcontroller and Embedded Systems Using Assembly And C,
1st Edition, Prentice Hall, 2009.

http://www.microdigitaled.com/AVR/AVR_books.htm

Source code for the examples from the book:

http://www.microdigitaled.com/AVR/Code/AVR_codes.htm

http://www.microdigitaled.com/AVR/AVR_books.htm
http://www.microdigitaled.com/AVR/Code/AVR_codes.htm

