
Design with Microprocessors
Lecture 6

Interfaces for serial communication

Year 3 CS
Academic year 2023/2024

1st Semester

Lecturer: Radu Dănescu

Serial communication modules on AVR MCUs
Serial Peripheral Interface (SPI)
• Synchronous serial communication
• Full duplex operation
• Master or Slave configuration
• Variable frequency (bit rate)
• Can be used for connecting two MCUs, or for connecting the MCU with

different peripherals

Universal Synchronous and Asynchronous serial Receiver and
Transmitter (USART)

• Synchronous or asynchronous serial communication
• Variable frequency (baud rate)
• Data frames of 5-9 bits, with or without parity
• Can use interrupts for transmission control
• Error detection
• Can be used for connecting the MCUs with the PC (Serial port), or with other

MCUs or peripherals

Two Wire Serial Interface (TWI)

• Complex protocol based on only two lines (clock and data)
• Atmel implementation of the I2C (Inter Integrated Circuit) protocol
• The TWI controller supports master and slave operation modes
• 7 bit addressing
• Multiple masters arbitration support
• Programmable slave address

Serial communication modules on AVR MCUs

Serial Peripheral Interface (SPI)
Signals

• SCLK – Serial clock, generated by Master
• MOSI – Master Output, Slave Input, data sent by Master
• MISO – Master Input, Slave Output, data received by Master
• SS – Slave select – Slave device activation signal, driven by Master, active LOW

Operation

• Master initializes communication by activating SS
• Master generates the clock signal SCLK
• Every clock period, a bit is transferred from Master to Slave, and one bit from

Slave to Master
• After each data frame (8, 16 bits,…) SS is de-activated, for synchronization

Serial Peripheral Interface (SPI)
Operating principle

• Both partners have an internal shift register, their ends connected to MISO and
MOSI

• Both registers operate on the same clock, SCLK
• Together the shift registers form a rotation register
• After a number of clock periods equal to the size of a shift register, Master and

Slave exchange data.

Serial Peripheral Interface (SPI)
Data synchronization with the clock signal

• Shifting and reading the data are done on opposing clock edges
• CPOL – clock polarity – whether the first edge is rising or falling
• CPHA – clock phase
• For CPHA = 0

• Latch data on the first clock edge
• Shift (set up) the data on the second clock edge

Serial Peripheral Interface (SPI)
Data synchronization with the clock signal

• For CPHA = 1
• Shift the data on the first clock edge
• Latch the data on the second clock edge

Serial Peripheral Interface (SPI)
Using the SS signal

• For a Slave device, SS is an input signal
• SS = 0 means the slave device is activated. A transition from 0 to 1 means re-setting
the transfer cycle (marks the end of a data frame)
• SS = 1 – the slave device is inactive

• For a Master device, SS can be either:
• Output – used for activating the Slave for communication
• Input – if more Masters are allowed, a ‘0’ on the SS line means the device enters Slave
mode.

• Multiple devices configuration: independent SS signals, or “daisy chain”

SPI on AVR MCUs
SPI sub-system architecture

Clock generation

Shift register

Pin connection logic

Control

SPI on AVR MCUs
SPI Configuration

• The SPCR register:
SPIE – SPI Interrupt Enable, activates interrupt generation at the end of transmission
SPE – SPI Enable. Must be set to 1 to use the SPI system.
DORD – Data Order. 1=LSB first, 0 = MSB first
MSTR – Master, if 1, Slave, if 0
CPOL, CPHA – select the clock polarity and phase

SPR1, SPR0 – along with SPI2x from SPSR configure the speed of the SPI clock

SPI on AVR MCUs
SPI configuration - continued

• The SPSR register:
SPI2X – Along with SPR1 and SPR0 from SPCR configure the speed of the SPI clock

WCOL – Write collision – set if SPDR is written before transmission is complete
SPIF – SPI Interrupt flag – set when the transmission is complete. If SPIE is set, an
interrupt request is generated.

SPI on AVR MCUs
Using the SPI Master mode

1. Configuring the direction of the I/O pins:
The SPI pins are found on Port B (on ATMega 2560)

2. Configuring the SPCR and SPSR registers with the chosen work mode and speed
3. Activating SS (PB(0) <- ‘0’, explicit!)
4. Write data to SPDR – starts the transmission
5. Wait until SPIF is set in SPSR – transmission complete
6. Read data from SPDR – data sent by Slave
7. De-activate SS (PB(0) <- ‘1’)

SPI on AVR MCUs
Using the SPI Master mode – Source code
.org 0x0000
jmp reset
reset:
ldi r16,0b00000111 ;MISO input, MOSI, SCK and SS output
out DDRB,r16
ldi r16, 0b00000001 ;Initially, SS<--1, SPI Slave inactive
out PORTB, r16
cbi SPSR, 0 ; set bit 0 of SPSR to zero – for clock speed selection
ldi r16,0b01010011 ;No interrupts, SPI Enabled, MSB first, Master, CPOL=0 – first edge is rising, CPHA

= 0 – latch on the first edge, Slowest clock speed
out SPCR,r16
loop:
cbi PORTB, 0 ; SS <- 0
ldi r16, 0b10010101 ; data to send
out SPDR, r16

wait:
sbis SPSR, 7 ; check bit 7 of SPSR for transmission complete
rjmp wait
in r16,SPDR
sbi PORTB, 0 ; SS <- 1
ldi r18, 0

wait2: ; short pause between transmissions, then go again
dec r18
brne wait2

rjmp loop

SPI on AVR MCUs
Using the SPI Master mode – Result

SCK

MOSI

1 0 0 1 0 1 0 1

SPI on AVR MCUs
Connecting peripherals using SPI
Digilent PMOD DA1 – Digital to Analog Converter

SS

MOSI

MISO

SCK

SPI on AVR MCUs
Connecting peripherals using SPI
Digilent PMOD DA1 – Digital to Analog Converter
Transmission of 16 bits (2x8 bits) – first 8 data, next 8 command

SPI on AVR MCUs
Connecting peripherals using SPI
Digilent PMOD SF – Serial Flash

00000011 = ‘READ’

USART
USART – UART with optional synchronization using a clock signal
UART – Asynchronous serial communication interface
• Asynchronous – the interval between data frames is undefined. The receiver

detects the start and end of a frame.
• The time interval between bits (bit frequency, baud rate) is fixed and must be

known by the transmitter and by the receiver.
• Transmission and reception can be performed simultaneously (full duplex). Each

side can initiate a transmission.
• The basic UART signals

Rx – input, reception
Tx – output, transmission

• USART has the additional xck (external clock) signal, input or output, which will
synch the transmission and reception.

• We will only discuss the UART operation.

Rx Rx

Tx Tx

USART
Data transmission: A frame (packet) is made of

• St: 1 start bit, of value ‘0’
• D: Data bits (5…9, size known by both participants)
• P: 1 parity bit. Parity can be:

- Absent: no P bit
- Even
- Odd

• Sp: 1 or 2 stop bits, of value ‘1’ – the number of stop bits must be known by both
participants

USART
Data reception: - The receiver must know the transmission parameters (Baud, Number

of data bits, Number of stop bits, Parity).
1. A transition from 1 to 0 on Rx is detected – Reception initiated!
2. Check the middle bit period for the start bit. If Rx is still ‘0’, continue with the

reception sequence, otherwise go back to idle more (assume noise).
3. Check the middle of interval for the next bits (data, parity, stop), and reconstruct the

data frame.
4. If a zero is found in the position of the stop bits, generate a framing error.
5. If the computed parity at the receiver does not match the parity bit P, generate a

parity error.

For robustness, the receiver samples the input signal with a frequency 8-16 times
higher than the baud rate.

…

Different baud rates at transmitter and at receiver may lead to bit sampling errors!
These errors may be detected as framing errors, parity errors, but they may also

be undetected, leading to false reception!

USART
UART and RS232:
Adapting voltage levels
RS232 logic ‘1’ -5… -15 V
RS232 logic ‘0’ +5…+15 V

Logic level conversion between AVR UART
and RS232 is needed

Pin correspondence

USART

UART Tx and Rx
USB D+ and D-

UART and USB:
Use of a FTDI (Future Technology Devices International Ltd) adapter
Arduino Mega uses the FT232RL chip

- Seen as a virtual COM port on the PC
- Bi-directional conversion between USB and UART

FTDI 232 RL

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf

USART on AVR MCUs
Four USART units on

ATMega 2560:
USART0 … 3

General architecture:

Transmission

Reception

Baud generation

Control registers

USART on AVR MCUs
System configuration:

- Status and control register UCSRnA

- RXCn – is ‘1’ when reception is completed. Can trigger an interrupt request.
- TXCn – is ‘1’ when transmission is completed. Can trigger an interrupt request.
- UDREn – Data Register Empty, signals that the data register can be written.
- FEn – signals Frame Error
- DORn – Data overrun – when a reception start is detected before the already

received data are read from the UDRn register
- UPEn – signals Parity Error
- U2Xn –When ‘1’ = Doubling the USART data rate (baud rate)
- MPCMn – Activates multiprocessor communication mode

USART on AVR MCUs
System configuration:

- Status and control register UCSRnB

- RXCIEn – If set to ‘1’, interrupt request is generated at the end of reception
- TXCIEn – If set to ‘1’, interrupt request is generated at the end of transmission
- UDRIEn - If set to ‘1’, interrupt request is generated when the data register is empty
- RXEn – activate reception
- TXEn – activate transmission
- UCSZn2 – combined with UCSZn1 and UCSZn0 from USCRnC sets the packet

size
- RXB8n – 9-th received bit, when using 9 bit data frames.
- TXB8n – 9-th bit to transmit, when using 9 bit data frames.

USART on AVR MCUs
System configuration:

- Status and control register UCSRnC

- UMSELn – Selects asynchronous ‘0’ or synchronous ‘1’ mode
- UPMn1 si UPMn0 – Selection of parity mode
- USBSn – stop bits configuration: ‘0’ – 1 bit, ‘1’ – 2 bits
- UCSZn1:UCSZn0 – combined with UCSZn2 of UCSRnB, set the packet size
- UCPOLn – clock polarity for the synchronous mode

USART on AVR MCUs
System configuration:
- Frequency control registers: UBRRnH si UBRRnL
- Together they form UBRRn, 12 bits

Reading received data / writing data to be transmitted
- Both actions are performed using the register UDRn

USART on AVR MCUs
Example: communication between AVR and the PC – simple ECHO
Requirements: UART-USB adapter, USB cable, we use UART 1

1. Configuration
Baud: 9600
Data size: 8 bits
Stop bits: 2
Parity: none

2. Wait for a character to be received
- Check RXCn of UCSRnA, wait until it becomes 1

3. Read received character, from UDRn
4. Write the character back, to UDRn
5. Wait for the character to be transmitted

- Check TXCn of UCSRnA, wait until it becomes 1
6. Jump to 2

fosc = 16000000
UBRRn = 103

USART on AVR MCUs
Example: communication between AVR and the PC – simple ECHO
Source code

ldi r16, 0b00011000 ; activate Rx and Tx
sts UCSR1B,r16
ldi r16, 0b00001110 ; frame size 8 bits, no parity, 2 stop bits
sts UCSR1C,r16
ldi r16, 103 ; Computed Baud rate, fits in 8 bits
ldi r17, 0 ; The higher order bits of UBRR are zero
sts UBRR1H, r17
sts UBRR1L, r16
mainloop:

recloop:
lds r20, UCSR1A
sbrs r20, 7 ; bit 7 of UCSR1A – reception complete

rjmp recloop

lds r16, UDR1 ; read the received data
sts UDR1,r16 ; write back the received data to UART

txloop:
lds r20, UCSR1A ; wait for the end of transmission
sbrs r20, 5

rjmp txloop
rjmp mainloop

ASCII codes

