
Design with Microprocessors
Lecture 7

Year 3 CS
Academic year 2023/2024

1st Semester

Lecturer: Radu Dănescu

I2C (Inter-Integrated Circuit)
Structure
- SDA, SCL – data and clock, bi-
directional, connected “open
collector” or “open drain”
- “Pull up” resistors hold the lines
at Vcc
- A line can be pulled down to ‘0’
by any device – it becomes ‘0’ if
at least one device writes a ‘0’,
otherwise it remains ‘1’
- Each device has an address on
7 bits
- 16 reserved addresses
- 112 available addresses –>
112 devices on a bus

I2C (Inter-Integrated Circuit)

Types of devices (nodes)
- Master – generates the clock signal and the addresses
- Slave – receives the clock signal and the address
The roles of master and slave can change for the same device

Operating modes
- master transmit — the master node sends data to the slave
- master receive — the master node receives data from the slave
- slave transmit — the slave node sends data to the master
- slave receive — the slave node receives data from the master

I2C (Inter-Integrated Circuit)

Timing diagrams

Events:
- Start - a transition of SDA from ‘1’ to ‘0’, with SCL remaining ‘1’
- Bit transfer – the value of the SDA bit changes when SCL is ‘0’, and is
kept stable when SCL is ‘1’
- Stop – a transition of SDA from ‘0’ to ‘1’ when SCL is ‘1’

I2C (Inter-Integrated Circuit)

Packet format - address ‘0’ – write
‘1’ – read

Packet format - data

Written by the slave
‘0’ – ACK
‘1’ – NACK

I2C (Inter-Integrated Circuit)

Typical transmission

Arbitration
- Each master monitors the START and STOP signals, and does not
initiate a transmission as long as other master keeps the bus occupied.
- If two masters start the transmission at the same time, arbitration is
performed based on the SDA line.

- Each master checks the SDA line, and if its level is not the
expected one (the one written by the master), this master loses
arbitration.
- The first master that writes a ‘1’ when the other master writes a ‘0’
loses the arbitration.
- The losing master waits for a STOP signal, and then tries again.

I2C (Inter-Integrated Circuit)

Adjusting the transmission speed
- ‘Clock stretching’
- A slave device can hold the clock line (SCL) to ‘0’ more time, indicating
the need for a longer time to process the data
- The master device will try to set the SCL line to ‘1’, but it will fail, due to
the open collector configuration
- The master device checks whether the SCL line is set to ‘1’, and only
then the transmission will resume.

- Not all devices support ‘clock stretching’
- The clock stretching interval is limited

I2C (Inter-Integrated Circuit)

Applications
- Reading configuration data from the EEPROM SPD of SDRAM,
DDRAM, DDR2 SDRAM
- Interfacing digital sensors
- Interfacing DAC and ADC converters
- Changing settings of video monitors (Display Data Channel)
- Changing the volume in intelligent speakers
- Reading hardware diagnosis sensors such as CPU temperature or
CPU fan speed

Advantages
- A microcontroller can control multiple devices using only two wires
- Devices can be attached or removed from the bus during runtime

Serial interfaces of Arduino
Arduino UNO (rev. 3)
• UART: pin 0 (RX) , pin 1 (TX) –

Used for programming!
• SPI: pin 10 (SS), pin 11 (MOSI),

pin 12 (MISO), pin 13 (SCK).
• TWI(I2C): A4 or SDA, A5 or SCL

Arduino MEGA (rev. 3)
• UART0: pin 0 (RX) and pin 1

(TX) – programming;
UART1: pin 19 (RX) and pin
18 (TX); UART2: pin 17 (RX)
and 16 (TX); UART3: pin 15
(RX) and 14 (TX).

• SPI: pin 50 (MISO), 51
(MOSI), 52 (SCK), 53 (SS)

• TWI(I2C): pin 20 (SDA) si 21
(SCL)

All Arduino boards have at least one serial port (UART / USART), accessible
through the C++ object Serial

• Communication µC « PC via USB, using the integrated USB-UART adapter
– communication used also for programming the board !!

• Communication between boards, using the digital pins 0 (RX) si 1 (TX) - not
recommended.

Do not use pins 0 and 1 for general I/O operations !!!

Arduino MEGA has three more serial ports: Serial1 uses pins 19 (RX) and 18
(TX), Serial2 pins 17 (RX) and 16 (TX), Serial3 pins 15 (RX) and 14 (TX).

• If these interfaces are needed for communicating with the PC, a USB-UART
external adapter must be used. Serial 1...3 do not have integrated USB
adapters.

• For communicating with a device that uses TTL logic levels, connect the TX
pin of the board with the RX pin of the device, the RX pin of the board with the
TX pin of the device, and the ground pins (GND) together.

UART of Arduino

The Serial library integrated in the Arduino IDE
(http://arduino.cc/en/Reference/Serial) – used for handling the serial interface
communication.
The methods of the Serial class (selection):
• Serial.begin(speed) – configures the transmission speed (speed), using the

default data format (8 data bits, no parity, one stop bit)
• Serial.begin(speed, config) – configures speed (speed) + selects other data

formats (config):
Example for config: SERIAL_8N1 (default), SERIAL_7E2, SERIAL_5O1 …

• Serial.print(val) – sends as a string of characters in human readable form (ex:
Serial.print(20) will send the characters ‘2’ and ‘0’)

• Serial.print(val, format) – format specifies the numerical base used (BIN,
OCT, DEC, HEX. For floating point, the format specifies the number of
decimals used.

• Serial.println – Sends the data followed by (ASCII 13, '\r') + (ASCII 10, '\n')
Examples:
Serial.print(78) sends "78“ Serial.print(78, BIN) sends "1001110"
Serial.print(1.23456) sends "1.23“ Serial.println(1.23456, 4) sends "1.2346"
Serial.print("Hello") sends "Hello"

UART of Arduino

http://arduino.cc/en/Reference/Serial

The methods of the Serial class (selection):
• byte IncomingByte = Serial.read() - reads a byte from the serial interface
• int NoOfBytesSent = Serial.write(data) – writes a byte, in original binary

format, through the serial interface. Data can be given as a byte (val) or as a
byte string (str) or as a buffer of a specific length (buf, len)

• Serial.flush() – waits until data transmission is complete.
• int NoOfBytes = Serial.available() – Returns the number of bytes available for

reading. Data is already received and stored in a buffer (maximum capacity 64
bytes)

• serialEvent() – a user defined function that is called automatically when data
is available in the buffer. Use Serial.read() inside this function to read the
available data.

• serialEvent1(), serialEvent2(), serialEvent3() – For Arduino Mega, these
functions are called automatically for the serial interfaces 1…3.

UART on Arduino

Example program 1:
void setup() {

Serial.begin(9600); // open serial port, sets speed to 9600 bps
Serial.println(“Hello”);

}

void loop() {}

Example program 2 (Arduino Mega only):
// Arduino Mega uses four serial ports
// (Serial, Serial1, Serial2, Serial3),
// They can be configured to have different speeds:

void setup(){
Serial.begin(9600);
Serial1.begin(38400);
Serial2.begin(19200);
Serial3.begin(4800);

Serial.println("Hello Computer");
Serial1.println("Hello Serial 1");
Serial2.println("Hello Serial 2");
Serial3.println("Hello Serial 3");

}

void loop() {}

UART of Arduino

Communication µC « PC: receiving data sent via Serial to Arduino –
receiving data from the PC or other device, and reacting to it:
Example program 3 – receives a digit (character from ‘0’ to ‘9’) and changes
the state of a LED depending on the read digit.

const int ledPin = 13; // pin LED
int blinkRate=0; // rate of blink for the LED
void setup()
{

Serial.begin(9600); // init the serial port
pinMode(ledPin, OUTPUT); // set the LED pin as output

}
void loop() {

if (Serial.available()) // Check if data is available to read
{

char ch = Serial.read(); // Read the received character
If(isDigit(ch)) // Is it digit ?
{

blinkRate = (ch - '0'); // Convert to a number
blinkRate = blinkRate * 100; // Rate = 100ms * read_digit

}
}
blink();

}

UART of Arduino

Example program 3 – cont.

// toggle the LED depending on the rate
void blink()
{

digitalWrite(ledPin,HIGH);
delay(blinkRate); // computed delay
digitalWrite(ledPin,LOW);
delay(blinkRate);

}

To use this example:
• Use Serial Monitor, included in the Arduino environment – from the Tools

menu or by pressing <CTRL+SHIFT+M>)
• Set the same speed in the serial monitor as the one set using Serial.begin()
• Type digits, and press “Send”.

UART of Arduino

Example program 4 – example 3 changed to use serialEvent()

void loop()
{

blink();
}

void serialEvent() // this function is called automatically when data is available to read
{

while(Serial.available()) // as long as data is available
{

char ch = Serial.read(); // read them
Serial.write(ch); // echo – send them back for the user to check
if(isDigit(ch)) // is it digit ?
{

blinkRate = (ch - '0'); // convert to number
blinkRate = blinkRate * 100; // compute delay time

}
}

}

UART of Arduino

- Besides the hardware interfaces, Arduino allows serial communication on other
digital pins, the serialization / de-serialization processes being done in software.
- The SoftwareSerial library is included in the Arduino IDE (requires including the
header softwareserial.h)
- The reception pin (RX) must be connected to a digital pin that can trigger an
external interrupt at level change:

- In Arduino Mega, these pins are: 10, 11, 12, 13, 14, 15, 50, 51, 52, 53, A8
(62), A9 (63), A10 (64), A11 (65), A12 (66), A13 (67), A14 (68), A15 (69)

- Multiple SoftwareSerial objects can be created, but only one can be active at one
time
- Constructing the object – the reception and transmission pins must be specified:

SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin)
- The library implements the functions begin, read, write, print, println, which are
used in the same way as in the case of the hardware interface.

Software UART on Arduino

Example: communication using two serial interfaces, a hardware one connected
to the PC, and a software one connected to a UART compatible device.
- Arduino plays the role of a communication relay: what is received on one
interface is transmitted on another.

#include <SoftwareSerial.h>
SoftwareSerial mySerial(10, 11); // Software serial interface uses pin 10 for RX, and pin 11 for TX

void setup()
{
Serial.begin(9600); // Hardware interface configuration
mySerial.begin(9600); // Software interface configuration
}

void loop()
{
if (mySerial.available())
Serial.write(mySerial.read()); // read from software, write to hardware

if (Serial.available())
mySerial.write(Serial.read()); // read from hardware, write to software

}

Software UART on Arduino

Example: communication using two serial interfaces, a hardware one connected
to the PC, and a software one connected to a UART compatible device.
- Possible use of the example program: viewing data transferred by a UART
device on the Serial Monitor, and sending commands to the device via Serial
Monitor
- Example device and its output: Digilent PMod GPS receiver:

- Other UART devices that can be verified/debugged this way: Bluetooth adapters,
WiFi adapters, etc.

Software UART on Arduino

$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.
95,39.9,M,17.8,M,,*65
$GPGSA,A,3,29,21,26,15,18,09,06,10,,,,,2.32,0.95,
2.11*00
$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020
,43,15,21,321,39*7D
$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03
,165.48,260406,3.05,W,A*55
$GPVTG,165.48,T,,M,0.03,N,0.06,K,A*37

Use of the SPI library (http://arduino.cc/en/Reference/SPI) [3]
Available methods:
• SPI.setBitOrder(order) – order of the bits: LSBFIRST or MSBFIRST
• SPI.setDataMode(mode) – phase and polarity of the transmission:

SPI_MODE0, SPI_MODE1, SPI_MODE2 or SPI_MODE3 (the combinations
CPHA and CPOL of SPCR)

• SPI.setClockDivider() – selects the clock division: SPI_CLOCK_DIV(2 ..
128)

• SPI.begin() – activates the SPI interface, configures the pins SCK, MOSI
and SS as output, sets SCK and MOSI on LOW, and SS on HIGH.

• SPI.end() – de-activates SPI, but leaves the pins in the mode they were set
up at initialization

• ReturnByte SPI.transfer(val) - transfers a byte (val) on the SPI bus,
receiving in the same time ReturnByte.

• The SPI library operates only in master mode
• Any pin can be used as Slave Select (SS).

SPI communication on Arduino

http://arduino.cc/en/Reference/SPI

Example (SPI) – Controlling a digital potentiometer using SPI [4]
http://arduino.cc/en/Tutorial/SPIDigitalPot
http://www.youtube.com/watch?v=1nO2SSExEnQ
AD5206 datasheet: http://datasheet.octopart.com/AD5206BRU10-Analog-Devices-
datasheet-8405.pdf

AD5206 is a 6 channel digital potentiometer (equivalent to 6
individual potentiometers).
• 3 pins on the chip for each element: Ax, Bx si Wx (Wiper -

cursor).
• pin A = HIGH, pin B = LOW and pin W = variable voltage.

R has a maximum resistance of 10 KOhm, divided into
255 steps.

• For controlling the resistance, two bytes must be sent on
SPI: the first one selects the channel (0 - 5), and the
second one the value for each channel (0 - 255) .

SPI communication on Arduino

http://arduino.cc/en/Tutorial/SPIDigitalPot
http://www.youtube.com/watch?v=1nO2SSExEnQ
http://datasheet.octopart.com/AD5206BRU10-Analog-Devices-datasheet-8405.pdf

Example (SPI) – Controlling a digital potentiometer using SPI [4]

SPI Connections
* CS – to pin 10 (SS)
* SDI – to pin 11 (MOSI)
* CLK – to pin 13 (SCK)

SPI communication on Arduino

Example (SPI) – Controlling a digital potentiometer using SPI [4]
#include <SPI.h>
// pin 10 is SS
const int slaveSelectPin = 10;

void setup() {
// SS must be configured as output

pinMode (slaveSelectPin, OUTPUT);
SPI.begin(); // activate SPI
}

void loop() {
// for each of the 6 channels
for (int channel = 0; channel < 6; channel++) {
// change the resistance of each channel from min to max
for (int level = 0; level < 255; level++) {
digitalPotWrite(channel, level);
delay(10);

}
delay(100); // wait 100 ms at maximum resistance
// change resistance from max to min
for (int level = 0; level < 255; level++) {
digitalPotWrite(channel, 255 - level);
delay(10);

}
}

}

// SPI based function for changing the
// resistances
void digitalPotWrite(int address, int value) {
// activates SS by setting it LOW
digitalWrite(slaveSelectPin, LOW);
// write the channel number and its value:
SPI.transfer(address);
SPI.transfer(value);
// inactivate SS by setting it to HIGH
digitalWrite(slaveSelectPin, HIGH);

}

SPI Communication on Arduino

Use the Wire library of the Arduino IDE
- An Arduino board can be either I2C master or I2C slave
Wire class methods:
- Wire.begin(address) – activates the I2C interface. The address parameter
indicates the 7-bit address that Arduino will use on the I2C bus as a slave. If no
address is given, the device will be set up as master.
- Wire.requestFrom(address, quantity) – master requires data of quantity bytes
from a slave identified by address. The function can be called also as
Wire.requestFrom(address, quantity, stop), stop being a boolean value
specifying whether the master will free the bus afterwards or not.
- Wire.beginTransmission(address) – begins data transmission from master to a
slave specified by address. After calling this function, data can be written using
write() .
- Wire.write(value) – writes a byte. This function can be called by a slave, if
requested by the master, or by the master after calling beginTransmission.
Syntax: Wire.write(string), or Wire.write(data, length).
- Wire.endTransmission() – called by master to perform the actual transmission
set up by beginTransmission, using the data queued by Wire.write().

I2C Communication on Arduino

- Wire.available() – returns the number of available bytes to read.
- Wire.read() – reads a byte, if available() > 0. Can be called by master or by
slave.
- Wire.onReceive(handler) – configures a handler function, for the slave device,
which will be called automatically when data from the master arrives.
- Wire.onRequest(handler) – configures a handler function, for the slave
device, which will be called automatically when master requests data.
- Wire.setClock(frequency) – changes the speed of I2C communication. Default
is 100000 Hz, and the maximum allowed is 400000 Hz. Some processors also
support 10000 (low speed mode), 1000000 (fast mode plus) and 3400000 (high
speed mode).

I2C Communication on Arduino

Example: connecting two Arduino boards by I2C, one being master, the other one
slave. Master will send data, and slave will receive.
Source: http://arduino.cc/en/Tutorial/MasterWriter

I2C Communication on Arduino

http://arduino.cc/en/Tutorial/MasterWriter

Example: connecting two Arduino boards by I2C, one being master, the other one
slave. Master will send data, and slave will receive.
Code for master:
#include <Wire.h>
void setup()
{
Wire.begin(); // activates the I2C interface as master

}

byte x = 0; // byte to be sent, it will be incremented continuously

void loop()
{
Wire.beginTransmission(4); // begins a new transmission process, to slave address 4
Wire.write("x is "); // writes a string
Wire.write(x); // writes a byte
Wire.endTransmission(); // finalization of the writing process
x++; // increment the value to be sent
delay(500);

}

I2C Communication on Arduino

Example: connecting two Arduino boards by I2C, one being master, the other one
slave. Master will send data, and slave will receive.
Code for slave:
#include <Wire.h>
void setup()
{
Wire.begin(4); // activates the i2c interface as a slave, having the address 4
Wire.onReceive(receiveEvent); // registers the function receiveEvent to be called when data arrive
Serial.begin(9600); // activates the serial interface, to display the received data on the PC

}

void loop() // this function does nothing
{
delay(100);

}

void receiveEvent(int howMany) // this is called automatically when data is available for slave
{
while(Wire.available() >1) // all available bytes but the last one
{
char c = Wire.read(); // read byte by byte
Serial.print(c); // and send to the PC

}
int x = Wire.read(); // last character is interpreted as a number
Serial.println(x); // and printed as a number

}

I2C Communication on Arduino

[1] Arduino Serial reference guide: http://arduino.cc/en/Reference/Serial
[2] Michael Margolis, Arduino Cookbook, 2-nd Edition, O’Reilly, 2012.
[3] Arduino SPI reference guide: http://arduino.cc/en/Reference/SPI
[4] Arduino SPI Tutorials: http://arduino.cc/en/Tutorial/SPIDigitalPot
[5] Arduino I2C Library: http://arduino.cc/en/reference/wire
[6] Arduino I2C tutorial: http://arduino.cc/en/Tutorial/MasterWriter

References

http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Tutorial/SPIDigitalPot
http://arduino.cc/en/reference/wire
http://arduino.cc/en/Tutorial/MasterWriter

