
Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

Abstract— Modeling and tracking the driving environment is a

complex problem, due to the heterogeneous nature of the real

world. In many situations, modeling the obstacles and the driving

surfaces can be achieved by the use of geometrical objects, and

tracking becomes the problem of estimating the parameters of

these objects. In the more complex cases, the scene can be

modeled and tracked as an occupancy grid. This paper presents a

novel occupancy grid tracking solution, based on particles, for

tracking the dynamic driving environment. The particles will

have a dual nature – they will denote hypotheses, as in the

particle filtering algorithms, but they will also be the building

blocks of our modeled world. The particles have position and

speed, and they can migrate in the grid from cell to cell depending

on their motion model and motion parameters, but they will also

be created and destroyed using a weighting-resampling

mechanism specific to particle filter algorithms. The tracking

algorithm will be centered on particles, instead of cells. An

obstacle grid derived from processing a stereovision-generated

elevation map is used as measurement information, and the

measurement model takes into account the uncertainties of the

stereo reconstruction. The resulted system is a flexible, real-time

tracking solution for dynamic unstructured driving environments.

Index terms-Occupancy grids, environment modeling, tracking,

particle filtering, stereovision.

I. INTRODUCTION

he tasks of modeling and perceiving the driving

environment are a continuous challenge, because there are

multiple types of scenarios, of different degrees of order and

complexity. Some environments are well-regulated, and the

types of static and dynamic objects are easily modeled and

tracked using geometrical models and their parameters. The

obstacles can be modeled as cuboids having position, size and

speed, and the driving surface delimiters can be modeled as

parametrical curves. The highway and most of the urban and

rural sections of road are usually suitable for geometrical

modeling and tracking.

The conditions change when the environment to be tracked

is an intersection, a busy urban center, or an off-road scenario.

Even if parts of this environment can be tracked by estimating

the parameters of a geometrical model, many essential parts of

the environment will not fulfill the constraints of the models.

Manuscript received May 31, 2010. This work was supported by CNCSIS

–UEFISCSU, project number PNII – IDEI 1522/2008, and by the POSDRU

program, financing contract POSDRU/89/1.5/S/62557.

Radu Danescu, Florin Oniga and Sergiu Nedevschi are with the Technical

University of Cluj-Napoca, Computer Science Department (e-mail:

radu.danescu@cs.utcluj.ro). Department address: Computer Science

Department, Str. Memorandumului, Nr. 28, Cluj-Napoca, Romania. Phone:

+40 264 401457. The authors contributed equally to this work.

Also, sometimes a driving assistance application needs to have

static and dynamic information about the environment before a

model can be instantiated and tracked, or it may use this

additional information in model fitting and model-based

tracking. For these reasons, solutions for intermediate level

representation and tracking are devised. These intermediate

representation and tracking solutions can be based on

occupancy grids, or directly on the 3D points (the 6D vision

technique, presented in [1]), on compact dynamic obstacle

primitives called stixels [2], or they can be replaced with

specialized techniques of detecting critical motion [3]. In what

follows, we’ll focus on the works related to occupancy grids.

Maybe one of the first uses of occupancy grids, under the

name of probabilistic local maps, is presented by Elfes in [4],

in the context of sonar based robot navigation. Another paper

by the same author [5] names the occupancy maps occupancy

grids, and describes the probability inference mechanism for

handling the uncertainty of a range sensor in computing the

probability of each cell’s occupancy state. In the same

reference we find a definition of the occupancy grid: “the

occupancy grid is a multi-dimensional random field that

maintains stochastic estimates of the cells in a spatial lattice”.

The initial occupancy grids, such as those presented in [4]

and [5], are simple 2D maps of the environment, each cell

describing the probability of it being occupied or free.

However, for many tracking applications, especially in the

driving assistance field, there is a need for estimating the

dynamic parameters of the environment, namely the speed of

each grid cell. By adding the speed factor in the environment

estimation, the complexity increases significantly, as the cells

are now strongly interconnected. The work of Coué et al,

presented in [6], uses a 4D occupancy grid, where each cell

has a position and two speed components along each axis. By

estimating the occupancy of each cell in the 4D grid, the

speeds for the classical cells in the 2D grid can be computed.

Another solution for the representation of speeds is

presented by Chen et al, in [7]. Instead of having a 4D grid,

this solution comes back to 2D, but uses for each cell a

distribution of speeds, in the form of a histogram. The

Bayesian inference mechanism relies on sensor data and

antecedent cells, the list of antecedents being decided by the

speed hypotheses.

A simpler, but limited way of handling the dynamic aspects

of the environment is presented in [8]. Instead of estimating

the speed of each cell, this solution relies on “occupancy

trails”, which are specific patterns, similar to the motion blur

of the camera, which can be used to derive the trajectory and

Modeling and Tracking the Driving Environment

with a Particle Based Occupancy Grid
Radu Danescu, Florin Oniga, and Sergiu Nedevschi, Member, IEEE

T

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

therefore the speed of the moving objects. A more

sophisticated method is presented in [9], where the

inconsistencies in the static grid are detected as soon as they

appear, and a multi-model Kalman filter tracker is initialized

to track the dynamic object.

We can attempt a first classification of the dynamic

occupancy grid solutions (not the grids themselves) into fully

dynamic, as those presented in [6], [7] and [10], and static-

dynamic hybrids, as those presented in [8] and [9].

One of the most important features of an occupancy grid

tracking solution is the way the sensor model is used for grid

update. The most time efficient way of updating a grid is to

rely on the inverse sensor model, which derives the probability

of a cell being occupied directly from sensor readout,

assuming the occupancy of each cell is independent of its

neighbors. This solution is maybe still the most popular,

mainly in static grids [9]. However, the work of Thrun [11]

proved that forward sensor probability models are preferable

even in the case of static grids, even if this significantly

increases the complexity of computation.

The occupancy grids can have multiple spatial

representations, and in [12] we are shown a comparison

between three types of grids, the Cartesian (classic), the polar

(distance and angle) and the column/disparity grids. All these

grids have advantages and drawbacks. A Cartesian grid is

closer to the real world representation, and can handle

velocities easier, while the other types of grids are more

“sensor-friendly”, making the computation of the sensor

uncertainties easier.

The occupancy grid is a flexible representation of the

environment, and this flexibility allows powerful integration of

multiple information sources. For instance, map information

can be mapped on the grid, when available, as presented in

[10]. The map can associate to each cell a terrain type (such as

road, curb or sidewalk), and the terrain type is translated into a

reachability probability for the cell. The use of terrain

information can greatly improve the prediction of the position

of dynamic objects on the road. The flexibility of the

occupancy grid makes it well suited for collaborative updating,

using the information from multiple sensors or multiple

observers. A solution which uses the occupancy grid (named

obstacle map) to integrate laser and radar information is

presented in [13], and in [14] the grids are used to fuse stereo

and optical flow information. A solution that integrates the

observations of multiple mobile observers into a unified

description of the environment is presented in [15].

This paper presents a driving environment tracking solution

based on a particle occupancy grid. This solution is defined by

a new and original approach for the representation of the

occupancy and velocity probability distribution of each grid

cell, and by the original updating algorithm derived from the

proposed representation. The occupancy probability of each

grid cell is described by the number of particles in that cell,

and the particles have a dual nature – they describe occupancy

hypotheses, as in the particle filtering algorithms such as

CONDENSATION [16], but can also be regarded as physical

building blocks of our modeled world. The tracking algorithm

described in this paper is particle-oriented, not cell oriented.

The particles have position and speed, and they can migrate

from cell to cell depending on their motion model and motion

parameters, but they are also created and destroyed using the

same logic as the weighting-resampling mechanism described

in [16]. The measurement data is the raw obstacle grid

obtained by processing the elevation map, as described in [17].

Building a sufficiently dense elevation map requires accurate

dense stereo information, which is computed using the

techniques described in [18]. Other techniques for dense stereo

processing are presented in [19].

Based on the surveyed literature, the occupancy grid

tracking solution presented in this paper can be classified as

having a Cartesian representation, using a forward sensor

probability model, and producing a fully dynamic grid. The

proposed method is most closely related to the works

presented in [7] and [10], which use a speed probability

distribution for each cell in the grid, instead of modeling the

dynamic grid as a high dimensional space, as in [6]. We

believe that our solution comes as an improvement over these

techniques, because due to the use of moving particles the

representation of the speed probability distribution and the

estimation of this distribution are no longer a concern. We do

not have to approximate the velocity as a histogram [7] or as a

mixture of Gaussians [10], we don’t have to assume that one

cell belongs to only one object with only one velocity, and

neither are we concerned with estimation of this speed, as this

results naturally from the survival or elimination of the

particles. The particles in a cell can have different speeds, and

therefore they can handle the situation of overlapping objects,

or the most likely situation when the objects are too close and

the uncertainty of one overlaps over the uncertainty of the

other. The complexity of the algorithm is linear with the

number of cells in the grid and with the maximum number of

particles in a cell, a tradeoff between accuracy and response

time being always available as a simple parameter. Also,

integrating other motion parameters, such as acceleration, does

not increase the complexity of the tracking algorithm, because

it only alters the way the position of the particles in time is

computed.

The remainder of this paper is organized as follows: first,

the particle grid model is presented, and then the steps of the

filtering algorithm are detailed: prediction, measurement and

initialization. Then, the paper describes the way the particle

grid results can be used to extract 3D cuboids that have

position, size and speed. The paper ends with the testing and

results section, followed by conclusions.

II. THE WORLD MODEL

The world is represented by a 2D grid, mapping the bird-eye

view 3D space into discrete 20 cm x 20 cm cells. The size of

the grid is 250 rows x 120 columns (this corresponds to a

scene size of 50x24 meters). The aim of the tracking algorithm

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

is to estimate the occupancy probability of each grid cell, and

the speed components on each axis. The tracking goals are

achieved by the use of a particle-based filtering mechanism.

Considering a coordinate system where the z axis points

towards the direction of the ego-vehicle, and the x axis points

to the right, the obstacles in the world model are represented

by a set of particles

}...1),,,,,(|{ Siiiiiii NiavrvcrcppS === , each particle i

having a position in the grid, described by the row ri (a

discrete value of the distance in the 3D world z) and the

column ci (discrete value of the lateral position x), and a speed,

described by the speed components vci and vri. An additional

parameter, ai, describes the age of the particle, since its

creation. The purpose of this parameter is to facilitate the

validation process, which will be described in a subsequent

section of the paper. The total number of particles in the scene

NS is not fixed. This number depends on the occupancy degree

of the scene, that is, the number of obstacle cells. Having the

population of particles in place, the occupancy probability of a

cell C is estimated as the ratio between the number of particles

whose position coincides with the position of the cell C and

the total number of particles allowed for a single cell, NC.

C

cicii
O

N

ccrrSp
CP

|},|{|
)(

==∈
= (1)

The number of allowed particles per cell NC is a constant of

the system. In setting its value, a tradeoff between accuracy

and time performance should be considered. A large number

means that on a single cell multiple speed hypotheses can be

maintained, and therefore the tracker can have a better speed

estimation, and can handle fast moving objects better.

However, the total number of particles in the scene will be

directly proportional with NC, and therefore the time

consumption will increase.

The speed estimation of a grid cell can be estimated as the

average speed of its associated particles, if we assume that

only one obstacle is present in that cell. Of course, the particle

population can handle the situation when multiple obstacles,

having different speeds, share the same cell, and in this case

the speed estimate of the cell must be computed by clustering.

|},|{|

),(

),(
,,

cicii

zzxxSp

ii

CC
ccrrSp

vrvc

vrvc cicii

==∈
=

∑
==∈

 (2)

Thus, the population of particles is sufficiently

representative for the probability density of occupancy and

speed for the whole grid. Multiple speed hypotheses can be

maintained simultaneously for a single cell, and the occupancy

uncertainty is represented by the varying number of particles

associated to the cell. The goal of the tracking algorithm can

now be stated: using the measurement information to create,

update and destroy particles such that they accurately represent

the real world.

III. ALGORITHM OVERVIEW

The first step of the algorithm is the prediction, which is

applied to each particle in the set. The positions of the

particles are altered according to their speed, and to the motion

parameters of the ego vehicle. Also, a random amount is added

to the position and speed of each particle, for the effect of

stochastic diffusion. The second step is the processing of

measurement information. This step is based on the raw

occupancy cells provided by dense stereo processing, and

provides the measurement model for each cell. The

measurement model information is used to weight the

particles, and resample them in the same step. By weighting

and resampling, the particles in a cell can be multiplied or

reduced. The final step is to estimate the occupancy and

speeds for each cell, and to group the cells into 3D oriented

objects, for result evaluation.

IV. PREDICTION

This step will derive the present particle distribution from

the past information, preparing the particle set for

measurement. The prediction equations will use odometry and

motion model information.

The basic odometry information available through the CAN

bus of a modern car is the speed v and the yaw rateψ& .

Together with the time interval t∆ elapsed between

measurements, these parameters can be used to compensate for

the ego-motion, and separate it from the independent motion

of the objects in the scene. Between measurements, the ego-

vehicle rotates with an angleψ , and travels a distance d.

t∆=ψψ & (3)

ψ

ψ

2
sin2 tv

d

∆
= (4)

The origin of the grid representation is displaced along the

two coordinate axes by dc and dr.

DXddc /
2

sin
ψ

= (5)

DZddr /
2

cos
ψ

= (6)

We denote by DX and DZ the cell size of the grid (in the

current implementation, 0.2 m). A point in the grid, at row r

and column c, is displaced by the following equation:

−

 −
=

r

c

n

n

d

d

r

c

r

c

ψψ

ψψ

cossin

sincos
 (7)

The prediction is achieved using equation 8, which

combines the deterministic drift caused by the ego-motion

compensation and the particle’s own speed, with the stochastic

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

diffusion caused by the uncertainties in the motion model. The

quantities cδ , rδ , vcδ and vrδ are randomly drawn from a

Gaussian distribution of zero mean and a covariance matrix Q

equivalent to the state transition covariance matrix of a

Kalman filter. The covariance matrix is diagonal, with the

standard deviations for the speed components corresponding to

a real-world amount of 1 m/s, and the standard deviations for

the position corresponding to a real-world value of 0.1 m.

These values will ensure that the system is able to cope with

fast-moving objects even at a 10 fps frame rate.

+

∆

∆

=

vr

vc

r

c

v

v

r

c

t

t

v

v

r

c

r

c

n

n

r

c

δ

δ

δ

δ

1000

0100

010

001

 (8)

From the grid model point of view, the prediction has the

effect of moving particles from one cell to another, as seen in

figure 1. The occupancy probability is thus dynamically

adjusted using the particle’s motion model and the vehicle

odometry.

Fig. 1. Particles in the grid, before and after prediction.

V. MEASUREMENT MODEL

The measurement model will relate the measurement data,

which is a binary occupied/free condition derived from the

stereovision-generated elevation map [10], to the conditional

probabilities p(measurement | occupied) and p(measurement |

free), which will weight the particles. In order to compute

these probability values, we have to pass through several steps.

A. The uncertainty of the stereo measurement

In order to compute these probabilities, we start by

computing the uncertainty of the stereo reconstruction. First,

the uncertainty of the distance reconstruction, in the case of a

rectified system, is given by:

bf

z d
z

σ
σ

2

= (9)

In the above equation, z denotes the distance (in the real

world coordinates), b is the baseline of the stereo system, f is

the focal distance in pixels, and dσ is the error in disparity

computation (usually about 0.25 pixels, for a good stereo

reconstruction engine).

The error in lateral positioning (usually much smaller than

the error in z), can be derived from the distance error. This

error depends on the lateral position x (in the real world

coordinates) and the distance z.

z

x z
x

σ
σ = (10)

The 3D errors are mapped into grid cell errors, by dividing

them with the grid cell size on x and z.

DX

DZ

x
column

z
row

σ
σ

σ
σ

=

=

 (11)

The values of rowσ and columnσ are computed offline, at the

initialization phase, for each cell in the grid.

B. The raw occupancy density cue

In order to compute the conditional probability of the

measurement cell, under the occupied or free assumption, we

have to take into account a reality that is specific to

stereovision sensors. The stereo sensor does not perform a

scan of the scene, and therefore it does not output a single

bird-eye view point for a real-world obstacle cell. We’ll take

as example a pillar, which has almost no width, and no depth

spread. The representation of a pillar in the occupancy grid

should be a single cell. If the pillar were observed by a

scanner-type sensor, this sensor will output a cell, displaced

from the true position by an amount specific to the sensor

error. For the stereo sensor, things are different, because the

camera observes the whole height of the pillar, and therefore

each pillar pixel will get a distance and a lateral position. This

means that once we “collapse” the pillar information in the 2D

grid representation, each part of the pillar may fall in a

different cell, and the pillar will generate a spread of cells. The

size of the spread area is controlled by the grid uncertainties

on the c and r axes (real world x and z).

This property leads us to find a good cue, which will

contribute to the conditional probabilities of the measurement

cells under the occupied/free assumption. We’ll count the

obstacle cells in the measurement grid around the current cell

position, in an area of rowσ height and columnσ width, and

divide the number of found obstacle cells by the total number

of cells in the uncertainty area. We’ll denote this ratio as

pdensity(m(r,c) | occupied).

)12)(12(

),(

)|),((
++

=

∑ ∑
+=

−=

+=

−=

columnrow

rrow

rrow

ccol

ccol

density

row

row

column

column

colrowO

occupiedcrmp
σσ

σ

σ

σ

σ

 (12)

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

By O(row, col) we denote the “occupied” value of the

measurement grid, at position row and col. This value is 1

when an obstacle cell is present and 0 when not.

The density cue for the “free” assumption is:

)|),((1)|),((occupiedcrmpfreecrmp densitydensity −=

 (13)

A graphic comparison between the raw measurement data

and the density cue (conditional probability) of the

measurement under the “occupied” assumption is given in the

following figure.

Fig. 2. From the raw occupancy grid to the raw measurement density cues.

Bottom-left: raw occupancy grid, bottom-right: density cue for the occupied

cell hypothesis.

C. Handling the occlusions

Not all cells in the grid can be observed directly, and this

fact must be taken into consideration by the tracking

algorithm. Due to the limitations of the primary source of

information, the stereovision-based raw occupancy grid, some

of the cells are never observed. The raw occupancy grid only

covers a longitudinal distance from 0 to 40 meters, a lateral

span of 13 meters. Also, the field of view of the camera

(angular span) limits the areas that are visible at close distance.

The cells that are excluded by the field of view and distance

limitations are marked as obstructed (unobservable) by default.

Another way for a cell to become unobservable is if it is

obstructed by an obstacle cell that is located between it and the

observation origin (camera position). In order to decide if a

cell is in such a situation, we switch to polar coordinates. Each

cell is mapped to a polar grid. Then, for each angle, the cells

are scanned in the order of their distance. Once a raw occupied

cell is found, an obstruction counter is incremented for every

cell that is behind the first occupied one. Then, the obstruction

values are re-mapped into the Cartesian grid.

Once each cell has an obstruction value, the final analysis is

performed. Each cell that has an obstruction value higher than

10 is considered obstructed and considered as such in the

particle weighting and resampling phase (to be described in the

next chapter). However, this is not the only way we use the

obstruction property. If a raw measurement cell is marked as

“occupied”, but from the obstruction analysis it is found to be

obstructed, the occupied cell is removed. This will make the

raw occupancy map look more like a scanner-derived map.

This reduction of measurement information must be performed

before the computation of the other particle weighing cue,

which relies on the distance from measurement.

The obstruction-related processing steps are illustrated in

figure 3. The left panel shows the raw measurement data, the

middle panel shows the obstruction value for each cell (the

lighter, the more obstructed), and the right panel shows the

measurement data that remains after the obstructed cells are

removed. This data set is used for the next cue computation.

Fig. 3. Handling the occlusions. Left – original measurement information,

middle – obstruction value for each cell, right – unobstructed measurement.

D. The distance from measurement cue

For each cell in the grid, we need to compute the distance to

the nearest occupied cell in the measurement grid. For that,

we’ll use a modified version of the distance transform

algorithm presented in [20]. The main issue is that we need to

know not only the distance to the nearest measurement point,

but the distance components on the two coordinate axes, row

and column. The reason for this requirement is that the

standard deviations for the positioning errors are different on

the row and on the column, and therefore one cannot be

substituted for another.

Our distance transform algorithm performs like the classical

two-pass L1 norm one, but instead of updating only the cell

distance to the nearest measurement, the position of the nearest

measurement is updated along. The following algorithm

updates a distance matrix D(r,c), initialized with zero for

measurement occupancy cells, and with 255 for the free cells,

and two position matrices Mr and Mc that hold the row and the

column of the nearest occupied measurement cell. The values

of Mr and Mc are initialized to the current row and column of

each cell.

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

Algorithm DistanceTransform

For r=1 to max_r

For c=1 to max_c

 Update (r, c, -1, 0)

 Update (r, c, 0, -1)

End For

End For

For r = max_r to 1

 For c = max_c to 1

 Update (r, c, 1, 0)

 Update (r, c, 0, 1)

 End For

End For

Function Update(r, c, n, k)

If D(r, c) > D(r+n, c+k) + 1

 D(r, c) = D(r+n, c+k) + 1

 Mr(r, c) = Mr(r+n, c+k)

 Mc(r, c) = Mc(r+n, c+k)

End If

After the distance transform algorithm is applied, the

distance-to-measurement-occupied on rows and on columns,

for each cell can be found by:

|),(|),(

|),(|),(

crMccrd

crMrcrd

c

occupied

r

occupied

column

row

−=

−=
 (14)

The distance to measurement-free-cell is computed as the

difference between the double of the distance standard

deviation and the distance-to-occupied, saturated to zero.

)0),,(),(2max(),(

)0),,(),(2max(),(

crdcrcrd

crdcrcrd

occupied

column

free

column

occupied

row

free

column

rowrow

−=

−=

σ

σ
(15)

These distances are converted to a probability density value

using the multivariate Gaussian equation (equation 16). We

have removed the row and column arguments for all the values

involved, for the sake of readability. The same equation is

applied for both free and occupied distances, and therefore the

condition status is a placeholder for both situations.

+

−

=

22

2

1

.
2

1
)|(

status
column

status
column

status
row

status
row dd

columnrow

distance

e

statusmp

σσ

σπσ
 (16)

At the end of this step, we have, for each cell, the values

)|),((occupiedcrmpdistance
and)|),((freecrmpdistance

.

VI. WEIGHTING AND RESAMPLING

The classical steps of a particle filter based tracker are

resampling, drift, diffusion, and measurement (weighting).

This behavior replaces a population of a fixed number of

particles with an equal number of particles, which

approximates an updated probability density function over a

space of parameters. However, this approach works when the

particles are hypotheses of the state of a system, not when the

particles are the system itself (we can see our tracked world as

physically composed of particles).

Our algorithm tries to use the particles in a dual form – as

hypotheses, and as building blocks of the world that we track.

Their role as building blocks has been already explained.

However, if we restrict our reasoning to a single cell in the

grid world, we can see that the particle is also a hypothesis. A

particle in a grid cell is a hypothesis that this cell is occupied,

and that the cell has the speed equal to the speed of the

particle. More particles in the cell mean that the hypothesis of

occupancy is strongly supported. Less particles in the cell

means that the hypothesis of the cell being free is supported.

We can regard the difference between the number of particles

in a cell and the total number of particles allowed in a cell as

the number of particles having the occupancy hypothesis zero.

A. Weighting the particles

If we regard the number of particles in the cell to be

constant, and some of them having the occupancy value “true”

while some having it “false”, we can apply the mechanism of

weighting and resampling.

If we assume that the measurement data does not contain

speed information, the weight of the particle depends only on

the “occupied” hypothesis. Also, this means that all the

particles having the same occupied hypothesis will have the

same weight.

For each cell at position r, c in the grid, the weights for the

free and for the occupied hypotheses is obtained by fusing the

cues computed from the measurement data using the methods

described in section V.

)|),((

).|),((),(

occupiedcrmp

occupiedcrmpcrw

distance

densityoccupied =
 (17)

)|),((

).|),((),(

freecrmp

freecrmpcrw

distance

densityfree =
 (18)

The equations 17 and 18 hold if the cell in the grid is not

marked as obstructed, as described in section V.C. If the cell is

obstructed, the weights of the occupied and free hypotheses

will be equal, 5.0),(),(== crwcrw freeoccupied .

The number of particles having the “occupied” hypothesis

true is the number of “real” particles in the cell.

|},|{|),(ccrrSpcrN iiiOC ==∈= (19)

The number of particles (hypotheses) having the “occupied”

value false is the complement of NOC. We remind the reader

that NC is the maximum number of particles allowed in a cell,

and this number is a constant of the algorithm.

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

),(),(crNNcrN OCCFC −= (20)

The total posterior probability of a cell being occupied and

of a cell being free can be computed from the number of

free/occupied hypotheses, and their corresponding weights. In

the following equations we have removed the row and column

parameters, but they are implied.

)(OCCfreeOCoccupied

OCoccupied

OC
NNwNw

Nw
P

−+
= (21)

)(

)(

OCCfreeOCoccupied

OCCfree

FC
NNwNw

NNw
P

−+

−
= (22)

The aggregate particle weights POC and PFC are used for

particle resampling. The resampling of the particle population

is done at the end of the measurement step, so that the next

cycle can start again with an updated population of particles

without concerning about their weight.

B. Resampling

A classical resampling algorithm would make NC random

draws from the previous particle population of a cell, while the

weight of each particle controls its chances of being selected.

Because we don’t care for the “cell free” hypothesis particles,

our resampling will instead decide for each real particle

(particle having the occupied hypothesis true) whether it is

destroyed or multiplied (and, if multiplied, how many copies

of it are created).

The following algorithm describes the process of

resampling, which is materialized as duplication or removal of

particles from the particle set. The key solution for a real-time

operation is that all the heavy computing tasks are executed at

cell level, mostly by the use of LUT’s, while the particle level

processing is kept very light.

Algorithm Resample

For each cell C

 Compute NOC and POC

 Compute resampled number of particles NRC

 NRC=POCNC

Compute ratio between actual number of particles and the

number of resampled particles

OC

RC
C

N

N
f =

End For

For each particle pi

 Find corresponding cell C

 If (fC>1) – number of particles will increase

 Fn = Int(fC) Integer part

 Ff = fC -Int(fC) Fractional part

 For k=1 to Fn-1

 S.Add(pi.MakeCopy)

 End For

 r = random value between 0 and 1

 If (r<Ff)

 S.Add(pi.MakeCopy)

 End if

End if

 If (fC <1) – number of particles will decrease

 r = random value between 0 and 1

 If (r> fC)

 S.Remove(pi)

 End if

End if

End For

The system will compute the number of particles that each

cell should have after the process of resampling has been

completed. The ratio fC between this number and the existing

number of particles in the cell will tell us if the particles have

to be duplicated or removed. If fC is higher than 1, the number

of particles has to be increased. The integer part of the

difference between fC and 1 tells us the number of certain

duplications a particle must undergo (for instance, if fC is 2,

each particle will be doubled). The fractional part of the

difference is used for chance duplication: each particle will

have a probability of being duplicated equal to the fractional

part of this difference.

If f is lower than 1, the number of particles has to be

decreased, by removing some of the particles. Each particle

has 1- fC chance of being eliminated.

At this point the cycle is complete, and the tracking

algorithm can process a new frame. Secondary estimations for

occupancy, speed, or clustering the cells into objects can be

performed at the end of this step.

Fig. 4. Weighting and resampling. The weight of the occupied hypothesis is

encoded in the darkness of the cell of the left grid.

VII. INITIALIZATION

Although the measurement step takes care of particle

creation and deletion, this step only works if there are particles

to be duplicated or deleted. For the prediction-measurement

cycle to work, the particle population has to be initialized.

From a strictly probabilistic point of view, each cell’s state

is unknown at startup, which means that the cell has equal

probability of being occupied or free. In our tracking system,

this would mean that each cell should be assigned a number of

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

particles equal to half the total number of particles allowable

in a cell. However, this approach would significantly reduce

the speed of the system, and would require permanent re-

initialization.

Our solution is to use the measurement occupancy grid to

create particles. If a measurement cell is of type obstacle, its

p(m(r,c) | occupied) is high, and there are no particles in the

corresponding tracked grid cell, a small number of particles

will be created. The initial speed components vr and vc of the

created particles will be sampled randomly from an initial

range of possible values, and the initial position is confined to

the creation cell. In this way, the initialization is a continuous

process.

Particles are automatically removed when they go outside

the grid area, in the prediction phase. Another case of

“administrative” removal (removal not caused by the

probability mechanism described in section VI) is when, due

to particle drifting, the number of particles in a cell exceeds

the allowed value.

VIII. CELL STATE ESTIMATION AND OBJECT EXTRACTION

The result of the tracking algorithm is the particle

population itself. However, for testing and validation purposes,

and for using the tracking results in further stages of

processing, we will estimate the occupancy state and the speed

of each cell in the grid.

The occupancy probability of each grid cell is approximated

by the ratio between the number of particles in that cell and the

total number of allowed particles in a cell (equation 1).

The components of the speed vector for each cell are

estimated using equation 2. However, due to the fact that the

speed of a newly created particle is completely random, these

particles are excluded from the speed estimation of a grid cell.

For this purpose, we can use the age property of the particle.

The age of the particle is set to 1 when the particle is created,

and increased each time the particle’s state (position and

speed) is altered by prediction. Basically, the age of the

particle tell us how many tracking cycles the particle has

“survived” in the system.

All the particles in a cell that have an age higher than two

become part of the speed estimation. They are counted, and the

speed components on row and column are averaged. Also, the

standard deviation of these speed components is computed. If

both the estimated speed components are lower in absolute

value than the double of their standard deviations, the cell is

declared static, because it means that either the speed is too

low, or it is too dispersed to draw a definite conclusion.

For further testing and evaluation, a subset of the grid cells

is grouped into 3D cuboids. A cell is considered for object

grouping if its occupancy probability is at least 0.5, meaning

that the particle count in the cell is at least NC/2. The

individual objects are identified by a generic algorithm of

connected component labeling. The algorithm starts from a

valid cell, and recursively propagates a unique label to the

cell’s occupied neighbors, until no more connections are found

and a new label (which implies a new object) is generated. The

difference between our labeling and a classical labeling

algorithm is the way the neighborhood relationship is defined.

Two cells are neighbors if the following conditions are

fulfilled:

- The distance between them in the grid is less than 3,

meaning that a one cell gap is allowed.

- The difference in the orientation of the speed vectors in

the two cells is less than 30 degrees.

- The difference in speed vector magnitudes is less than

30% of the value of the largest magnitude of the two

cells.

The labeling process is shown in figure 5, middle panel,

where each color marks a different object. We can see that by

applying vicinity criteria only, the moving vehicle will be

connected to the stationary structure. However, this does not

happen due to the fact that we can use dynamic information

provided by the grid to successfully discriminate the two

objects.

Fig. 5. Cell labeling and extraction of objects.

The labeled connected components in the grid are used to

generate the 3D objects in the form of oriented cuboids (figure

5, third panel). The objects are grouped into two categories,

based on their average speed, computed from the speeds of

each component cell: static (shown in green) and dynamic

(shown in red). Only the dynamic objects receive orientation,

which is the orientation of their average speed.

IX. TESTS AND RESULTS

A. Qualitative assessment

The qualitative tests, which allow us to monitor the general

behavior of the system in complex situations, are performed on

video sequences recorded in real urban traffic. These tests

show how the occupancy grid is computed, how the speed

vector for each cell is estimated, and how the grid results are

grouped into cuboidal objects having position, size, orientation

and oriented speed vector. The speed of the cells is displayed

in color, using Hue for orientation and Saturation for

magnitude. Due to the need for compact representation of the

grid results, we have also encoded the occupancy probability

as the color’s Intensity, making full use of the whole HSI color

space.

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

Fig. 6. Color coding for speed vectors (full and half occupancy).

Video files, describing results in different traffic situations,

can be downloaded from this page:

http://users.utcluj.ro/~rdanescu/gridtrackingtests.htm . The

main qualitative test is the sequence

http://users.utcluj.ro/~rdanescu/long_sequence.avi , which

shows the results over a significant distance through Cluj-

Napoca. Some highlights of this sequence are presented in

figure 7:

a) Crossing pedestrian, mixed with lateral traffic and static

distant objects.

b) Incoming vehicle, static lateral scenery.

c) Two incoming vehicles, the most distant one only visible

for a couple of frames.

d) Moving vehicle against static wall, ego vehicle

performing a sharp turn left.

e) Distant object, accurately tracked.

f) Moving object against static background. The protrusion

from the static background near the moving object is actually

an occluded stationary car. The ego vehicle is performing a

sharp right turn, which causes the instability in the estimation

of the static nature of the background in the top right corner.

Also, that area was previously occluded by the moving vehicle,

which means that the static nature of the cells has not yet been

detected, due to the short observation time.

g) Distant crossing vehicle going through stationary

vehicles. The ego vehicle is turning right.

h) Tracking a moving target through a narrow corridor of

stationary vehicles.

The behavior of the system in the case of occlusions is

highlighted by the sequence

http://users.utcluj.ro/~rdanescu/cluj-occlusion.avi . Key points

from the sequence are presented in figure 8. While the ego

vehicle is performing a sharp left turn, a vehicle comes from

our right, and is occluded by a vehicle coming from our left.

The occluded vehicle is also maneuvering, changing its

heading to its left. While occluded, its particle distribution

becomes diffuse, accounting for possible exit trajectories, and

the correct heading is quickly identified as the object becomes

observable again.

An extensive sequence, recorded while observing an

intersection with the ego vehicle standing still, produced the

results that are available in the file

http://users.utcluj.ro/~rdanescu/wob-occlusion.avi . A

highlight of this sequence is shown in figure 9. A vehicle

comes from our right, then turns left and proceeds to exit the

scene.

Fig. 7. Extended sequence in urban traffic – highlights.

Fig. 8. Dynamic occlusion.

During this maneuver it occludes the static object near its

left side, but does not become joined with this structure due to

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

the speed-sensitive nature of the cell clustering algorithm. We

can see how the occupancy becomes diffused as the object is

occluded by a large truck, which then again occludes the static

objects on the right.

B. Numerical evaluation in controlled environment

The numerical evaluation was performed on sequences

acquired in controlled scenarios, with known target speed and

orientation. We have performed four tests, with the same

orientation, -45 degrees, but different speeds, 30 km/h, 40

km/h, 50 km/h, 60 km/h. The results that were evaluated are

the estimated speed and orientation of the 3D cuboid resulted

from clustering the occupied grid cells. These results are

compared to the ground truth, and they are also compared to

the results of another means of intermediate extraction of 3D

dynamic information, the optical flow combined with

stereovision. The results of optical flow that are taken into

consideration are the speed and orientation of the 3D cuboid

obtained from grouping the points having 3D and speed

information [21]. The controlled test sequence is highly

favorable to the optical flow approach, as the vehicle is clearly

visible, has plenty of features that can be matched from one

frame to another, a situation which provides plenty of good

speed vectors to be averaged into an accurate vector of the

cuboid.

Fig. 9. Turning near a stationary object and occlusion.

The results of speed and orientation estimation are

displayed in the graphs shown in figures 11 to 14. The grid

tracking results are shown with the red dotted line. We can see

that both methods quickly converge towards the ground truth,

but the grid tracking results are more stable (lower error

standard deviation) and more accurate (lower mean absolute

error). This fact is confirmed by the tables I and II.

Fig. 10. Controlled test sequence.

Fig. 11. Speed and orientation estimation, 30 km/h test.

Fig. 12. Speed and orientation estimation, 40 km/h test.

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

Fig. 13. Speed and orientation estimation, 50 km/h test.

Fig. 14. Speed and orientation estimation, 60 km/h test.

TABLE 1

NUMERICAL RESULTS – SPEED ESTIMATION ACCURACY

Speed of

target

Particle

grid MAE

Particle

grid

STDEV

Optical

flow MAE

Optical

flow

STDEV

30 km/h 0.9016 0.9731 2.0141 2.3087

40 km/h 1.0184 0.9730 2.1181 1.9017

50 km/h 2.4989 2.3370 3.7329 4.4966

60 km/h 2.1279 1.3858 3.0677 2.2725

TABLE 2

NUMERICAL RESULTS – ORIENTATION ESTIMATION ACCURACY

Speed of

target

Particle

grid MAE

Particle

grid

STDEV

Optical

flow MAE

Optical

flow

STDEV

30 km/h 0.9728 0.8376 1.8219 2.0122

40 km/h 1.0321 0.8616 1.1962 1.0146

50 km/h 0.4695 0.2659 1.2775 1.1095

60 km/h 0.9343 0.6739 1.4554 1.1634

The time performance depends on the obstacle load of the

scene, which influences the total number of particles. For a

typical urban scene, and a total number of particles in a cell

NC=50, the total running time is about 40 ms per frame, on an

Intel Core 2 Duo processor at 2.1 GHz. Due to the fact that the

particle tracking system shares the processor with other

sensorial processing algorithms such as lane detection, object

classification and so on, the total frame rate is about 10 fps.

Note: video files showing results in multiple traffic

situations can be downloaded from the address:

http://users.utcluj.ro/~rdanescu/gridtrackingtests.htm.

X. CONCLUSION AND FUTURE WORK

We have presented a solution for driving environment

modeling and tracking, which employs particles in order to

estimate the occupancy and speed of the cells of an occupancy

grid. This flexible and real-time solution is capable of

correctly track dynamic environments even at high relative

speeds, without the need of a very high frame rate from the

measurement system. The test sequences prove that the method

is sensitive enough to detect and estimate the speed of a

pedestrian, but also the speed of a fast moving vehicle. The

accuracy of the speed and orientation estimation is proven by

the tests conducted in controlled situations.

The particle grid tracking solution is an elegant extension of

the dynamic occupancy grid solutions that were surveyed. The

particle population approach relieves the designer of the

choice of a speed probability distribution for each cell, and can

handle multiple divergent speed hypotheses. Also, the speed

distribution does not have to be estimated, and the

measurement data only controls the creation or deletion of

particles. We believe that the proposed technique is a new

view of the occupancy grid problem, a view oriented towards

practical implementation, and a view that can open the door to

interesting extensions.

The presented technique is not a substitute for model-based

tracking, but a method for intermediate representation and

processing of sensorial data. The occupancy probability and

dynamic parameters of each cell can subsequent algorithms of

feature grouping, model-based object tracking, or even sensor

fusion. The advantages of having a good dynamic intermediate

representation are proven by the results of the experimental

step of model-based object reconstruction. The quality of the

particle grid tracking results as intermediate representation

towards object detection and tracking are also proven by the

comparison with the most used source of intermediate

representation in computer vision, the Lucas-Kanade optical

flow mixed with stereo 3D information, and the comparison

was made in the most favorable case for the optical flow

technique.

The solution leaves plenty of room for future work. For

example, many of the calculations performed by the algorithm

can be subjected to parallelization, for significant speed

improvement. The particle-related computations, such as the

prediction of the new position, can be subjected to massive

parallelization, while the grid-related computations can be

parallelized at region level. Further work will be dedicated to

Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE

the issue of optimization through parallelization.

We believe that the most important development for the

future would be to use the capability of the particle to carry

additional information. For example, the age information may

be used for more than validation. One use of age is to adjust

the variances of the random alterations of speed and position

that are applied in the prediction phase – once a particle is

older, its randomness can be decreased. The particles can be

tagged with a unique ID, allowing us to reconstruct the

trajectory of an object. Other parameters, such as height, or the

class of the object from which the particle is a part, can be

added to the particle, and used by the tracking mechanism or

by the applications developed on top of it.

REFERENCES

[1] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of

stereo and motion for robust environment perception,” in proc of 27th

Annual Meeting of the German Association for Pattern Recognition

DAGM ’05, Vienna, October, 2005, pp. 216-223.

[2] D. Pfeiffer, U. Franke, "Efficient Representation of Traffic Scenes by

Means of Dynamic Stixels", in proc of IEEE Intelligent Vehicles

Symposium (IEEE-IV), 2010, pp. 217-224.

[3] S. Cherng, C. Y. Fang, C. P. Chen, S. W. Chen, “Critical Motion

Detection of Nearby Moving Vehicles in a Vision-Based Driver-

Assistance System”, IEEE Transactions on Intelligent Transportation

Systems, Vol. 10, No. 1, March 2009, pp. 70-82.

[4] A. Elfes, “A Sonar-Based Mapping and Navigation System”, in proc of

IEEE International Conference on Robotics and Automation, April

1986, pp. 1151-1156.

[5] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and

Navigation”, Computer, vol. 22, No. 6, June 1989, pp. 46-57.

[6] C. Coue, C.Pradalier, C.Laugier, T.Fraichard, P.Bessiere, “Bayesian

Occupancy Filtering for Multitarget Tracking: An Automotive

Application”, The International Journal of Robotics Research, Vol 25,

No 1, 2006, pp. 19-30.

[7] C. Chen, C. Tay, K. Mekhnacha, C. Laugier, “Dynamic environment

modeling with gridmap: a multiple-object tracking application”, in proc

of International Conference on Automation, Robotics and Computer

Vision (ICARCV) 2006, pp. 1-6.

[8] T. Weiss, B. Schiele, K. Dietmayer, “Robust Driving Path Detection in

Urban and Highway Scenarios Using a Laser Scanner and Online

Occupancy Grids”, in proc of IEEE Intelligent Vehicles Symposium

2007, pp. 184-189.

[9] S. Pietzch, T. D. Vu, J. Burtlet, O. Aycard, T. Hackbarth, N. Appenrodt,

J. Dickmann, B. Radig, "Results of a Precrash Application based on

Laser Scanner and Short Range Radars", IEEE Transactions on

Intelligent Transportation Systems, Vol. 10, No. 4, 2009, pp. 584-593.

[10] T. Gindele, S. Brechtel, J. Schroeder, R. Dillmann, “Bayesian

Occupancy Grid Filter for Dynamic Environments Using Prior Map

Knowledge”, in proc of IEEE Intelligent Vehicles Symposium 2009, pp.

669 - 676

[11] S. Thrun, "Learning Occupancy Grids With Forward Sensor Models",

Autonomous Robots, Vol. 15, No 2, 2003, pp. 111-127.

[12] H. Badino, U. Franke, R. Mester, “Free Space Computation Using

Stochastic Occupancy Grids and Dynamic Programming”, Workshop on

Dynamical Vision, ICCV, 2007, pp. 1-12.

[13] M. S. Darms, P. E. Rybski, C. Baker, C. Urmson, “Obstacle Detection

and Tracking for the Urban Challenge”, IEEE Transactions on

Intelligent Transportation Systems, Vol. 10, No. 3, September 2009, pp.

475-485.

[14] C. Braillon, K. Usher, C. Pradalier, J. Crowley, C. Laugier, “Fusion of

stereo and optical flow data using occupancy grids”, in proc of IEEE

International Conference on Intelligent Transportation Systems, 2006,

pp. 1240-1245.

[15] J. Y. Chen, J. Hu, “Probabilistic Map Building by Coordinated Mobile

Sensors”, in proc of IEEE International Conference on Networking,

Sensing and Control, 2006, pp. 807-812.

[16] M. Isard, A. Blake, “CONDENSATION -- conditional density

propagation for visual tracking”, International Journal of Computer

Vision, Vol. 29, No. 1, 1998, pp. 5-28.

[17] F. Oniga, S. Nedevschi, “Processing Dense Stereo Data Using Elevation

Maps: Road Surface, Traffic Isle, and Obstacle Detection”, IEEE

Transactions on Vehicular Technology, Vol. 59, No. 3, March 2010,

pp. 1172-1182.

[18] I. Haller, C. Pantilie, F. Oniga, S. Nedevschi, “Real-time semi-global

dense stereo solution with improved sub-pixel accuracy”, in proc of

IEEE Intelligent Vehicles Symposium 2010 (IV 2010), pp. 369-376.

[19] W. van der Mark, D. M. Gavrila, “Real-Time Dense Stereo for

Intelligent Vehicles”, IEEE Transactions on Intelligent Transportation

Systems, Vol. 7, No. 1, March 2006, pp. 38-50.

[20] A. Rosenfeld, J. L. Pfaltz, “Sequential Operations in Digital Picture

Processing”, Journal of the Association for Computing Machinery, Vol.

13, No. 4, October 1966, pp. 471-494.

[21] C. Pantilie, S. Nedevschi, “Real-time Obstacle Detection in Complex

Scenarios Using Dense Stereo Vision and Optical Flow”, IEEE

Conference on Intelligent Transportation Systems (IEEE-ITSC), 2010,

pp. 439-444.

Radu Danescu received the Diploma Engineer

degree in Computer Science in 2002 from the

Technical University of Cluj-Napoca, Romania,

followed by the M.S. degree in 2003 and the PhD

(Computer Science) degree in 2009, from the same

university. He is a Senior Lecturer with the

Computer Science Department, TUCN, teaching

Image Processing, Pattern Recognition, and design

with microprocessors. His main research interests

are stereovision and probability based tracking, with

applications in driving assistance. He is a member of the Image Processing

and Pattern Recognition Research Laboratory at TUCN.

Florin Oniga received the Diploma Engineer degree

in Computer Science in 2002 from the Technical

University of Cluj-Napoca, Romania, followed by

the M.S. degree in 2003 from the same university.

He is currently working towards the Ph.D. degree in

Computer Science at Technical University of Cluj-

Napoca, specializing in Computer Vision. He is a

Lecturer with the Computer Science Department,

Technical University of Cluj-Napoca, teaching

Image Processing, Pattern Recognition, and Computer Architecture. His

research interests include stereovision, digital elevation maps processing, and

vision based automotive applications. He is a member of the Image

Processing and Pattern Recognition Research Laboratory at TUCN.

Sergiu Nedevschi (M’99) received the M.S. and

PhD degrees in Electrical Engineering from the

Technical University of Cluj-Napoca (TUCN), Cluj-

Napoca, Romania, in 1975 and 1993, respectively.

From 1976 to 1983, he was with the Research

Institute for Computer Technologies, Cluj-Napoca,

as researcher. In 1998, he was appointed Professor in

computer science and founded the Image Processing

and Pattern Recognition Research Laboratory at the

TUCN. From 2000 to 2004, he was the Head of the

Computer Science Department, TUCN, and is currently the Dean of the

Faculty of Automation and Computer Science. He has published more than

200 scientific papers and has edited over ten volumes, including books and

conference proceedings. His research interests include Image Processing,

Pattern Recognition, Computer Vision, Intelligent Vehicles, Signal

Processing, and Computer Architecture.

