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Abstract— Modeling and tracking the driving environment is a 

complex problem, due to the heterogeneous nature of the real 

world. In many situations, modeling the obstacles and the driving 

surfaces can be achieved by the use of geometrical objects, and 

tracking becomes the problem of estimating the parameters of 

these objects. In the more complex cases, the scene can be 

modeled and tracked as an occupancy grid. This paper presents a 

novel occupancy grid tracking solution, based on particles, for 

tracking the dynamic driving environment. The particles will 

have a dual nature – they will denote hypotheses, as in the 

particle filtering algorithms, but they will also be the building 

blocks of our modeled world. The particles have position and 

speed, and they can migrate in the grid from cell to cell depending 

on their motion model and motion parameters, but they will also 

be created and destroyed using a weighting-resampling 

mechanism specific to particle filter algorithms. The tracking 

algorithm will be centered on particles, instead of cells. An 

obstacle grid derived from processing a stereovision-generated 

elevation map is used as measurement information, and the 

measurement model takes into account the uncertainties of the 

stereo reconstruction. The resulted system is a flexible, real-time 

tracking solution for dynamic unstructured driving environments. 

 
Index terms-Occupancy grids, environment modeling, tracking, 

particle filtering, stereovision. 

I. INTRODUCTION 

he tasks of modeling and perceiving the driving 

environment are a continuous challenge, because there are 

multiple types of scenarios, of different degrees of order and 

complexity. Some environments are well-regulated, and the 

types of static and dynamic objects are easily modeled and 

tracked using geometrical models and their parameters. The 

obstacles can be modeled as cuboids having position, size and 

speed, and the driving surface delimiters can be modeled as 

parametrical curves. The highway and most of the urban and 

rural sections of road are usually suitable for geometrical 

modeling and tracking.  

The conditions change when the environment to be tracked 

is an intersection, a busy urban center, or an off-road scenario. 

Even if parts of this environment can be tracked by estimating 

the parameters of a geometrical model, many essential parts of 

the environment will not fulfill the constraints of the models. 
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Also, sometimes a driving assistance application needs to have 

static and dynamic information about the environment before a 

model can be instantiated and tracked, or it may use this 

additional information in model fitting and model-based 

tracking. For these reasons, solutions for intermediate level 

representation and tracking are devised. These intermediate 

representation and tracking solutions can be based on 

occupancy grids, or directly on the 3D points (the 6D vision 

technique, presented in [1]), on compact dynamic obstacle 

primitives called stixels [2], or they can be replaced with 

specialized techniques of detecting critical motion [3]. In what 

follows, we’ll focus on the works related to occupancy grids. 

Maybe one of the first uses of occupancy grids, under the 

name of probabilistic local maps, is presented by Elfes in [4], 

in the context of sonar based robot navigation. Another paper 

by the same author [5] names the occupancy maps occupancy 

grids, and describes the probability inference mechanism for 

handling the uncertainty of a range sensor in computing the 

probability of each cell’s occupancy state. In the same 

reference we find a definition of the occupancy grid: “the 

occupancy grid is a multi-dimensional random field that 

maintains stochastic estimates of the cells in a spatial lattice”. 

The initial occupancy grids, such as those presented in [4] 

and [5], are simple 2D maps of the environment, each cell 

describing the probability of it being occupied or free. 

However, for many tracking applications, especially in the 

driving assistance field, there is a need for estimating the 

dynamic parameters of the environment, namely the speed of 

each grid cell. By adding the speed factor in the environment 

estimation, the complexity increases significantly, as the cells 

are now strongly interconnected. The work of Coué et al, 

presented in [6], uses a 4D occupancy grid, where each cell 

has a position and two speed components along each axis. By 

estimating the occupancy of each cell in the 4D grid, the 

speeds for the classical cells in the 2D grid can be computed.  

Another solution for the representation of speeds is 

presented by Chen et al, in [7]. Instead of having a 4D grid, 

this solution comes back to 2D, but uses for each cell a 

distribution of speeds, in the form of a histogram. The 

Bayesian inference mechanism relies on sensor data and 

antecedent cells, the list of antecedents being decided by the 

speed hypotheses. 

A simpler, but limited way of handling the dynamic aspects 

of the environment is presented in [8]. Instead of estimating 

the speed of each cell, this solution relies on “occupancy 

trails”, which are specific patterns, similar to the motion blur 

of the camera, which can be used to derive the trajectory and 
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therefore the speed of the moving objects. A more 

sophisticated method is presented in [9], where the 

inconsistencies in the static grid are detected as soon as they 

appear, and a multi-model Kalman filter tracker is initialized 

to track the dynamic object. 

We can attempt a first classification of the dynamic 

occupancy grid solutions (not the grids themselves) into fully 

dynamic, as those presented in [6], [7] and [10], and static-

dynamic hybrids, as those presented in [8] and [9]. 

One of the most important features of an occupancy grid 

tracking solution is the way the sensor model is used for grid 

update. The most time efficient way of updating a grid is to 

rely on the inverse sensor model, which derives the probability 

of a cell being occupied directly from sensor readout, 

assuming the occupancy of each cell is independent of its 

neighbors. This solution is maybe still the most popular, 

mainly in static grids [9]. However, the work of Thrun [11] 

proved that forward sensor probability models are preferable 

even in the case of static grids, even if this significantly 

increases the complexity of computation. 

The occupancy grids can have multiple spatial 

representations, and in [12] we are shown a comparison 

between three types of grids, the Cartesian (classic), the polar 

(distance and angle) and the column/disparity grids. All these 

grids have advantages and drawbacks. A Cartesian grid is 

closer to the real world representation, and can handle 

velocities easier, while the other types of grids are more 

“sensor-friendly”, making the computation of the sensor 

uncertainties easier. 

The occupancy grid is a flexible representation of the 

environment, and this flexibility allows powerful integration of 

multiple information sources. For instance, map information 

can be mapped on the grid, when available, as presented in 

[10]. The map can associate to each cell a terrain type (such as 

road, curb or sidewalk), and the terrain type is translated into a 

reachability probability for the cell. The use of terrain 

information can greatly improve the prediction of the position 

of dynamic objects on the road. The flexibility of the 

occupancy grid makes it well suited for collaborative updating, 

using the information from multiple sensors or multiple 

observers. A solution which uses the occupancy grid (named 

obstacle map) to integrate laser and radar information is 

presented in [13], and in [14] the grids are used to fuse stereo 

and optical flow information. A solution that integrates the 

observations of multiple mobile observers into a unified 

description of the environment is presented in [15]. 

This paper presents a driving environment tracking solution 

based on a particle occupancy grid. This solution is defined by 

a new and original approach for the representation of the 

occupancy and velocity probability distribution of each grid 

cell, and by the original updating algorithm derived from the 

proposed representation. The occupancy probability of each 

grid cell is described by the number of particles in that cell, 

and the particles have a dual nature – they describe occupancy 

hypotheses, as in the particle filtering algorithms such as 

CONDENSATION [16], but can also be regarded as physical 

building blocks of our modeled world. The tracking algorithm 

described in this paper is particle-oriented, not cell oriented. 

The particles have position and speed, and they can migrate 

from cell to cell depending on their motion model and motion 

parameters, but they are also created and destroyed using the 

same logic as the weighting-resampling mechanism described 

in [16]. The measurement data is the raw obstacle grid 

obtained by processing the elevation map, as described in [17]. 

Building a sufficiently dense elevation map requires accurate 

dense stereo information, which is computed using the 

techniques described in [18]. Other techniques for dense stereo 

processing are presented in [19]. 

Based on the surveyed literature, the occupancy grid 

tracking solution presented in this paper can be classified as 

having a Cartesian representation, using a forward sensor 

probability model, and producing a fully dynamic grid. The 

proposed method is most closely related to the works 

presented in [7] and [10], which use a speed probability 

distribution for each cell in the grid, instead of modeling the 

dynamic grid as a high dimensional space, as in [6]. We 

believe that our solution comes as an improvement over these 

techniques, because due to the use of moving particles the 

representation of the speed probability distribution and the 

estimation of this distribution are no longer a concern. We do 

not have to approximate the velocity as a histogram [7] or as a 

mixture of Gaussians [10], we don’t have to assume that one 

cell belongs to only one object with only one velocity, and 

neither are we concerned with estimation of this speed, as this 

results naturally from the survival or elimination of the 

particles. The particles in a cell can have different speeds, and 

therefore they can handle the situation of overlapping objects, 

or the most likely situation when the objects are too close and 

the uncertainty of one overlaps over the uncertainty of the 

other. The complexity of the algorithm is linear with the 

number of cells in the grid and with the maximum number of 

particles in a cell, a tradeoff between accuracy and response 

time being always available as a simple parameter. Also, 

integrating other motion parameters, such as acceleration, does 

not increase the complexity of the tracking algorithm, because 

it only alters the way the position of the particles in time is 

computed. 

The remainder of this paper is organized as follows: first, 

the particle grid model is presented, and then the steps of the 

filtering algorithm are detailed: prediction, measurement and 

initialization. Then, the paper describes the way the particle 

grid results can be used to extract 3D cuboids that have 

position, size and speed. The paper ends with the testing and 

results section, followed by conclusions. 

II. THE WORLD MODEL 

The world is represented by a 2D grid, mapping the bird-eye 

view 3D space into discrete 20 cm x 20 cm cells. The size of 

the grid is 250 rows x 120 columns (this corresponds to a 

scene size of 50x24 meters). The aim of the tracking algorithm 
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is to estimate the occupancy probability of each grid cell, and 

the speed components on each axis. The tracking goals are 

achieved by the use of a particle-based filtering mechanism.  

Considering a coordinate system where the z axis points 

towards the direction of the ego-vehicle, and the x axis points 

to the right, the obstacles in the world model are represented 

by a set of particles 

}...1),,,,,(|{ Siiiiiii NiavrvcrcppS === , each particle i 

having a position in the grid, described by the row ri (a 

discrete value of the distance in the 3D world z) and the 

column ci (discrete value of the lateral position x), and a speed, 

described by the speed components vci and vri. An additional 

parameter, ai, describes the age of the particle, since its 

creation. The purpose of this parameter is to facilitate the 

validation process, which will be described in a subsequent 

section of the paper. The total number of particles in the scene 

NS is not fixed. This number depends on the occupancy degree 

of the scene, that is, the number of obstacle cells. Having the 

population of particles in place, the occupancy probability of a 

cell C is estimated as the ratio between the number of particles 

whose position coincides with the position of the cell C and 

the total number of particles allowed for a single cell, NC. 
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The number of allowed particles per cell NC is a constant of 

the system. In setting its value, a tradeoff between accuracy 

and time performance should be considered. A large number 

means that on a single cell multiple speed hypotheses can be 

maintained, and therefore the tracker can have a better speed 

estimation, and can handle fast moving objects better. 

However, the total number of particles in the scene will be 

directly proportional with NC, and therefore the time 

consumption will increase. 

The speed estimation of a grid cell can be estimated as the 

average speed of its associated particles, if we assume that 

only one obstacle is present in that cell. Of course, the particle 

population can handle the situation when multiple obstacles, 

having different speeds, share the same cell, and in this case 

the speed estimate of the cell must be computed by clustering.  
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Thus, the population of particles is sufficiently 

representative for the probability density of occupancy and 

speed for the whole grid. Multiple speed hypotheses can be 

maintained simultaneously for a single cell, and the occupancy 

uncertainty is represented by the varying number of particles 

associated to the cell. The goal of the tracking algorithm can 

now be stated: using the measurement information to create, 

update and destroy particles such that they accurately represent 

the real world. 

III. ALGORITHM OVERVIEW 

The first step of the algorithm is the prediction, which is 

applied to each particle in the set. The positions of the 

particles are altered according to their speed, and to the motion 

parameters of the ego vehicle. Also, a random amount is added 

to the position and speed of each particle, for the effect of 

stochastic diffusion. The second step is the processing of 

measurement information. This step is based on the raw 

occupancy cells provided by dense stereo processing, and 

provides the measurement model for each cell. The 

measurement model information is used to weight the 

particles, and resample them in the same step. By weighting 

and resampling, the particles in a cell can be multiplied or 

reduced. The final step is to estimate the occupancy and 

speeds for each cell, and to group the cells into 3D oriented 

objects, for result evaluation. 

IV. PREDICTION 

This step will derive the present particle distribution from 

the past information, preparing the particle set for 

measurement. The prediction equations will use odometry and 

motion model information. 

The basic odometry information available through the CAN 

bus of a modern car is the speed v and the yaw rateψ& . 

Together with the time interval t∆ elapsed between 

measurements, these parameters can be used to compensate for 

the ego-motion, and separate it from the independent motion 

of the objects in the scene. Between measurements, the ego-

vehicle rotates with an angleψ , and travels a distance d. 

t∆=ψψ &                  (3) 
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The origin of the grid representation is displaced along the 

two coordinate axes by dc and dr. 

DXddc /
2
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ψ
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DZddr /
2
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ψ
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We denote by DX and DZ the cell size of the grid (in the 

current implementation, 0.2 m). A point in the grid, at row r 

and column c, is displaced by the following equation: 
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The prediction is achieved using equation 8, which 

combines the deterministic drift caused by the ego-motion 

compensation and the particle’s own speed, with the stochastic 
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diffusion caused by the uncertainties in the motion model. The 

quantities cδ , rδ , vcδ and vrδ are randomly drawn from a 

Gaussian distribution of zero mean and a covariance matrix Q 

equivalent to the state transition covariance matrix of a 

Kalman filter. The covariance matrix is diagonal, with the 

standard deviations for the speed components corresponding to 

a real-world amount of 1 m/s, and the standard deviations for 

the position corresponding to a real-world value of 0.1 m. 

These values will ensure that the system is able to cope with 

fast-moving objects even at a 10 fps frame rate. 
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From the grid model point of view, the prediction has the 

effect of moving particles from one cell to another, as seen in 

figure 1. The occupancy probability is thus dynamically 

adjusted using the particle’s motion model and the vehicle 

odometry. 

 

   
Fig. 1.  Particles in the grid, before and after prediction. 

V. MEASUREMENT MODEL 

The measurement model will relate the measurement data, 

which is a binary occupied/free condition derived from the 

stereovision-generated elevation map [10], to the conditional 

probabilities p(measurement | occupied) and p(measurement | 

free), which will weight the particles. In order to compute 

these probability values, we have to pass through several steps. 

A. The uncertainty of the stereo measurement 

In order to compute these probabilities, we start by 

computing the uncertainty of the stereo reconstruction. First, 

the uncertainty of the distance reconstruction, in the case of a 

rectified system, is given by: 
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In the above equation, z denotes the distance (in the real 

world coordinates), b is the baseline of the stereo system, f is 

the focal distance in pixels, and dσ is the error in disparity 

computation (usually about 0.25 pixels, for a good stereo 

reconstruction engine).  

The error in lateral positioning (usually much smaller than 

the error in z), can be derived from the distance error. This 

error depends on the lateral position x (in the real world 

coordinates) and the distance z. 

z

x z
x

σ
σ =                   (10) 

The 3D errors are mapped into grid cell errors, by dividing 

them with the grid cell size on x and z. 
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The values of rowσ and columnσ are computed offline, at the 

initialization phase, for each cell in the grid.  

B. The raw occupancy density cue 

In order to compute the conditional probability of the 

measurement cell, under the occupied or free assumption, we 

have to take into account a reality that is specific to 

stereovision sensors. The stereo sensor does not perform a 

scan of the scene, and therefore it does not output a single 

bird-eye view point for a real-world obstacle cell. We’ll take 

as example a pillar, which has almost no width, and no depth 

spread. The representation of a pillar in the occupancy grid 

should be a single cell. If the pillar were observed by a 

scanner-type sensor, this sensor will output a cell, displaced 

from the true position by an amount specific to the sensor 

error. For the stereo sensor, things are different, because the 

camera observes the whole height of the pillar, and therefore 

each pillar pixel will get a distance and a lateral position. This 

means that once we “collapse” the pillar information in the 2D 

grid representation, each part of the pillar may fall in a 

different cell, and the pillar will generate a spread of cells. The 

size of the spread area is controlled by the grid uncertainties 

on the c and r axes (real world x and z). 

This property leads us to find a good cue, which will 

contribute to the conditional probabilities of the measurement 

cells under the occupied/free assumption. We’ll count the 

obstacle cells in the measurement grid around the current cell 

position, in an area of rowσ height and columnσ width, and 

divide the number of found obstacle cells by the total number 

of cells in the uncertainty area. We’ll denote this ratio as 

pdensity(m(r,c) | occupied). 

 

)12)(12(

),(

)|),((
++

=

∑ ∑
+=

−=

+=

−=

columnrow

rrow

rrow

ccol

ccol

density

row

row

column

column

colrowO

occupiedcrmp
σσ

σ

σ

σ

σ
  

                     (12) 



Accepted for IEEE Transactions on Intelligent Transportation Systems, © IEEE  

By O(row, col) we denote the “occupied” value of the 

measurement grid, at position row and col. This value is 1 

when an obstacle cell is present and 0 when not. 

The density cue for the “free” assumption is: 

 

)|),((1)|),(( occupiedcrmpfreecrmp densitydensity −=  

                     (13) 

A graphic comparison between the raw measurement data 

and the density cue (conditional probability) of the 

measurement under the “occupied” assumption is given in the 

following figure. 

  

 

 
Fig. 2. From the raw occupancy grid to the raw measurement density cues. 

Bottom-left: raw occupancy grid, bottom-right: density cue for the occupied 

cell hypothesis. 

C. Handling the occlusions 

Not all cells in the grid can be observed directly, and this 

fact must be taken into consideration by the tracking 

algorithm. Due to the limitations of the primary source of 

information, the stereovision-based raw occupancy grid, some 

of the cells are never observed. The raw occupancy grid only 

covers a longitudinal distance from 0 to 40 meters, a lateral 

span of 13 meters. Also, the field of view of the camera 

(angular span) limits the areas that are visible at close distance.  

The cells that are excluded by the field of view and distance 

limitations are marked as obstructed (unobservable) by default. 

Another way for a cell to become unobservable is if it is 

obstructed by an obstacle cell that is located between it and the 

observation origin (camera position). In order to decide if a 

cell is in such a situation, we switch to polar coordinates. Each 

cell is mapped to a polar grid. Then, for each angle, the cells 

are scanned in the order of their distance. Once a raw occupied 

cell is found, an obstruction counter is incremented for every 

cell that is behind the first occupied one. Then, the obstruction 

values are re-mapped into the Cartesian grid. 

Once each cell has an obstruction value, the final analysis is 

performed. Each cell that has an obstruction value higher than 

10 is considered obstructed and considered as such in the 

particle weighting and resampling phase (to be described in the 

next chapter). However, this is not the only way we use the 

obstruction property. If a raw measurement cell is marked as 

“occupied”, but from the obstruction analysis it is found to be 

obstructed, the occupied cell is removed. This will make the 

raw occupancy map look more like a scanner-derived map. 

This reduction of measurement information must be performed 

before the computation of the other particle weighing cue, 

which relies on the distance from measurement. 

The obstruction-related processing steps are illustrated in 

figure 3. The left panel shows the raw measurement data, the 

middle panel shows the obstruction value for each cell (the 

lighter, the more obstructed), and the right panel shows the 

measurement data that remains after the obstructed cells are 

removed. This data set is used for the next cue computation. 

 

 
Fig. 3. Handling the occlusions. Left – original measurement information, 

middle – obstruction value for each cell, right – unobstructed measurement. 

D. The distance from measurement cue 

For each cell in the grid, we need to compute the distance to 

the nearest occupied cell in the measurement grid. For that, 

we’ll use a modified version of the distance transform 

algorithm presented in [20]. The main issue is that we need to 

know not only the distance to the nearest measurement point, 

but the distance components on the two coordinate axes, row 

and column. The reason for this requirement is that the 

standard deviations for the positioning errors are different on 

the row and on the column, and therefore one cannot be 

substituted for another. 

Our distance transform algorithm performs like the classical 

two-pass L1 norm one, but instead of updating only the cell 

distance to the nearest measurement, the position of the nearest 

measurement is updated along. The following algorithm 

updates a distance matrix D(r,c), initialized with zero for 

measurement occupancy cells, and with 255 for the free  cells, 

and two position matrices Mr and Mc that hold the row and the 

column of the nearest occupied measurement cell. The values 

of Mr and Mc are initialized to the current row and column of 

each cell.  
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Algorithm DistanceTransform 

For r=1 to max_r 

For c=1 to max_c 

 Update (r, c, -1, 0) 

 Update (r, c, 0, -1) 

End For 

End For 

For r = max_r to 1 

 For c = max_c to 1 

  Update (r, c, 1, 0) 

  Update (r, c, 0, 1) 

 End For 

End For 

 

Function Update(r, c, n, k) 

If D(r, c) > D(r+n, c+k) + 1 

 D(r, c) = D(r+n, c+k) + 1 

 Mr(r, c) = Mr(r+n, c+k) 

 Mc(r, c) = Mc(r+n, c+k) 

End If 

 

After the distance transform algorithm is applied, the 

distance-to-measurement-occupied on rows and on columns, 

for each cell can be found by: 
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The distance to measurement-free-cell is computed as the 

difference between the double of the distance standard 

deviation and the distance-to-occupied, saturated to zero.  

 

)0),,(),(2max(),(

)0),,(),(2max(),(

crdcrcrd

crdcrcrd

occupied

column

free

column

occupied

row

free

column

rowrow

−=

−=

σ

σ
(15) 

These distances are converted to a probability density value 

using the multivariate Gaussian equation (equation 16). We 

have removed the row and column arguments for all the values 

involved, for the sake of readability. The same equation is 

applied for both free and occupied distances, and therefore the 

condition status is a placeholder for both situations. 
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At the end of this step, we have, for each cell, the values 

)|),(( occupiedcrmpdistance
and )|),(( freecrmpdistance

.  

VI. WEIGHTING AND RESAMPLING 

The classical steps of a particle filter based tracker are 

resampling, drift, diffusion, and measurement (weighting). 

This behavior replaces a population of a fixed number of 

particles with an equal number of particles, which 

approximates an updated probability density function over a 

space of parameters. However, this approach works when the 

particles are hypotheses of the state of a system, not when the 

particles are the system itself (we can see our tracked world as 

physically composed of particles).  

Our algorithm tries to use the particles in a dual form – as 

hypotheses, and as building blocks of the world that we track. 

Their role as building blocks has been already explained. 

However, if we restrict our reasoning to a single cell in the 

grid world, we can see that the particle is also a hypothesis. A 

particle in a grid cell is a hypothesis that this cell is occupied, 

and that the cell has the speed equal to the speed of the 

particle. More particles in the cell mean that the hypothesis of 

occupancy is strongly supported. Less particles in the cell 

means that the hypothesis of the cell being free is supported. 

We can regard the difference between the number of particles 

in a cell and the total number of particles allowed in a cell as 

the number of particles having the occupancy hypothesis zero. 

A. Weighting the particles 

If we regard the number of particles in the cell to be 

constant, and some of them having the occupancy value “true” 

while some having it “false”, we can apply the mechanism of 

weighting and resampling.  

If we assume that the measurement data does not contain 

speed information, the weight of the particle depends only on 

the “occupied” hypothesis. Also, this means that all the 

particles having the same occupied hypothesis will have the 

same weight. 

For each cell at position r, c in the grid, the weights for the 

free and for the occupied hypotheses is obtained by fusing the 

cues computed from the measurement data using the methods 

described in section V. 
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The equations 17 and 18 hold if the cell in the grid is not 

marked as obstructed, as described in section V.C. If the cell is 

obstructed, the weights of the occupied and free hypotheses 

will be equal, 5.0),(),( == crwcrw freeoccupied . 

The number of particles having the “occupied” hypothesis 

true is the number of “real” particles in the cell.  
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The number of particles (hypotheses) having the “occupied” 

value false is the complement of NOC. We remind the reader 

that NC is the maximum number of particles allowed in a cell, 

and this number is a constant of the algorithm. 
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),(),( crNNcrN OCCFC −=           (20) 

 

The total posterior probability of a cell being occupied and 

of a cell being free can be computed from the number of 

free/occupied hypotheses, and their corresponding weights. In 

the following equations we have removed the row and column 

parameters, but they are implied. 
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The aggregate particle weights POC and PFC are used for 

particle resampling. The resampling of the particle population 

is done at the end of the measurement step, so that the next 

cycle can start again with an updated population of particles 

without concerning about their weight.  

B. Resampling 

A classical resampling algorithm would make NC random 

draws from the previous particle population of a cell, while the 

weight of each particle controls its chances of being selected. 

Because we don’t care for the “cell free” hypothesis particles, 

our resampling will instead decide for each real particle 

(particle having the occupied hypothesis true) whether it is 

destroyed or multiplied (and, if multiplied, how many copies 

of it are created). 

The following algorithm describes the process of 

resampling, which is materialized as duplication or removal of 

particles from the particle set. The key solution for a real-time 

operation is that all the heavy computing tasks are executed at 

cell level, mostly by the use of LUT’s, while the particle level 

processing is kept very light. 

 

Algorithm Resample 

For each cell C 

 Compute NOC and POC 

 Compute resampled number of particles NRC 

 NRC=POCNC 

Compute ratio between actual number of particles and the 

number of resampled particles 

 

OC

RC
C

N

N
f =  

End For 

For each particle pi 

 Find corresponding cell C  

 If (fC>1) – number of particles will increase 

  Fn = Int(fC)   Integer part 

  Ff = fC -Int(fC)  Fractional part 

  For k=1 to Fn-1  

   S.Add(pi.MakeCopy) 

  End For 

  r = random value between 0 and 1 

  If (r<Ff) 

   S.Add(pi.MakeCopy) 

  End if 

End if 

 

 If (fC <1) – number of particles will decrease 

  r = random value between 0 and 1 

  If (r> fC) 

   S.Remove(pi) 

  End if 

End if 

 

End For 

 

The system will compute the number of particles that each 

cell should have after the process of resampling has been 

completed. The ratio fC between this number and the existing 

number of particles in the cell will tell us if the particles have 

to be duplicated or removed. If fC is higher than 1, the number 

of particles has to be increased. The integer part of the 

difference between fC and 1 tells us the number of certain 

duplications a particle must undergo (for instance, if fC is 2, 

each particle will be doubled). The fractional part of the 

difference is used for chance duplication: each particle will 

have a probability of being duplicated equal to the fractional 

part of this difference. 

If f is lower than 1, the number of particles has to be 

decreased, by removing some of the particles. Each particle 

has 1- fC chance of being eliminated. 

At this point the cycle is complete, and the tracking 

algorithm can process a new frame. Secondary estimations for 

occupancy, speed, or clustering the cells into objects can be 

performed at the end of this step. 

 

  
Fig. 4.  Weighting and resampling. The weight of the occupied hypothesis is 

encoded in the darkness of the cell of the left grid. 

VII. INITIALIZATION 

Although the measurement step takes care of particle 

creation and deletion, this step only works if there are particles 

to be duplicated or deleted. For the prediction-measurement 

cycle to work, the particle population has to be initialized.  

From a strictly probabilistic point of view, each cell’s state 

is unknown at startup, which means that the cell has equal 

probability of being occupied or free. In our tracking system, 

this would mean that each cell should be assigned a number of 
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particles equal to half the total number of particles allowable 

in a cell. However, this approach would significantly reduce 

the speed of the system, and would require permanent re-

initialization.  

Our solution is to use the measurement occupancy grid to 

create particles. If a measurement cell is of type obstacle, its 

p(m(r,c) | occupied) is high, and there are no particles in the 

corresponding tracked grid cell, a small number of particles 

will be created. The initial speed components vr and vc of the 

created particles will be sampled randomly from an initial 

range of possible values, and the initial position is confined to 

the creation cell. In this way, the initialization is a continuous 

process.  

Particles are automatically removed when they go outside 

the grid area, in the prediction phase. Another case of 

“administrative” removal (removal not caused by the 

probability mechanism described in section VI) is when, due 

to particle drifting, the number of particles in a cell exceeds 

the allowed value. 

VIII. CELL STATE ESTIMATION AND OBJECT EXTRACTION 

The result of the tracking algorithm is the particle 

population itself. However, for testing and validation purposes, 

and for using the tracking results in further stages of 

processing, we will estimate the occupancy state and the speed 

of each cell in the grid.  

The occupancy probability of each grid cell is approximated 

by the ratio between the number of particles in that cell and the 

total number of allowed particles in a cell (equation 1). 

The components of the speed vector for each cell are 

estimated using equation 2. However, due to the fact that the 

speed of a newly created particle is completely random, these 

particles are excluded from the speed estimation of a grid cell. 

For this purpose, we can use the age property of the particle. 

The age of the particle is set to 1 when the particle is created, 

and increased each time the particle’s state (position and 

speed) is altered by prediction. Basically, the age of the 

particle tell us how many tracking cycles the particle has 

“survived” in the system.  

All the particles in a cell that have an age higher than two 

become part of the speed estimation. They are counted, and the 

speed components on row and column are averaged. Also, the 

standard deviation of these speed components is computed. If 

both the estimated speed components are lower in absolute 

value than the double of their standard deviations, the cell is 

declared static, because it means that either the speed is too 

low, or it is too dispersed to draw a definite conclusion.  

For further testing and evaluation, a subset of the grid cells 

is grouped into 3D cuboids. A cell is considered for object 

grouping if its occupancy probability is at least 0.5, meaning 

that the particle count in the cell is at least NC/2. The 

individual objects are identified by a generic algorithm of 

connected component labeling. The algorithm starts from a 

valid cell, and recursively propagates a unique label to the 

cell’s occupied neighbors, until no more connections are found 

and a new label (which implies a new object) is generated. The 

difference between our labeling and a classical labeling 

algorithm is the way the neighborhood relationship is defined. 

Two cells are neighbors if the following conditions are 

fulfilled: 

- The distance between them in the grid is less than 3, 

meaning that a one cell gap is allowed. 

- The difference in the orientation of the speed vectors in 

the two cells is less than 30 degrees. 

- The difference in speed vector magnitudes is less than 

30% of the value of the largest magnitude of the two 

cells. 

The labeling process is shown in figure 5, middle panel, 

where each color marks a different object. We can see that by 

applying vicinity criteria only, the moving vehicle will be 

connected to the stationary structure. However, this does not 

happen due to the fact that we can use dynamic information 

provided by the grid to successfully discriminate the two 

objects. 

 
Fig. 5. Cell labeling and extraction of objects. 

 

The labeled connected components in the grid are used to 

generate the 3D objects in the form of oriented cuboids (figure 

5, third panel). The objects are grouped into two categories, 

based on their average speed, computed from the speeds of 

each component cell: static (shown in green) and dynamic 

(shown in red). Only the dynamic objects receive orientation, 

which is the orientation of their average speed.  

IX. TESTS AND RESULTS 

A. Qualitative assessment 

The qualitative tests, which allow us to monitor the general 

behavior of the system in complex situations, are performed on 

video sequences recorded in real urban traffic. These tests 

show how the occupancy grid is computed, how the speed 

vector for each cell is estimated, and how the grid results are 

grouped into cuboidal objects having position, size, orientation 

and oriented speed vector. The speed of the cells is displayed 

in color, using Hue for orientation and Saturation for 

magnitude. Due to the need for compact representation of the 

grid results, we have also encoded the occupancy probability 

as the color’s Intensity, making full use of the whole HSI color 

space. 
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Fig. 6. Color coding for speed vectors (full and half occupancy). 

 

Video files, describing results in different traffic situations, 

can be downloaded from this page: 

http://users.utcluj.ro/~rdanescu/gridtrackingtests.htm . The 

main qualitative test is the sequence 

http://users.utcluj.ro/~rdanescu/long_sequence.avi , which 

shows the results over a significant distance through Cluj-

Napoca. Some highlights of this sequence are presented in 

figure 7: 

a) Crossing pedestrian, mixed with lateral traffic and static 

distant objects. 

b) Incoming vehicle, static lateral scenery. 

c) Two incoming vehicles, the most distant one only visible 

for a couple of frames. 

d) Moving vehicle against static wall, ego vehicle 

performing a sharp turn left. 

e) Distant object, accurately tracked. 

f) Moving object against static background. The protrusion 

from the static background near the moving object is actually 

an occluded stationary car. The ego vehicle is performing a 

sharp right turn, which causes the instability in the estimation 

of the static nature of the background in the top right corner. 

Also, that area was previously occluded by the moving vehicle, 

which means that the static nature of the cells has not yet been 

detected, due to the short observation time. 

g) Distant crossing vehicle going through stationary 

vehicles. The ego vehicle is turning right. 

h) Tracking a moving target through a narrow corridor of 

stationary vehicles. 

The behavior of the system in the case of occlusions is 

highlighted by the sequence 

http://users.utcluj.ro/~rdanescu/cluj-occlusion.avi . Key points 

from the sequence are presented in figure 8. While the ego 

vehicle is performing a sharp left turn, a vehicle comes from 

our right, and is occluded by a vehicle coming from our left. 

The occluded vehicle is also maneuvering, changing its 

heading to its left. While occluded, its particle distribution 

becomes diffuse, accounting for possible exit trajectories, and 

the correct heading is quickly identified as the object becomes 

observable again. 

An extensive sequence, recorded while observing an 

intersection with the ego vehicle standing still, produced the 

results that are available in the file 

http://users.utcluj.ro/~rdanescu/wob-occlusion.avi . A 

highlight of this sequence is shown in figure 9. A vehicle 

comes from our right, then turns left and proceeds to exit the 

scene. 

 

 
Fig. 7. Extended sequence in urban traffic – highlights. 

 

Fig. 8. Dynamic occlusion. 

 

During this maneuver it occludes the static object near its 

left side, but does not become joined with this structure due to 
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the speed-sensitive nature of the cell clustering algorithm. We 

can see how the occupancy becomes diffused as the object is 

occluded by a large truck, which then again occludes the static 

objects on the right. 

B. Numerical evaluation in controlled environment 

The numerical evaluation was performed on sequences 

acquired in controlled scenarios, with known target speed and 

orientation. We have performed four tests, with the same 

orientation, -45 degrees, but different speeds, 30 km/h, 40 

km/h, 50 km/h, 60 km/h. The results that were evaluated are 

the estimated speed and orientation of the 3D cuboid resulted 

from clustering the occupied grid cells. These results are 

compared to the ground truth, and they are also compared to 

the results of another means of intermediate extraction of 3D 

dynamic information, the optical flow combined with 

stereovision. The results of optical flow that are taken into 

consideration are the speed and orientation of the 3D cuboid 

obtained from grouping the points having 3D and speed 

information [21]. The controlled test sequence is highly 

favorable to the optical flow approach, as the vehicle is clearly 

visible, has plenty of features that can be matched from one 

frame to another, a situation which provides plenty of good 

speed vectors to be averaged into an accurate vector of the 

cuboid. 

 
Fig. 9. Turning near a stationary object and occlusion. 

 

The results of speed and orientation estimation are 

displayed in the graphs shown in figures 11 to 14. The grid 

tracking results are shown with the red dotted line. We can see 

that both methods quickly converge towards the ground truth, 

but the grid tracking results are more stable (lower error 

standard deviation) and more accurate (lower mean absolute 

error). This fact is confirmed by the tables I and II. 

 
Fig. 10. Controlled test sequence. 

 

 

 
Fig. 11. Speed and orientation estimation, 30 km/h test. 

 

 

 
Fig. 12. Speed and orientation estimation, 40 km/h test. 
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Fig. 13. Speed and orientation estimation, 50 km/h test. 

 

 

 
Fig. 14. Speed and orientation estimation, 60 km/h test. 

 
TABLE 1 

NUMERICAL RESULTS – SPEED ESTIMATION ACCURACY 

Speed of 

target 

Particle 

grid MAE 

Particle 

grid 

STDEV 

Optical 

flow MAE 

Optical 

flow 

STDEV 

30 km/h 0.9016 0.9731 2.0141 2.3087 

40 km/h 1.0184 0.9730 2.1181 1.9017 

50 km/h 2.4989 2.3370 3.7329 4.4966 

60 km/h 2.1279 1.3858 3.0677 2.2725 

 
TABLE 2 

NUMERICAL RESULTS – ORIENTATION ESTIMATION ACCURACY 

Speed of 

target 

Particle 

grid MAE 

Particle 

grid 

STDEV 

Optical 

flow MAE 

Optical 

flow 

STDEV 

30 km/h 0.9728 0.8376 1.8219 2.0122 

40 km/h 1.0321 0.8616 1.1962 1.0146 

50 km/h 0.4695 0.2659 1.2775 1.1095 

60 km/h 0.9343 0.6739 1.4554 1.1634 

 

The time performance depends on the obstacle load of the 

scene, which influences the total number of particles. For a 

typical urban scene, and a total number of particles in a cell 

NC=50, the total running time is about 40 ms per frame, on an 

Intel Core 2 Duo processor at 2.1 GHz. Due to the fact that the 

particle tracking system shares the processor with other 

sensorial processing algorithms such as lane detection, object 

classification and so on, the total frame rate is about 10 fps. 

Note: video files showing results in multiple traffic 

situations can be downloaded from the address: 

http://users.utcluj.ro/~rdanescu/gridtrackingtests.htm. 

X. CONCLUSION AND FUTURE WORK 

We have presented a solution for driving environment 

modeling and tracking, which employs particles in order to 

estimate the occupancy and speed of the cells of an occupancy 

grid. This flexible and real-time solution is capable of 

correctly track dynamic environments even at high relative 

speeds, without the need of a very high frame rate from the 

measurement system. The test sequences prove that the method 

is sensitive enough to detect and estimate the speed of a 

pedestrian, but also the speed of a fast moving vehicle. The 

accuracy of the speed and orientation estimation is proven by 

the tests conducted in controlled situations. 

The particle grid tracking solution is an elegant extension of 

the dynamic occupancy grid solutions that were surveyed. The 

particle population approach relieves the designer of the 

choice of a speed probability distribution for each cell, and can 

handle multiple divergent speed hypotheses. Also, the speed 

distribution does not have to be estimated, and the 

measurement data only controls the creation or deletion of 

particles. We believe that the proposed technique is a new 

view of the occupancy grid problem, a view oriented towards 

practical implementation, and a view that can open the door to 

interesting extensions. 

The presented technique is not a substitute for model-based 

tracking, but a method for intermediate representation and 

processing of sensorial data. The occupancy probability and 

dynamic parameters of each cell can subsequent algorithms of 

feature grouping, model-based object tracking, or even sensor 

fusion. The advantages of having a good dynamic intermediate 

representation are proven by the results of the experimental 

step of model-based object reconstruction. The quality of the 

particle grid tracking results as intermediate representation 

towards object detection and tracking are also proven by the 

comparison with the most used source of intermediate 

representation in computer vision, the Lucas-Kanade optical 

flow mixed with stereo 3D information, and the comparison 

was made in the most favorable case for the optical flow 

technique. 

The solution leaves plenty of room for future work. For 

example, many of the calculations performed by the algorithm 

can be subjected to parallelization, for significant speed 

improvement. The particle-related computations, such as the 

prediction of the new position, can be subjected to massive 

parallelization, while the grid-related computations can be 

parallelized at region level. Further work will be dedicated to 
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the issue of optimization through parallelization. 

We believe that the most important development for the 

future would be to use the capability of the particle to carry 

additional information. For example, the age information may 

be used for more than validation. One use of age is to adjust 

the variances of the random alterations of speed and position 

that are applied in the prediction phase – once a particle is 

older, its randomness can be decreased. The particles can be 

tagged with a unique ID, allowing us to reconstruct the 

trajectory of an object. Other parameters, such as height, or the 

class of the object from which the particle is a part, can be 

added to the particle, and used by the tracking mechanism or 

by the applications developed on top of it. 
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