

Abstract— This paper presents an occupancy grid tracking

system based on particles, and the use of this system for dynamic

obstacle detection in driving environments. The particles will

have a dual nature – they will denote hypotheses, as in the

particle filtering algorithms, but they will also be the building

blocks of our modeled world. The particles have position and

speed, and they can migrate in the grid from cell to cell depending

on their motion model and motion parameters, but they will also

be created and destroyed using a weighting-resampling

mechanism specific to particle filter algorithms. An obstacle grid

derived from processing a stereovision-generated elevation map is

used as measurement information, and the measurement model

takes into account the uncertainties of the stereo reconstruction.

The dynamic occupancy grid is used for improving the quality of

the stereovision-based reconstruction as oriented cuboids. The

resulted system is a flexible, real-time tracking solution for

dynamic unstructured driving environments, and a useful tool for

extracting intermediate dynamic information that can

considerably improve object detection and tracking.

I. INTRODUCTION

dvanced Driving Assistance Systems include complex

functions of perception, decision and action. Because

decision, and ultimately action, relies on the results of the

perception, the perception function becomes extremely

important, and considerable effort should be put into making

sure that the results it produces are consistent with the reality.

Some of the most important bits of reality that need to be

perceived in the driving scenario are the surrounding

obstacles. The position, size and speed of the obstacles are

determined by sensorial data processing, which includes

feature selection, feature grouping (obstacle detection), and

object tracking. When the sensor is not capable of providing

dynamic information directly, tracking becomes the only way

of estimating the objects’ speed.

When the observed environment is composed mainly of

obstacles having a standard geometry (such as cars and

trucks), model-based tracking is the natural choice to be

employed. In this case, the obstacles can be modeled as

cuboids having position, size and speed vectors. The highway

and most of the urban and rural sections of road are suitable

Manuscript received October 15, 2010. This work was supported by

CNCSIS –UEFISCSU, project number PNII – IDEI 1522/2008.

Radu Danescu, Cosmin Pantilie, Florin Oniga and Sergiu Nedevschi are

with the Technical University of Cluj-Napoca, Computer Science Department

(e-mail: radu.danescu@cs.utcluj.ro). Department address: Computer Science

Department, Str. Memorandumului nr. 28, Cluj-Napoca, Romania. Phone:

+40 264 401457.

for model-based tracking.

The conditions change when the environment to be tracked

is an intersection, a busy urban center, or an off-road scenario.

Even if parts of this environment can be tracked by simple

geometric models, many essential parts of the environment

will not fulfill these models, or they are incompletely observed

by the sensors and the models are inaccurately matched. In

order to get speed information for these cases, tracking must

be employed at intermediate level, and not after the objects are

reconstructed.

There are several approaches for intermediate level

tracking, and these approaches are mostly defined by what

kind of intermediate feature they track. The simplest 3D

feature to be tracked is the 3D point, and that is the feature of

choice for the solution called 6D Vision [1]. In this approach,

the stereovision extracted 3D information is combined with the

image space optical flow, and relevant points are tracked

independently using Kalman filtering. Another intermediate

representation of the 3D scene that is used in tracking is the

dynamic stixel [2], a dynamic extension of the ground-based

vertical entity called stixel that was first introduced in [3]. In

the dynamic stixel world the visible obstacle areas are divided

into vertical segments, and these segments are tracked from

frame to frame using optical flow and Kalman filtering.

Another approach based on fusion of stereo vision and tracked

image features is presented in [4], where obstacles are

represented as a rigid set of 3D points that are tracked in terms

of feature displacements and depth measurements. In [5], the

stereovision provided point clouds are used for cuboid

reconstruction, but the position and speed are refined to a very

accurate value by the use of radar along with stereo.

Occupancy grid based tracking is another popular choice for

intermediate-level estimation of the dynamic properties of the

scene, and this type of intermediate representation and tracking

is the main focus of this paper. An occupancy grid is a

probabilistic map of the driving environment, which encodes

the present and past knowledge available from processing the

sensor data, and which can be dynamically updated when new

information becomes available.

One of the first uses of occupancy grids, in the context of

sonar based navigation, is presented by Elfes in [6], and the

probabilistic mechanism for updating the grid from sensorial

data is described in [7]. The initial grids were static

representations of the environment, and were therefore

unsuitable for perception of dynamic entities. One approach

Particle Grid Tracking System for Stereovision

Based Obstacle Perception in Driving Environments
Radu Danescu, Cosmin Pantilie, Florin Oniga, and Sergiu Nedevschi, Member, IEEE

A

for dynamic occupancy grid modeling is presented in [8],

where the speed components along the coordinate axes are

added as extra dimensions in the grid, leading to a 4D

representation.

Another dynamic occupancy grid tracking solution is

presented in [9], where the speed of each cell is modeled as a

distribution of possible values, and the tracker computes the

probability of each value, along with the occupancy

probability of the grid cell. The Bayesian reasoning process

uses a set of possible antecedents, which are the cells that can

influence the current cell based on the speed hypotheses, and

the probabilities of the antecedents are combined with the

sensor information. In [8] the dynamic Bayesian occupancy

filter solution introduced in [9] is combined with the use of

map information, which guides the hypotheses of the cell

speeds to the allowed trajectories on the road. This solution

prevents the system to consider unreachable positions, and

enables it to better predict the vehicle paths when the road is

curved.

Tracking dynamic occupancy grids is difficult, because the

speed information attached to the grid cells increases the

complexity of the state space significantly. For this reason,

there are several mixed solutions, which use static grids while

identifying the moving objects as occupancy trails [10] or

inconsistencies [11] and tracking them separately.

Besides the dynamic versus static nature of the grid, and the

way the dynamic grids represent their speed probability

distribution, the grid solutions may differ in terms of their cell

geometry. Three types of occupancy grid geometries are

presented in [12], in the context of environment tracking based

on stereo measurements: Cartesian (rectangular cell),

column/disparity, and polar. Grid solutions differ also in the

way sensorial data is used for grid updating, as some are based

on the faster inverse sensor model [11], and some use the more

accurate forward sensor model, whose advantages are

described by Thrun in [13].

The occupancy grid model of the world is well suited for

collaborative updating, using the information from multiple

sensors or multiple observers. A solution that integrates the

observations of multiple mobile observers into a unified

description of the environment is presented in [14].

This paper presents an occupancy grid tracking solution

based on particles. The particles will have a dual nature – they

will denote hypotheses, as in the particle filtering algorithms

such as CONDENSATION [15], but they will also be the

building blocks of our modeled world. The tracking algorithm

described in this paper will be particle-oriented, not cell

oriented. The particles have position and speed, and they can

migrate from cell to cell depending on their motion model and

motion parameters, but they will also be created and destroyed

using the same logic as the weighting-resampling mechanism

described in [15]. The measurement data is the raw obstacle

grid obtained by processing the elevation map, as described in

[16], a measurement source which we have previously used for

model-based object tracking, a technique described in [17].

Our solution is a fully dynamic, forward model-based

Cartesian grid tracking system, which we believe comes as an

improvement over the existing techniques, because due to the

use of moving particles the representation of the speed

probability distribution and the estimation of this distribution

are no longer a concern. These distributions do not have to be

approximated as histograms [9], Gaussian mixtures [8] or

higher dimensions [18], and we don’t have to assume that one

cell belongs to only one object with only one velocity. The

speed probability distribution of one grid cell results naturally

from the surviving particles assigned to that cell.

The solution presented in this paper is a practical approach

for probabilistic occupancy grid tracking, which has the

benefit of simple integration of motion and measurement

models, provides an easy mechanism for introducing

additional constraints or information, and, by controlling the

number of particles, allows the user to reach a tradeoff

between accuracy and time performance.

The results of the grid based environment tracking are used

as input data for an obstacle reconstruction algorithm, where

the stereovision-provided 3D points are grouped into cuboids.

The grid tracking algorithm adds dynamic information

(magnitude and orientation of a speed vector) to the 3D points

which will be grouped. The benefits of the improved obstacle

detection algorithm are threefold. First, at individual cell level,

object boundaries are more accurately detected. The detected

obstacles are confidently described by using the cuboidal

model. Next, by exploiting motion at obstacle level, the

obstacle’s orientation is more accurately and more easily

determined. And finally, each obstacle carries speed

information, a valuable cue for tracking and classification. The

grid-based obstacle reconstruction algorithm is an extension of

the one presented in [20].

II. SYSTEM OVERVIEW

An overview of our solution is shown in figure 1. Each

block is a key component of the overall algorithm, and the

arrows show the dataflow. The prediction and measurement

based update blocks form the main grid tracking cycle. The

update is based on the measurement model, which transforms

the raw measurement, unfiltered occupied cells extracted from

elevation map processing, into conditional probabilities. The

results of the measurement model block can also be used for

grid cell initialization.

Fig. 1. Algorithm flow overview

As a final step, the results of the grid tracking process are

used for cuboidal object reconstruction.

III. THE GRID WORLD MODEL

The particle grid tracking process is defined by our choice

of the occupancy grid probabilistic representation. This

chapter will describe our grid modeling solution.

The world is represented by a 2D grid, mapping the bird-eye

view 3D space into discrete 10 cm x 10 cm cells. The size of

the grid is 400 rows x 128 columns (this corresponds to a

scene size of 40x12.8 meters). Like in other grid tracking

solutions, the aim is to estimate the occupancy probability of

each grid cell, and the speed components on each axis.

However, these values are not key concepts in the workings of

the algorithm that will be proposed in this paper, but they will

be derived from a particle-based tracking mechanism.

Considering a coordinate system where the z axis points

towards the direction of the ego-vehicle, and the x axis points

to the right, the obstacles in the world model are represented

by a set of particles

}...1),,,,(|{ Siiiiii NivzvxzxppS === , each particle i

having a position in the grid, described by the row zi (a

discrete value of the distance in the 3D world) and the column

xi (discrete value of the lateral position), and a speed,

described by the speed components vxi and vzi. The total

number of particles NS is not fixed, but depends on the number

of obstacles in the scene. Having the population of particles in

place, the occupancy probability of a cell C is the ratio

between the number of particles whose position coincides with

the position of the cell C and the total number of particles

allowed for a single cell, NC.

C

cicii
O

N

zzxxSp
CP

|},|{|
)(

==∈
= (1)

The number of allowed particles per cell NC is a constant of

the system. In setting its value, a tradeoff between accuracy

and time performance should be considered. A large number

means that on a single cell multiple speed hypotheses can be

maintained, and therefore the tracker can have a better speed

estimation, and can handle fast moving objects better.

However, the total number of particles in the scene will be

directly proportional with NC, and therefore the speed of the

algorithm will decrease.

The speed estimation of a grid cell is the average speed of

its associated particles.

|},|{|

),(

),(
,,

cicii

zzxxSp

ii

CC
zzxxSp

vzvx

vzvx cicii

==∈
=

∑
==∈

 (2)

Thus, the population of particles is sufficiently

representative for the probability density of occupancy and

speed for the whole grid. Multiple speed hypotheses can be

maintained simultaneously for a single cell, and the occupancy

uncertainty is represented by the varying number of particles

associated to the cell. The goal of the tracking algorithm can

now be stated: using the measurement information to create,

update and destroy particles such that they accurately represent

the real world.

IV. PREDICTION

This processing step will derive the present particle

distribution from the past information, preparing the particle

set for measurement. The prediction equations will use

odometry and motion model information.

The basic odometry information available through the CAN

bus of a modern car is the speed v and the yaw rateψ& .

Together with the time interval t∆ elapsed between

measurements, these parameters can be used to compensate for

the ego-motion, and separate it from the independent motion

of the objects in the scene. Between measurements, the ego-

vehicle rotates with an angleψ , and travels a distance d.

t∆=ψψ & (3)

ψ

ψ

2
sin2 tv

d

∆
= (4)

The origin of the grid representation is displaced along the

two coordinate axes by dx and dz.

DXdd x /cosψ= (5)

DZdd z /sinψ= (6)

We denote by DX and DZ the cell size of the grid. A point

in the grid is displaced by the following equation:









−















 −
=









z

x

n

n

d

d

z

x

z

x

ψψ

ψψ

cossin

sincos
 (7)

The prediction is achieved using equation 8, which

combines the deterministic drift caused by the ego-motion

compensation and the particle’s own speed, with the stochastic

diffusion caused by the uncertainties in the motion model. The

quantities xδ , zδ , vxδ and vzδ are randomly drawn from a

Gaussian distribution of zero mean and a covariance matrix Q

equivalent to the state transition covariance matrix of a

Kalman filter.



















+





































∆

∆

=



















vz

vx

z

x

v

v

z

x

t

t

v

v

z

x

z

x

n

n

z

x

δ

δ

δ

δ

1000

0100

010

001

 (8)

The stochastic diffusion process allows the tracking system

to cope with changes in the environment. For example, if an

obstacle is accelerating, the particles whose speed was

increased by the stochastic process will be favored by the

measurement based update process, and the average speed of

the object’s cells will be increased.

From the grid model point of view, the prediction has the

effect of moving particles from one cell to another, as seen in

figure 2. The occupancy probability is thus dynamically

adjusted using the particle’s motion model and the vehicle

odometry.

Fig. 2. Particles in the grid, before and after prediction.

V. MEASUREMENT BASED UPDATE

The predicted particles are confronted to the measurement

data, processed through the measurement model block, and

multiplied or deleted depending on how well the data from the

sensors support the occupied or the free hypotheses of each

cell. The classical steps of a particle filter based tracker are

resampling, drift, diffusion, and measurement (weighting).

This behavior replaces a population of a fixed number of

particles with an equal number of particles, which

approximates an updated probability density function over a

space of parameters. However, this approach works when the

particles are hypotheses of the state of a system, not when the

particles are the system itself (we can see our tracked world as

physically composed of particles).

Our algorithm tries to use the particles in a dual form – as

hypotheses, and as building blocks of the world that we track.

Their role as building blocks has been already explained.

However, if we restrict our reasoning to a single cell in the

grid world, we can see that the particle is also a hypothesis. A

particle in a grid cell is a hypothesis that this cell is occupied,

and that the cell has the speed equal to the speed of the

particle. More particles in the cell mean that the hypothesis of

occupancy is strongly supported. Less particles in the cell

means that the hypothesis of the cell being free is supported.

We can regard the difference between the number of particles

in a cell and the total number of particles allowed in a cell as

the number of particles having the occupancy hypothesis zero.

A. Weighting the particles

If we regard the number of particles in the cell to be

constant, and some of them having the occupancy value “true”

while some having it “false”, we can apply the mechanism of

weighting and resampling.

If we assume that the measurement data does not contain

speed information, the weight of the particle depends only on

the “occupied” hypothesis. Also, this means that all the

particles having the same occupied hypothesis will have the

same weight. The equations 9-14 apply to a single cell in the

grid, and therefore the measurement, the coordinates x, z and

the weights are cell specific.

)|),((occupiedzxmpwoccupied = (9)

)|),((freezxmpw free = (10)

The computation of the measurement conditional

probabilities p(m(x,y)|occupied) and p(m(x,y)|free), that is, the

application of the forward sensor model, is detailed in section

VI.

The number of particles having the “occupied” hypothesis

true is the number of “real” particles in the cell.

|},|{| ciciiOC zzxxSpN ==∈= (11)

The number of particles (hypotheses) having the “occupied”

value false is the complement of NOC.

OCCFC NNN −= (12)

The total posterior probability of a cell being occupied and

of a cell being free can be computed from the number of

free/occupied hypotheses, and their corresponding weights:

)(OCCfreeOCoccupied

OCoccupied

OC
NNwNw

Nw
P

−+
= (13)

)(

)(

OCCfreeOCoccupied

OCCfree

FC
NNwNw

NNw
P

−+

−
= (14)

The aggregate (total) particle weights POC and PFC are used

for particle resampling. The resampling of the particle

population is done at the end of the measurement step, so that

the next cycle can start again with an updated population of

particles without concerning about their weight.

B. Resampling

The classical resampling makes NC random draws from the

previous particle population of a cell, and the weight of each

particle controls its chances of being selected. Because we

don’t care for the “cell free” hypothesis particles, our

resampling will instead decide for each real particle (particle

having the occupied hypothesis true) whether it is destroyed or

multiplied (and, if multiplied, how many copies of it are

created).

The following algorithm describes the process of

resampling, which is materialized as duplication or removal of

particles from the particle set.

Algorithm Resample

For each cell C

 Compute NOC and POC

 Compute resampled number of particles NRC

 NRC=POCNC

Compute ratio between actual number of particles and the

number of resampled particles

OC

RC
C

N

N
f =

End For

For each particle pi

 Find corresponding cell C

 If (fC>1) – number of particles will increase

 Fn = Int(fC) Integer part

 Ff = fC -Int(fC) Fractional part

 For k=1 to Fn-1

 S.Add(pi.MakeCopy)

 End For

 r = random value between 0 and 1

 If (r<Ff)

 S.Add(pi.MakeCopy)

 End if

End if

 If (fC <1) – number of particles will decrease

 r = random value between 0 and 1

 If (r> fC)

 S.Remove(pi)

 End if

End if

End For

The system will compute the number of particles that each

cell should have after the process of resampling has been

completed. The ratio fC between this number and the existing

number of particles in the cell will tell us if the particles have

to be duplicated or removed. If fC is higher than 1, the number

of particles has to be increased. The integer part of the

difference between fC and 1 tells us the number of certain

duplications a particle must undergo (for instance, if fC is 2,

each particle will be doubled). The fractional part of the

difference is used for chance duplication: each particle will

have a probability of being duplicated equal to the fractional

part of this difference.

If f is lower than 1, the number of particles has to be

decreased, by removing some of the particles. Each particle

has 1- fC chances of being eliminated.

At this point the cycle is complete, and the tracking

algorithm can process a new frame. Secondary estimations for

occupancy, speed, or clustering the cells into objects can be

performed at the end of this step.

VI. MEASUREMENT MODEL

The measurement model will relate the measurement data,

which is a binary occupied/free condition derived from the

stereovision-generated elevation map [16], to the conditional

probabilities p(m(x,z) | occupied) and p(m(x,z) | free),

probabilities that will weight the real and the virtual particles

presented in the previous section. Building a sufficiently dense

elevation map requires accurate dense stereo information,

which is computed using a GPU optimized variant of the semi-

global matching technique, described in [19].

Fig. 3. Weighting and resampling. The weight of the occupied hypothesis is

encoded in the darkness of the cell of the left grid.

In order to compute these probabilities, we start by

computing the uncertainty of the stereo reconstruction, for

each real world position x, z corresponding to a cell. First, the

uncertainty of the distance reconstruction, in the case of a

rectified system, is given by:

bf

z d
z

σ
σ

2

= (15)

In the above equation, z denotes the distance, b is the

baseline of the stereo system, f is the focal distance in pixels,

and dσ is the error in disparity computation (usually about

0.25 pixels, for a decent stereo reconstruction engine).

The error in lateral positioning (usually much smaller than

the error in z), can be derived from the distance error:

z

x z
x

σ
σ = (16)

The 3D errors are mapped into grid cell errors, by dividing

them with the grid cell size on x and z.

DX

DZ

x
xgrid

z
zgrid

σ
σ

σ
σ

=

=

_

_

 (17)

In order to compute the conditional probability of the

measurement cell, under the occupied or free assumption, we

have to take into account a reality that is specific to

stereovision sensors. The stereo sensor does not perform a

scan of the scene, and therefore it does not output a single

bird-eye view point for a real-world obstacle cell. We’ll take

as example a pillar, which has almost no width, and no depth

spread. The representation of a pillar in the occupancy grid

should be a single cell. If the pillar were observed by a

scanner-type sensor, this sensor will output a cell, displaced

from the true position by an amount specific to the sensor

error. For the stereo sensor, things are different, because the

camera observes the whole height of the pillar, and therefore

each pillar pixel will get a distance and a lateral position. This

means that once we “collapse” the pillar information in the 2D

grid representation, each part of the pillar may fall in a

different cell, and the pillar will generate a spread of cells. The

size of the spread area is controlled by the grid uncertainties

on the x and z axes.

This property leads us to find a reasonable approximation

for the conditional probabilities of the measurement cells

under the occupied/free assumption. We’ll count the obstacle

cells in the measurement grid around the current cell position,

in an area of zgrid _σ height and xgrid _σ width, and divide the

number of found obstacle cells by the total number of cells in

the uncertainty area. This ratio will be our approximation for

p(m(x,z) | occupied).

)12)(12(

),(

)|),((
__

_

_

_

_

++
=

∑ ∑
+=

−=

+=

−=

gridxgridz

zrow

zrow

xcol

xcol

gridz

gridz

gridx

gridx

colrowO

occupiedzxmp
σσ

σ

σ

σ

σ

 (18)

By O(row, col) we denote the “occupied” value of the

measurement grid, at position row and col. This value is 1

when an obstacle cell is present and 0 when not.

The conditional probability of the measurement given the

“free” assumption is:

)|),((1)|),((occupiedyxmpfreezxmp −= (19)

These conditional probability values will be used to weight

the particles. A graphic comparison between the raw

measurement data and the conditional probability of the

measurement under the “occupied” assumption is given in the

following figure.

Fig. 4. From the occupancy grid to the particle weights. The bottom-right

image encodes the weights of the occupied hypothesis.

VII. INITIALIZATION

Although the measurement step takes care of particle

creation and deletion, this step only works if there are particles

to be duplicated or deleted. For the prediction-measurement

cycle to work, the particle population has to be initialized.

From a strictly probabilistic point of view, each cell’s state

is unknown at startup, which means that the cell has equal

probability of being occupied or free. In our tracking system,

this would mean that each cell should be assigned a number of

particles equal to half the total number of particles allowable

in a cell. However, this approach would significantly reduce

the speed of the system, and would require permanent re-

initialization.

Our solution is to use the measurement occupancy grid to

create particles. If a measurement cell is of type obstacle, its

p(m(x,z) | occupied) is high, and there are no particles in the

corresponding tracked grid cell, a small number of particles

will be created. The initial speed components vx and vz of the

created particles will be sampled randomly from an initial

range of possible values, and the initial position is confined to

the creation cell. In this way, the initialization is a continuous

process.

Particles are automatically removed when they go outside

the grid area, in the prediction phase. Another case of

“administrative” removal (removal not caused by the

probability mechanism described in section V) is when, due to

particle drifting, the number of particles in a cell exceeds the

allowed value.

VIII. OBJECT RECONSTRUCTION USING GRID TRACKING

RESULTS

The grid tracking system provides probabilistic dynamic

occupancy results, each cell in the grid receiving a probability

of being occupied and free, and an average speed. These

results are now used to extract individual dynamic objects, in

the shape of cuboids, having position, size, speed and

orientation.

A. Obstacle localization

The speed information for each cell in the tracking grid is

used to augment each 3D point obtained from the dense stereo

sensor as follows. For each frame, after the grid tracking cycle

is completed and the speed estimates for each tracking grid

cell are available, the 3D points are projected onto the tracking

grid. This way each 3D point is associated with the cell of the

tracking grid it falls onto. The 3D point is augmented to hold

the speed of the cell it was associated with. The set of

augmented 3D points holding position (x, y, z) and motion

(magnitude, orientation) information is the input of the object

reconstruction procedure described in the next paragraphs.

The augmented 3D points will be processed by a polar

occupancy grid, with variable cell size, which ensure that point

density is independent of the range. A full description of the

method is presented in [21].

The obstacle localization algorithm entails a two-stage

procedure. All the described processing steps are performed

on the polar occupancy grid which relates to the tracking grid

solely through the use of the set of augmented 3D points.

First the polar grid is populated with range and motion

information, from the 3D points (Fig. 5). The computed

motion information is integrated in the polar occupancy grid

by projecting the 3D points and their associated motion

vectors onto cells of the grid. In effect, each cell of the polar

grid enclosing one or more points for which motion

information was computed will also entail a motion descriptor

for its own lateral or longitudinal motion in the form of

magnitude and orientation. The two components are computed

using a circular histogram also known as a histogram in polar

coordinates (shown in Fig. 6).

The highest peak of the histogram is extracted and it

represents the dominant direction (orientation) for a given

polar grid cell. To account for angular errors of the velocities

estimated by the grid tracking algorithm, each bin of the

histogram holds a 5° interval of orientations.

The second stage of the method involves the use of a

labeling algorithm that is able to exploit not only vicinity but

also motion magnitude and orientation criteria.

A depth coherency constraint imposes that only neighboring

cells can be grouped into an obstacle. Additionally, a

candidate cell at the fringe of the partially discovered/built

obstacle should be grouped to the same object only if the

speed of the candidate cell is in agreement with that

determined for the (partial) obstacle, up to that moment.

As each new cell is added to the obstacle, the cell’s

contribution to the obstacle’s overall motion signature is

processed and the obstacle’s properties are updated. Cells

rejected due to motion differences are at the boundary of two

closely positioned obstacles, and will be therefore grouped by

the labeling algorithm into different obstacles.

Fig. 7. Vicinity and motion based decision logic used when adding a cell to a

partially constructed obstacle.

Fig. 5. Polar grid. (a) Gray scale image; (b) 3D points superimposed on the

perspective image; Road points, points outside of the space of interest and

obstacle points are classified and distinctively colored; (c) Top view of the

scene: 3D points projected on the cells of the polar grid; Grid cell size is

proportional to the distance from the origin of the world coordinate system.

Fig. 6. Motion orientation is determined for each cell for which motion

information is available. (a) Perspective view of the scene, detected

obstacles with superimposed motion vectors; (b) close-up view of the grid

cells corresponding to the two cars, with motion information (lines inside

cells show determined orientation); (c) orientation histogram for the

highlighted cell; orientation is in agreement with the travelling direction of

the car.

This vicinity and motion based decision logic is described in

pseudo code in Fig. 7 and offers insight on how to deal with

special cases when either the cell or the partial obstacle do not

hold motion information. A situation when the motion

information can successfully discriminate between two

obstacles that are very close together is shown in figure 8.

B. Obstacle orientation

This section introduces a new method of extracting the

orientation of the non-stationary obstacles based on motion

information. An accurate fitting of the cuboid on the detected

obstacle is important for many subsequent algorithms that take

as input the detected objects.

Prior to this approach obstacle orientation was determined

by computing the envelope of the obstacle’s 3D points and by

analyzing the envelope’s visible sides. Due to stereo

reconstruction limitations the shape of the point cloud can

sometimes lead to an erroneous orientation of the obstacle.

For non-stationary obstacles, motion can provide additional

cues for orientation computation. Intuitively, the orientation of

the obstacle should coincide with the orientation of the

obstacle’s motion vector (see Fig. 9).

In order to improve the accuracy of the determined

orientation the following technique was devised. Instead of

working with the orientation approximated for each cell of the

obstacle, we recompute the orientation of the obstacle by

taking all of its vectors into account. Each motion vector that

falls within the already computed three dimensional un-

oriented bounds of the obstacle is added to a circular/polar

histogram that is constructed for the analyzed obstacle.

The peaks of the circular histogram designate the possible

orientations of the obstacle.

Each detected peak Pk is characterized by its weight and by

its center of weight:

∑

∑

∈

∈

∗=

=

kk

k

k

k

PiP

P

Pi

P

ihi
Weight

ightCenterOfWe

ihWeight

][
1

][
 (20)

The largest peak, Pmax encompasses the prevailing

orientation of the motion vectors and it is used to designate the

orientation of the obstacle and the magnitude of the motion in

that direction:

max

maxmax

1
||

Pobst

obst

Pv

obst

ightCenterOfWe
d

d

d
P

d

=

= ∑
∈

r

r

rr

 (21)

When the motion based analysis cannot determine a

predominant orientation the obstacle orientation must be

estimated using the envelope based method.

IX. TESTS AND RESULTS

A. Testing the grid tracking algorithm

We have designed two types of tests in order to validate the

particle grid tracking algorithm: qualitative tests and

quantitative (numerical) tests.

The qualitative assessment proves that the system is capable

of building an occupancy probability grid from the

measurement data, and is capable of identifying the motion

associated with the cells in the grid. The qualitative assessment

has been performed on real traffic scenes.

Some results, from two traffic scenes, are shown in figure

Fig. 8. (a) Detection result without the use of motion information; (b) Close-

up on the grid cells of the merged pedestrians; (c) Improved detection results

obtained with the use of motion information; (d) Close-up view on the cells

of the two obstacles.

Fig. 9. (a) Pedestrian crossing the road from left to right, almost parallel to

the longitudinal axes x; (b) Top-view of the 3D points and their associated

motion vectors; (c) Orientation histogram for the pedestrian; the dominant

direction of movement can be correctly.

10. In the top row, the perspective image of the scene is given,

and in the bottom row the three panels are, respectively: the

measurement data (obstacle cells computed from the elevation

map), the occupancy probability, and the speed labels,

identifying the motion of the cells. In the left scene, we can

identify two incoming vehicles (red), one outgoing vehicle

(blue), and a stationary parked vehicle (black). In the right

scene, we can identify a stationary parked vehicle, an outgoing

vehicle, the stationary traffic sign on the isle, and the

pedestrian group with a combination of stationary and lateral

motion.

For numerical evaluation, we have chosen a “follow the

leader” scenario, with only one obstacle in the scene, so that a

reasonable estimation of the object’s speed can be done in the

absence of a cell clustering algorithm. The ego-vehicle is

following the target vehicle, matching its speed. Therefore, the

speed of the ego-vehicle is a benchmark for the estimated

speed of the target. Figure 11 shows that after an initial lag (10

frames, 0.5 seconds), the estimated speed converges to the

ego-speed. The absolute mean error after the lag period is 1

km/h.

Fig. 10. Qualitative assessment of the algorithm performance. Speed labels:

black – stationary, red – incoming, blue – outgoing, yellow – lateral motion.

Fig. 11. Left – Ego-speed (blue) versus the estimated target speed (green), in

km/h. Right – image of the target vehicle.

A second test implies a static object, observed from a

moving vehicle traveling along a circular path. The circular

path increases the difficulty of the estimation, due to the fact

that the static object is in the field of view for only 3.5

seconds. The results of the speed estimation are shown in

Figure 12, against the speed of the observing vehicle. The

static nature of the object can be inferred almost immediately.

Fig. 12. Ego-speed (blue) versus the static object’s estimated, in km/h. Right

– the static object.

The time performance depends on the obstacle load of the

scene, which influences the total number of particles. For a

typical urban scene, and a total number of particles in a cell of

50, the total running time is about 40 ms per frame.

B. Testing the obstacle reconstruction algorithm

The most significant benefits that the obstacle

reconstruction algorithm reaps from the particle grid tracking

system are related to better identifying individual objects when

they are close together, and a more stable and accurate

estimation of object orientation.

The most common traffic situations when objects are close

together and are difficult to separate tend to involve

pedestrians. Their physical size is small, and they tend to leave

little space between them, and therefore separating them as

individual objects becomes difficult in the absence of dynamic

information. Such is the case presented in figure 13, where two

pedestrians pass each other at a small distance. Due to the

uncertainties of the stereo measurement, they are sometimes

grouped together.

Fig. 13. Reconstruction based on feature position alone. Top – objects on the

perspective image, bottom – grouped cells in the grid.

The outcome of the object reconstruction algorithm

becomes significantly better when motion information,

supplied by the grid tracking system, is used. The results

shown in figure 14 do not exhibit the fusion problem any

more. One of the main advantage of using a grid tracking

system, as opposed to other techniques such as optical flow, is

that when occlusion occurs (as in this case), the motion

information is kept in the grid, and when the object appears

again the motion vectors are readily available.

Fig. 14. Reconstruction results using the motion information. Top – objects

on the perspective image, bottom – grouped cells in the grid.

The other performance parameter we wished to test was the

improvement in orientation estimation. A test vehicle crossed

our field of view at 135 degrees, as seen in figure 15.

Fig. 15. Test sequence for orientation evaluation

The orientation estimated from the particle based motion

information was compared to the orientation extracted from

the shape of the 3D point cloud. The graph in figure 16 shows

the results, which are clearly better for the motion based

solution. The average of the geometry based results is 131.14

degrees, while the average of the motion-based results is

133.83, closer to the ground truth. The standard deviation of

the geometry based estimation is 22.52 degrees, but if we

remove the outliers it becomes 8.79 degrees. The standard

deviation of the motion-based estimation is 3.39 degrees.

Fig. 16. Orientation from point cloud geometry (blue) versus the orientation

estimated from motion (green). Orientation is in degrees, versus frame

number.

The results show that the motion based object orientation,

which relies on particle grid results, is clearly superior to the

geometry-based estimation. Also, the comparison was made

under conditions which are quite favorable to geometry-based

estimation, as the object is quite close, and the stereo

reconstruction quality is ideal. For objects farther away, in real

traffic scenes, the difference between the methods will be even

higher, but this scenario was chosen because of the availability

of ground truth.

X. CONCLUSION AND FUTURE WORK

We have presented a grid tracking technique that models

and tracks the driving environment using a set of particles with

position and speed. Our solution proves capable of identifying

occupancy and motion in complex dynamic traffic scenes,

without the need of feature grouping or obstacle model

matching or data association.

The grid based tracking system is used as an intermediate

method for dynamic parameters extraction, before the 3D

features in the scene are grouped into cuboidal objects. The

intermediate level tracking is not the only solution for

attaching speed information to the primary features, because

we can also achieve this using optical flow [19], but the use of

tracking implies a higher stability of the speed estimation,

robustness against temporary occlusions, and a lighter

computation load for the same density of speed vectors.

The dynamic parameters extracted from the particle grid are

used to augment the stereovision provided 3D points, which

are then used for object reconstruction as a cuboid shape. This

approach is able to significantly improve the feature grouping

results, as the motion information can be used to discriminate

between static and dynamic objects, and also between objects

heading in different directions, which could have been grouped

as a whole on vicinity criteria alone. Also, the orientation of

the obstacles is more accurately determined using motion

information, compared to using the shape of the 3D point

cloud alone.

Future experiments with the particle grid size, speed and

position uncertainties of prediction, and a refinement of the

measurement model to include the error of the occupant cell

extraction besides the uncertainties of the stereo algorithm,

will allow us to optimize this system’s performance and

accuracy.

REFERENCES

[1] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of

stereo and motion for robust environment perception,” 27th Annual

Meeting of the German Association for Pattern Recognition DAGM

’05, 2005, pp. 216-223.

[2] D. Pfeiffer, U. Franke, "Efficient Representation of Traffic Scenes by

Means of Dynamic Stixels", IEEE Intelligent Vehicles Symposium

(IEEE-IV), 2010, pp. 217-224.

[3] H. Badino, U. Franke, D. Pfeiffer, “The Stixel World - A Compact

Medium Level Representation of the 3D-World", Lecture Notes in

Computer Science, Vol. 5748, 2009, pp. 51-60.

[4] A. Barth and U. Franke, “Estimating the Driving State of Oncoming

Vehicles From a Moving Platform Using Stereo Vision,” IEEE

Transactions on Intelligent Transportation Systems, Vol. 10, No. 4, pp.

560-571, 2009.

[5] W. Shunguang, S. Decker, P. Chang, T. Camus, J. Eledath, “Collision

Sensing by Stereo Vision and Radar Sensor Fusion,” IEEE Transactions

on Intelligent Transportation Systems, Vol. 10, No. 4, pp. 606-614.

[6] A. Elfes, “A Sonar-Based Mapping and Navigation System”, in proc of

IEEE International Conference on Robotics and Automation, April

1986, pp. 1151-1156.

[7] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and

Navigation”, Computer, vol. 22, No. 6, June 1989, pp. 46-57.

[8] T. Gindele, S. Brechtel, J. Schroeder, R. Dillmann, “Bayesian

Occupancy Grid Filter for Dynamic Environments Using Prior Map

Knowledge”, IEEE Intelligent Vehicles Symposium, 2009, pp. 669 –

676.

[9] C. Chen, C. Tay, K. Mekhnacha, C. Laugier, “Dynamic environment

modeling with gridmap: a multiple-object tracking application”,

International Conference on Automation, Robotics and Computer

Vision (ICARCV) 2006, pp. 1-6.

[10] T. Weiss, B. Schiele, K. Dietmayer, “Robust Driving Path Detection in

Urban and Highway Scenarios Using a Laser Scanner and Online

Occupancy Grids”, IEEE Intelligent Vehicles Symposium, 2007, pp.

184-189.

[11] S. Pietzch, T. D. Vu, J. Burtlet, O. Aycard, T. Hackbarth, N. Appenrodt,

J. Dickmann, B. Radig, "Results of a Precrash Application based on

Laser Scanner and Short Range Radars", IEEE Transactions on

Intelligent Transportation Systems, Vol. 10, No. 4, 2009, pp. 584-593.

[12] H. Badino, U. Franke, R. Mester, “Free Space Computation Using

Stochastic Occupancy Grids and Dynamic Programming”, Workshop on

Dynamical Vision, ICCV, 2007, pp. 1-12.

[13] S. Thrun, "Learning Occupancy Grids With Forward Sensor Models",

Autonomous Robots, Vol. 15, No 2, 2003, pp. 111-127.

[14] J. Y. Chen, J. Hu, “Probabilistic Map Building by Coordinated Mobile

Sensors”, IEEE International Conference on Networking, Sensing and

Control, 2006, pp. 807-812.

[15] M. Isard, A. Blake, “CONDENSATION -- conditional density

propagation for visual tracking”, International Journal of Computer

Vision, Vol. 29, No. 1, 1998, pp. 5-28.

[16] F. Oniga, S. Nedevschi, “Processing Dense Stereo Data Using Elevation

Maps: Road Surface, Traffic Isle, and Obstacle Detection”, IEEE

Transactions on Vehicular Technology, Vol. 59, No. 3, March 2010,

pp. 1172-1182.

[17] R. Danescu, F. Oniga, S. Nedevschi, M.-M. Meinecke, “Tracking

Multiple Objects Using Particle Filters and Digital Elevation Maps”,

IEEE Intelligent Vehicles Symposium, 2009, pp. 88-93.

[18] C. Coue, C.Pradalier, C.Laugier, T.Fraichard, P.Bessiere, “Bayesian

Occupancy Filtering for Multitarget Tracking: An Automotive

Application”, The International Journal of Robotics Research, Vol 25,

No 1, 2006, pp. 19-30.

[19] C. Pantilie, S. Nedevschi, “Real-time Obstacle Detection in Complex

Scenarios Using Dense Stereo Vision and Optical Flow”, IEEE

Conference on Intelligent Transportation Systems (IEEE-ITSC), 2010,

pp. 439-444.

[20] I. Haller, C. Pantilie, F. Oniga, S. Nedevschi, “Real-time semi-global

dense stereo solution with improved sub-pixel accuracy”, IEEE

Intelligent Vehicles Symposium 2010 (IV 2010), pp. 369-376.

[21] C. Pocol, S. Nedevschi, and M.M. Meinecke, “Obstacle Detection based

on Dense Stereovision for Urban ACC Systems,” 5th International

Workshop on Intelligent Transportation (WIT), 2008, pp. 13-18.

Radu Danescu received the Diploma Engineer

degree in Computer Science in 2002 from the

Technical University of Cluj-Napoca, Romania,

followed by the M.S. degree in 2003 and the PhD

(Computer Science) degree in 2009, from the same

university. He is a Senior Lecturer with the

Computer Science Department, TUCN, teaching

Image Processing, Pattern Recognition, and design

with microprocessors. His main research interests

are stereovision and probability based tracking, with

applications in driving assistance. He is a member of the Image Processing

and Pattern Recognition Research Laboratory at TUCN.

Cosmin Pantilie received his M.S. and B.S.

degrees in computer science from the Technical

University of Cluj-Napoca, Romania in 2011 and

2009, respectively. He is currently working

toward the PhD. degree in computer science,

focusing on environment perception for intelligent

vehicles using stereo vision. His research interests

include image processing, pattern recognition,

stereo vision and high performance computing on

multi-core architectures.

Florin Oniga received the Diploma Engineer degree

in Computer Science in 2002 from the Technical

University of Cluj-Napoca, Romania, followed by

the M.S. degree in 2003 from the same university.

He is currently working towards the Ph.D. degree in

Computer Science at Technical University of Cluj-

Napoca, specializing in Computer Vision. He is a

Lecturer with the Computer Science Department,

Technical University of Cluj-Napoca, teaching

Image Processing, Pattern Recognition, and Computer Architecture. His

research interests include stereovision, digital elevation maps processing, and

vision based automotive applications. He is a member of the Image

Processing and Pattern Recognition Research Laboratory at TUCN.

Sergiu Nedevschi (M’99) received the M.S. and

PhD degrees in Electrical Engineering from the

Technical University of Cluj-Napoca (TUCN), Cluj-

Napoca, Romania, in 1975 and 1993, respectively.

From 1976 to 1983, he was with the Research

Institute for Computer Technologies, Cluj-Napoca,

as researcher. In 1998, he was appointed Professor in

computer science and founded the Image Processing

and Pattern Recognition Research Laboratory at the

TUCN. From 2000 to 2004, he was the Head of the

Computer Science Department, TUCN, and is currently the Dean of the

Faculty of Automation and Computer Science. He has published more than

200 scientific papers and has edited over ten volumes, including books and

conference proceedings. His research interests include Image Processing,

Pattern Recognition, Computer Vision, Intelligent Vehicles, Signal

Processing, and Computer Architecture.

