
  

  

Abstract— This paper presents an occupancy grid tracking 

system based on particles, and the use of this system for dynamic 

obstacle detection in driving environments. The particles will 

have a dual nature – they will denote hypotheses, as in the 

particle filtering algorithms, but they will also be the building 

blocks of our modeled world. The particles have position and 

speed, and they can migrate in the grid from cell to cell depending 

on their motion model and motion parameters, but they will also 

be created and destroyed using a weighting-resampling 

mechanism specific to particle filter algorithms. An obstacle grid 

derived from processing a stereovision-generated elevation map is 

used as measurement information, and the measurement model 

takes into account the uncertainties of the stereo reconstruction. 

The dynamic occupancy grid is used for improving the quality of 

the stereovision-based reconstruction as oriented cuboids. The 

resulted system is a flexible, real-time tracking solution for 

dynamic unstructured driving environments, and a useful tool for 

extracting intermediate dynamic information that can 

considerably improve object detection and tracking. 

I. INTRODUCTION 

dvanced Driving Assistance Systems include complex 

functions of perception, decision and action. Because 

decision, and ultimately action, relies on the results of the 

perception, the perception function becomes extremely 

important, and considerable effort should be put into making 

sure that the results it produces are consistent with the reality. 

Some of the most important bits of reality that need to be 

perceived in the driving scenario are the surrounding 

obstacles. The position, size and speed of the obstacles are 

determined by sensorial data processing, which includes 

feature selection, feature grouping (obstacle detection), and 

object tracking. When the sensor is not capable of providing 

dynamic information directly, tracking becomes the only way 

of estimating the objects’ speed.  

When the observed environment is composed mainly of 

obstacles having a standard geometry (such as cars and 

trucks), model-based tracking is the natural choice to be 

employed. In this case, the obstacles can be modeled as 

cuboids having position, size and speed vectors. The highway 

and most of the urban and rural sections of road are suitable 
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for model-based tracking.  

The conditions change when the environment to be tracked 

is an intersection, a busy urban center, or an off-road scenario. 

Even if parts of this environment can be tracked by simple 

geometric models, many essential parts of the environment 

will not fulfill these models, or they are incompletely observed 

by the sensors and the models are inaccurately matched. In 

order to get speed information for these cases, tracking must 

be employed at intermediate level, and not after the objects are 

reconstructed. 

There are several approaches for intermediate level 

tracking, and these approaches are mostly defined by what 

kind of intermediate feature they track. The simplest 3D 

feature to be tracked is the 3D point, and that is the feature of 

choice for the solution called 6D Vision [1]. In this approach, 

the stereovision extracted 3D information is combined with the 

image space optical flow, and relevant points are tracked 

independently using Kalman filtering. Another intermediate 

representation of the 3D scene that is used in tracking is the 

dynamic stixel [2], a dynamic extension of the ground-based 

vertical entity called stixel that was first introduced in [3]. In 

the dynamic stixel world the visible obstacle areas are divided 

into vertical segments, and these segments are tracked from 

frame to frame using optical flow and Kalman filtering. 

Another approach based on fusion of stereo vision and tracked 

image features is presented in [4], where obstacles are 

represented as a rigid set of 3D points that are tracked in terms 

of feature displacements and depth measurements. In [5], the 

stereovision provided point clouds are used for cuboid 

reconstruction, but the position and speed are refined to a very 

accurate value by the use of radar along with stereo.  

Occupancy grid based tracking is another popular choice for 

intermediate-level estimation of the dynamic properties of the 

scene, and this type of intermediate representation and tracking 

is the main focus of this paper. An occupancy grid is a 

probabilistic map of the driving environment, which encodes 

the present and past knowledge available from processing the 

sensor data, and which can be dynamically updated when new 

information becomes available. 

One of the first uses of occupancy grids, in the context of 

sonar based navigation, is presented by Elfes in [6], and the 

probabilistic mechanism for updating the grid from sensorial 

data is described in [7]. The initial grids were static 

representations of the environment, and were therefore 

unsuitable for perception of dynamic entities. One approach 
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for dynamic occupancy grid modeling is presented in [8], 

where the speed components along the coordinate axes are 

added as extra dimensions in the grid, leading to a 4D 

representation. 

Another dynamic occupancy grid tracking solution is 

presented in [9], where the speed of each cell is modeled as a 

distribution of possible values, and the tracker computes the 

probability of each value, along with the occupancy 

probability of the grid cell. The Bayesian reasoning process 

uses a set of possible antecedents, which are the cells that can 

influence the current cell based on the speed hypotheses, and 

the probabilities of the antecedents are combined with the 

sensor information. In [8] the dynamic Bayesian occupancy 

filter solution introduced in [9] is combined with the use of 

map information, which guides the hypotheses of the cell 

speeds to the allowed trajectories on the road. This solution 

prevents the system to consider unreachable positions, and 

enables it to better predict the vehicle paths when the road is 

curved. 

Tracking dynamic occupancy grids is difficult, because the 

speed information attached to the grid cells increases the 

complexity of the state space significantly. For this reason, 

there are several mixed solutions, which use static grids while 

identifying the moving objects as occupancy trails [10] or 

inconsistencies [11] and tracking them separately. 

Besides the dynamic versus static nature of the grid, and the 

way the dynamic grids represent their speed probability 

distribution, the grid solutions may differ in terms of their cell 

geometry. Three types of occupancy grid geometries are 

presented in [12], in the context of environment tracking based 

on stereo measurements: Cartesian (rectangular cell), 

column/disparity, and polar. Grid solutions differ also in the 

way sensorial data is used for grid updating, as some are based 

on the faster inverse sensor model [11], and some use the more 

accurate forward sensor model, whose advantages are 

described by Thrun in [13]. 

The occupancy grid model of the world is well suited for 

collaborative updating, using the information from multiple 

sensors or multiple observers. A solution that integrates the 

observations of multiple mobile observers into a unified 

description of the environment is presented in [14]. 

This paper presents an occupancy grid tracking solution 

based on particles. The particles will have a dual nature – they 

will denote hypotheses, as in the particle filtering algorithms 

such as CONDENSATION [15], but they will also be the 

building blocks of our modeled world. The tracking algorithm 

described in this paper will be particle-oriented, not cell 

oriented. The particles have position and speed, and they can 

migrate from cell to cell depending on their motion model and 

motion parameters, but they will also be created and destroyed 

using the same logic as the weighting-resampling mechanism 

described in [15]. The measurement data is the raw obstacle 

grid obtained by processing the elevation map, as described in 

[16], a measurement source which we have previously used for 

model-based object tracking, a technique described in [17]. 

Our solution is a fully dynamic, forward model-based 

Cartesian grid tracking system, which we believe comes as an 

improvement over the existing techniques, because due to the 

use of moving particles the representation of the speed 

probability distribution and the estimation of this distribution 

are no longer a concern. These distributions do not have to be 

approximated as histograms [9], Gaussian mixtures [8] or 

higher dimensions [18], and we don’t have to assume that one 

cell belongs to only one object with only one velocity. The 

speed probability distribution of one grid cell results naturally 

from the surviving particles assigned to that cell.  

The solution presented in this paper is a practical approach 

for probabilistic occupancy grid tracking, which has the 

benefit of simple integration of motion and measurement 

models, provides an easy mechanism for introducing 

additional constraints or information, and, by controlling the 

number of particles, allows the user to reach a tradeoff 

between accuracy and time performance. 

The results of the grid based environment tracking are used 

as input data for an obstacle reconstruction algorithm, where 

the stereovision-provided 3D points are grouped into cuboids. 

The grid tracking algorithm adds dynamic information 

(magnitude and orientation of a speed vector) to the 3D points 

which will be grouped. The benefits of the improved obstacle 

detection algorithm are threefold. First, at individual cell level, 

object boundaries are more accurately detected. The detected 

obstacles are confidently described by using the cuboidal 

model. Next, by exploiting motion at obstacle level, the 

obstacle’s orientation is more accurately and more easily 

determined. And finally, each obstacle carries speed 

information, a valuable cue for tracking and classification. The 

grid-based obstacle reconstruction algorithm is an extension of 

the one presented in [20]. 

II. SYSTEM OVERVIEW 

An overview of our solution is shown in figure 1. Each 

block is a key component of the overall algorithm, and the 

arrows show the dataflow. The prediction and measurement 

based update blocks form the main grid tracking cycle. The 

update is based on the measurement model, which transforms 

the raw measurement, unfiltered occupied cells extracted from 

elevation map processing, into conditional probabilities. The 

results of the measurement model block can also be used for 

grid cell initialization. 

  
Fig. 1. Algorithm flow overview 



  

As a final step, the results of the grid tracking process are 

used for cuboidal object reconstruction. 

III. THE GRID WORLD MODEL 

The particle grid tracking process is defined by our choice 

of the occupancy grid probabilistic representation. This 

chapter will describe our grid modeling solution. 

The world is represented by a 2D grid, mapping the bird-eye 

view 3D space into discrete 10 cm x 10 cm cells. The size of 

the grid is 400 rows x 128 columns (this corresponds to a 

scene size of 40x12.8 meters).  Like in other grid tracking 

solutions, the aim is to estimate the occupancy probability of 

each grid cell, and the speed components on each axis. 

However, these values are not key concepts in the workings of 

the algorithm that will be proposed in this paper, but they will 

be derived from a particle-based tracking mechanism.  

Considering a coordinate system where the z axis points 

towards the direction of the ego-vehicle, and the x axis points 

to the right, the obstacles in the world model are represented 

by a set of particles 

}...1),,,,(|{ Siiiiii NivzvxzxppS === , each particle i 

having a position in the grid, described by the row zi (a 

discrete value of the distance in the 3D world) and the column 

xi (discrete value of the lateral position), and a speed, 

described by the speed components vxi and vzi. The total 

number of particles NS is not fixed, but depends on the number 

of obstacles in the scene. Having the population of particles in 

place, the occupancy probability of a cell C is the ratio 

between the number of particles whose position coincides with 

the position of the cell C and the total number of particles 

allowed for a single cell, NC. 
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The number of allowed particles per cell NC is a constant of 

the system. In setting its value, a tradeoff between accuracy 

and time performance should be considered. A large number 

means that on a single cell multiple speed hypotheses can be 

maintained, and therefore the tracker can have a better speed 

estimation, and can handle fast moving objects better. 

However, the total number of particles in the scene will be 

directly proportional with NC, and therefore the speed of the 

algorithm will decrease. 

The speed estimation of a grid cell is the average speed of 

its associated particles.  
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Thus, the population of particles is sufficiently 

representative for the probability density of occupancy and 

speed for the whole grid. Multiple speed hypotheses can be 

maintained simultaneously for a single cell, and the occupancy 

uncertainty is represented by the varying number of particles 

associated to the cell. The goal of the tracking algorithm can 

now be stated: using the measurement information to create, 

update and destroy particles such that they accurately represent 

the real world. 

IV. PREDICTION 

This processing step will derive the present particle 

distribution from the past information, preparing the particle 

set for measurement. The prediction equations will use 

odometry and motion model information. 

The basic odometry information available through the CAN 

bus of a modern car is the speed v and the yaw rateψ& . 

Together with the time interval t∆ elapsed between 

measurements, these parameters can be used to compensate for 

the ego-motion, and separate it from the independent motion 

of the objects in the scene. Between measurements, the ego-

vehicle rotates with an angleψ , and travels a distance d. 

t∆=ψψ &                  (3) 
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The origin of the grid representation is displaced along the 

two coordinate axes by dx and dz. 

 

DXdd x /cosψ=              (5) 

DZdd z /sinψ=              (6) 

 

We denote by DX and DZ the cell size of the grid. A point 

in the grid is displaced by the following equation: 
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The prediction is achieved using equation 8, which 

combines the deterministic drift caused by the ego-motion 

compensation and the particle’s own speed, with the stochastic 

diffusion caused by the uncertainties in the motion model. The 

quantities xδ , zδ , vxδ and vzδ are randomly drawn from a 

Gaussian distribution of zero mean and a covariance matrix Q 

equivalent to the state transition covariance matrix of a 

Kalman filter.  
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The stochastic diffusion process allows the tracking system 



  

to cope with changes in the environment. For example, if an 

obstacle is accelerating, the particles whose speed was 

increased by the stochastic process will be favored by the 

measurement based update process, and the average speed of 

the object’s cells will be increased. 

From the grid model point of view, the prediction has the 

effect of moving particles from one cell to another, as seen in 

figure 2. The occupancy probability is thus dynamically 

adjusted using the particle’s motion model and the vehicle 

odometry. 

 

   
Fig. 2.  Particles in the grid, before and after prediction. 

V. MEASUREMENT BASED UPDATE 

The predicted particles are confronted to the measurement 

data, processed through the measurement model block, and 

multiplied or deleted depending on how well the data from the 

sensors support the occupied or the free hypotheses of each 

cell. The classical steps of a particle filter based tracker are 

resampling, drift, diffusion, and measurement (weighting). 

This behavior replaces a population of a fixed number of 

particles with an equal number of particles, which 

approximates an updated probability density function over a 

space of parameters. However, this approach works when the 

particles are hypotheses of the state of a system, not when the 

particles are the system itself (we can see our tracked world as 

physically composed of particles).  

Our algorithm tries to use the particles in a dual form – as 

hypotheses, and as building blocks of the world that we track. 

Their role as building blocks has been already explained. 

However, if we restrict our reasoning to a single cell in the 

grid world, we can see that the particle is also a hypothesis. A 

particle in a grid cell is a hypothesis that this cell is occupied, 

and that the cell has the speed equal to the speed of the 

particle. More particles in the cell mean that the hypothesis of 

occupancy is strongly supported. Less particles in the cell 

means that the hypothesis of the cell being free is supported. 

We can regard the difference between the number of particles 

in a cell and the total number of particles allowed in a cell as 

the number of particles having the occupancy hypothesis zero. 

A. Weighting the particles 

If we regard the number of particles in the cell to be 

constant, and some of them having the occupancy value “true” 

while some having it “false”, we can apply the mechanism of 

weighting and resampling.  

If we assume that the measurement data does not contain 

speed information, the weight of the particle depends only on 

the “occupied” hypothesis. Also, this means that all the 

particles having the same occupied hypothesis will have the 

same weight. The equations 9-14 apply to a single cell in the 

grid, and therefore the measurement, the coordinates x, z and 

the weights are cell specific. 
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The computation of the measurement conditional 

probabilities p(m(x,y)|occupied) and p(m(x,y)|free), that is, the 

application of the forward sensor model, is detailed in section 

VI. 

The number of particles having the “occupied” hypothesis 

true is the number of “real” particles in the cell.  
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The number of particles (hypotheses) having the “occupied” 

value false is the complement of NOC. 

 

OCCFC NNN −=               (12) 

 

The total posterior probability of a cell being occupied and 

of a cell being free can be computed from the number of 

free/occupied hypotheses, and their corresponding weights: 
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The aggregate (total) particle weights POC and PFC are used 

for particle resampling. The resampling of the particle 

population is done at the end of the measurement step, so that 

the next cycle can start again with an updated population of 

particles without concerning about their weight.  

B. Resampling 

The classical resampling makes NC random draws from the 

previous particle population of a cell, and the weight of each 

particle controls its chances of being selected. Because we 

don’t care for the “cell free” hypothesis particles, our 

resampling will instead decide for each real particle (particle 

having the occupied hypothesis true) whether it is destroyed or 

multiplied (and, if multiplied, how many copies of it are 

created). 

The following algorithm describes the process of 

resampling, which is materialized as duplication or removal of 

particles from the particle set.  

 



  

Algorithm Resample 

For each cell C 

 Compute NOC and POC 

 Compute resampled number of particles NRC 

 NRC=POCNC 

Compute ratio between actual number of particles and the 

number of resampled particles 

 

OC

RC
C

N

N
f =  

End For 

For each particle pi 

 Find corresponding cell C  

 If (fC>1) – number of particles will increase 

  Fn = Int(fC)   Integer part 

  Ff = fC -Int(fC)  Fractional part 

  For k=1 to Fn-1  

   S.Add(pi.MakeCopy) 

  End For 

  r = random value between 0 and 1 

  If (r<Ff) 

   S.Add(pi.MakeCopy) 

  End if 

End if 

 If (fC <1) – number of particles will decrease 

  r = random value between 0 and 1 

  If (r> fC) 

   S.Remove(pi) 

  End if 

End if 

End For 

 

The system will compute the number of particles that each 

cell should have after the process of resampling has been 

completed. The ratio fC between this number and the existing 

number of particles in the cell will tell us if the particles have 

to be duplicated or removed. If fC is higher than 1, the number 

of particles has to be increased. The integer part of the 

difference between fC and 1 tells us the number of certain 

duplications a particle must undergo (for instance, if fC is 2, 

each particle will be doubled). The fractional part of the 

difference is used for chance duplication: each particle will 

have a probability of being duplicated equal to the fractional 

part of this difference. 

If f is lower than 1, the number of particles has to be 

decreased, by removing some of the particles. Each particle 

has 1- fC chances of being eliminated. 

At this point the cycle is complete, and the tracking 

algorithm can process a new frame. Secondary estimations for 

occupancy, speed, or clustering the cells into objects can be 

performed at the end of this step. 

VI. MEASUREMENT MODEL 

The measurement model will relate the measurement data, 

which is a binary occupied/free condition derived from the 

stereovision-generated elevation map [16], to the conditional 

probabilities p(m(x,z) | occupied) and p(m(x,z) | free), 

probabilities that will weight the real and the virtual particles 

presented in the previous section. Building a sufficiently dense 

elevation map requires accurate dense stereo information, 

which is computed using a GPU optimized variant of the semi-

global matching technique, described in [19]. 

 

  
Fig. 3.  Weighting and resampling. The weight of the occupied hypothesis is 

encoded in the darkness of the cell of the left grid. 

 

In order to compute these probabilities, we start by 

computing the uncertainty of the stereo reconstruction, for 

each real world position x, z corresponding to a cell. First, the 

uncertainty of the distance reconstruction, in the case of a 

rectified system, is given by: 

bf

z d
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σ
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In the above equation, z denotes the distance, b is the 

baseline of the stereo system, f is the focal distance in pixels, 

and dσ is the error in disparity computation (usually about 

0.25 pixels, for a decent stereo reconstruction engine).  

The error in lateral positioning (usually much smaller than 

the error in z), can be derived from the distance error: 

z

x z
x

σ
σ =                   (16) 

The 3D errors are mapped into grid cell errors, by dividing 

them with the grid cell size on x and z. 
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In order to compute the conditional probability of the 

measurement cell, under the occupied or free assumption, we 

have to take into account a reality that is specific to 

stereovision sensors. The stereo sensor does not perform a 

scan of the scene, and therefore it does not output a single 

bird-eye view point for a real-world obstacle cell. We’ll take 

as example a pillar, which has almost no width, and no depth 

spread. The representation of a pillar in the occupancy grid 

should be a single cell. If the pillar were observed by a 

scanner-type sensor, this sensor will output a cell, displaced 

from the true position by an amount specific to the sensor 

error. For the stereo sensor, things are different, because the 



  

camera observes the whole height of the pillar, and therefore 

each pillar pixel will get a distance and a lateral position. This 

means that once we “collapse” the pillar information in the 2D 

grid representation, each part of the pillar may fall in a 

different cell, and the pillar will generate a spread of cells. The 

size of the spread area is controlled by the grid uncertainties 

on the x and z axes. 

This property leads us to find a reasonable approximation 

for the conditional probabilities of the measurement cells 

under the occupied/free assumption. We’ll count the obstacle 

cells in the measurement grid around the current cell position, 

in an area of zgrid _σ height and xgrid _σ width, and divide the 

number of found obstacle cells by the total number of cells in 

the uncertainty area. This ratio will be our approximation for 

p(m(x,z) | occupied). 
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By O(row, col) we denote the “occupied” value of the 

measurement grid, at position row and col. This value is 1 

when an obstacle cell is present and 0 when not. 

The conditional probability of the measurement given the 

“free” assumption is: 

)|),((1)|),(( occupiedyxmpfreezxmp −=   (19) 

These conditional probability values will be used to weight 

the particles. A graphic comparison between the raw 

measurement data and the conditional probability of the 

measurement under the “occupied” assumption is given in the 

following figure. 

 

 
Fig. 4.  From the occupancy grid to the particle weights. The bottom-right 

image encodes the weights of the occupied hypothesis. 

VII. INITIALIZATION 

Although the measurement step takes care of particle 

creation and deletion, this step only works if there are particles 

to be duplicated or deleted. For the prediction-measurement 

cycle to work, the particle population has to be initialized.  

From a strictly probabilistic point of view, each cell’s state 

is unknown at startup, which means that the cell has equal 

probability of being occupied or free. In our tracking system, 

this would mean that each cell should be assigned a number of 

particles equal to half the total number of particles allowable 

in a cell. However, this approach would significantly reduce 

the speed of the system, and would require permanent re-

initialization.  

Our solution is to use the measurement occupancy grid to 

create particles. If a measurement cell is of type obstacle, its 

p(m(x,z) | occupied) is high, and there are no particles in the 

corresponding tracked grid cell, a small number of particles 

will be created. The initial speed components vx and vz of the 

created particles will be sampled randomly from an initial 

range of possible values, and the initial position is confined to 

the creation cell. In this way, the initialization is a continuous 

process.  

Particles are automatically removed when they go outside 

the grid area, in the prediction phase. Another case of 

“administrative” removal (removal not caused by the 

probability mechanism described in section V) is when, due to 

particle drifting, the number of particles in a cell exceeds the 

allowed value. 

VIII. OBJECT RECONSTRUCTION USING GRID TRACKING 

RESULTS 

The grid tracking system provides probabilistic dynamic 

occupancy results, each cell in the grid receiving a probability 

of being occupied and free, and an average speed. These 

results are now used to extract individual dynamic objects, in 

the shape of cuboids, having position, size, speed and 

orientation. 

A. Obstacle localization 

The speed information for each cell in the tracking grid is 

used to augment each 3D point obtained from the dense stereo 

sensor as follows. For each frame, after the grid tracking cycle 

is completed and the speed estimates for each tracking grid 

cell are available, the 3D points are projected onto the tracking 

grid. This way each 3D point is associated with the cell of the 

tracking grid it falls onto. The 3D point is augmented to hold 

the speed of the cell it was associated with. The set of 

augmented 3D points holding position (x, y, z) and motion 

(magnitude, orientation) information is the input of the object 

reconstruction procedure described in the next paragraphs.  

The augmented 3D points will be processed by a polar 

occupancy grid, with variable cell size, which ensure that point 

density is independent of the range. A full description of the 

method is presented in [21]. 

The obstacle localization algorithm entails a two-stage 



  

procedure. All the described processing steps are performed 

on the polar occupancy grid which relates to the tracking grid 

solely through the use of the set of augmented 3D points. 

First the polar grid is populated with range and motion 

information, from the 3D points (Fig. 5). The computed 

motion information is integrated in the polar occupancy grid 

by projecting the 3D points and their associated motion 

vectors onto cells of the grid. In effect, each cell of the polar 

grid enclosing one or more points for which motion 

information was computed will also entail a motion descriptor 

for its own lateral or longitudinal motion in the form of 

magnitude and orientation. The two components are computed 

using a circular histogram also known as a histogram in polar 

coordinates (shown in Fig. 6). 

 
The highest peak of the histogram is extracted and it 

represents the dominant direction (orientation) for a given 

polar grid cell. To account for angular errors of the velocities 

estimated by the grid tracking algorithm, each bin of the 

histogram holds a 5° interval of orientations. 

The second stage of the method involves the use of a 

labeling algorithm that is able to exploit not only vicinity but 

also motion magnitude and orientation criteria. 

A depth coherency constraint imposes that only neighboring 

cells can be grouped into an obstacle. Additionally, a 

candidate cell at the fringe of the partially discovered/built 

obstacle should be grouped to the same object only if the 

speed of the candidate cell is in agreement with that 

determined for the (partial) obstacle, up to that moment. 

 
As each new cell is added to the obstacle, the cell’s 

contribution to the obstacle’s overall motion signature is 

processed and the obstacle’s properties are updated. Cells 

rejected due to motion differences are at the boundary of two 

closely positioned obstacles, and will be therefore grouped by 

the labeling algorithm into different obstacles. 

 
Fig. 7.  Vicinity and motion based decision logic used when adding a cell to a 

partially constructed obstacle.  

 
Fig. 5. Polar grid. (a) Gray scale image; (b) 3D points superimposed on the 

perspective image; Road points, points outside of the space of interest and 

obstacle points are classified and distinctively colored; (c) Top view of the 

scene: 3D points projected on the cells of the polar grid; Grid cell size is 

proportional to the distance from the origin of the world coordinate system. 

 
Fig. 6.  Motion orientation is determined for each cell for which motion 

information is available. (a) Perspective view of the scene, detected 

obstacles with superimposed motion vectors; (b) close-up view of the grid 

cells corresponding to the two cars, with motion information (lines inside 

cells show determined orientation); (c) orientation histogram for the 

highlighted cell; orientation is in agreement with the travelling direction of 

the car. 



  

 

This vicinity and motion based decision logic is described in 

pseudo code in Fig. 7 and offers insight on how to deal with 

special cases when either the cell or the partial obstacle do not 

hold motion information. A situation when the motion 

information can successfully discriminate between two 

obstacles that are very close together is shown in figure 8. 

B. Obstacle orientation 

This section introduces a new method of extracting the 

orientation of the non-stationary obstacles based on motion 

information. An accurate fitting of the cuboid on the detected 

obstacle is important for many subsequent algorithms that take 

as input the detected objects. 

Prior to this approach obstacle orientation was determined 

by computing the envelope of the obstacle’s 3D points and by 

analyzing the envelope’s visible sides. Due to stereo 

reconstruction limitations the shape of the point cloud can 

sometimes lead to an erroneous orientation of the obstacle. 

For non-stationary obstacles, motion can provide additional 

cues for orientation computation. Intuitively, the orientation of 

the obstacle should coincide with the orientation of the 

obstacle’s motion vector (see Fig. 9). 

 
In order to improve the accuracy of the determined 

orientation the following technique was devised. Instead of 

working with the orientation approximated for each cell of the 

obstacle, we recompute the orientation of the obstacle by 

taking all of its vectors into account. Each motion vector that 

falls within the already computed three dimensional un-

oriented bounds of the obstacle is added to a circular/polar 

histogram that is constructed for the analyzed obstacle.  

 
The peaks of the circular histogram designate the possible 

orientations of the obstacle.  

Each detected peak Pk is characterized by its weight and by 

its center of weight: 
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The largest peak, Pmax encompasses the prevailing 

orientation of the motion vectors and it is used to designate the 

orientation of the obstacle and the magnitude of the motion in 

that direction: 
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When the motion based analysis cannot determine a 

predominant orientation the obstacle orientation must be 

estimated using the envelope based method. 

IX. TESTS AND RESULTS 

A. Testing the grid tracking algorithm 

We have designed two types of tests in order to validate the 

particle grid tracking algorithm: qualitative tests and 

quantitative (numerical) tests. 

The qualitative assessment proves that the system is capable 

of building an occupancy probability grid from the 

measurement data, and is capable of identifying the motion 

associated with the cells in the grid. The qualitative assessment 

has been performed on real traffic scenes. 

Some results, from two traffic scenes, are shown in figure 

 
Fig. 8.  (a) Detection result without the use of motion information; (b) Close-

up on the grid cells of the merged pedestrians; (c) Improved detection results 

obtained with the use of motion information; (d) Close-up view on the cells 

of the two obstacles. 

 

 
Fig. 9.  (a) Pedestrian crossing the road from left to right, almost parallel to 

the longitudinal axes x; (b) Top-view of the 3D points and their associated 

motion vectors; (c) Orientation histogram for the pedestrian; the dominant 

direction of movement can be correctly. 



  

10. In the top row, the perspective image of the scene is given, 

and in the bottom row the three panels are, respectively: the 

measurement data (obstacle cells computed from the elevation 

map), the occupancy probability, and the speed labels, 

identifying the motion of the cells. In the left scene, we can 

identify two incoming vehicles (red), one outgoing vehicle 

(blue), and a stationary parked vehicle (black). In the right 

scene, we can identify a stationary parked vehicle, an outgoing 

vehicle, the stationary traffic sign on the isle, and the 

pedestrian group with a combination of stationary and lateral 

motion. 

For numerical evaluation, we have chosen a “follow the 

leader” scenario, with only one obstacle in the scene, so that a 

reasonable estimation of the object’s speed can be done in the 

absence of a cell clustering algorithm. The ego-vehicle is 

following the target vehicle, matching its speed. Therefore, the 

speed of the ego-vehicle is a benchmark for the estimated 

speed of the target. Figure 11 shows that after an initial lag (10 

frames, 0.5 seconds), the estimated speed converges to the 

ego-speed. The absolute mean error after the lag period is 1 

km/h. 

 

  

  
Fig. 10.  Qualitative assessment of the algorithm performance. Speed labels: 

black – stationary, red – incoming, blue – outgoing, yellow – lateral motion. 

 

 
Fig. 11. Left – Ego-speed (blue) versus the estimated target speed (green), in 

km/h. Right – image of the target vehicle. 

 

A second test implies a static object, observed from a 

moving vehicle traveling along a circular path. The circular 

path increases the difficulty of the estimation, due to the fact 

that the static object is in the field of view for only 3.5 

seconds. The results of the speed estimation are shown in 

Figure 12, against the speed of the observing vehicle. The 

static nature of the object can be inferred almost immediately. 

 

 
Fig. 12. Ego-speed (blue) versus the static object’s estimated, in km/h. Right 

– the static object. 

 

The time performance depends on the obstacle load of the 

scene, which influences the total number of particles. For a 

typical urban scene, and a total number of particles in a cell of 

50, the total running time is about 40 ms per frame. 

B. Testing the obstacle reconstruction algorithm 

The most significant benefits that the obstacle 

reconstruction algorithm reaps from the particle grid tracking 

system are related to better identifying individual objects when 

they are close together, and a more stable and accurate 

estimation of object orientation. 

The most common traffic situations when objects are close 

together and are difficult to separate tend to involve 

pedestrians. Their physical size is small, and they tend to leave 

little space between them, and therefore separating them as 

individual objects becomes difficult in the absence of dynamic 

information. Such is the case presented in figure 13, where two 

pedestrians pass each other at a small distance. Due to the 

uncertainties of the stereo measurement, they are sometimes 

grouped together. 

 

 
Fig. 13. Reconstruction based on feature position alone. Top – objects on the 

perspective image, bottom – grouped cells in the grid. 

 

The outcome of the object reconstruction algorithm 

becomes significantly better when motion information, 

supplied by the grid tracking system, is used. The results 

shown in figure 14 do not exhibit the fusion problem any 

more. One of the main advantage of using a grid tracking 

system, as opposed to other techniques such as optical flow, is 

that when occlusion occurs (as in this case), the motion 

information is kept in the grid, and when the object appears 

again the motion vectors are readily available. 



  

 

 
Fig. 14. Reconstruction results using the motion information. Top – objects 

on the perspective image, bottom – grouped cells in the grid. 

 

The other performance parameter we wished to test was the 

improvement in orientation estimation. A test vehicle crossed 

our field of view at 135 degrees, as seen in figure 15. 

 

 
Fig. 15. Test sequence for orientation evaluation 

 

The orientation estimated from the particle based motion 

information was compared to the orientation extracted from 

the shape of the 3D point cloud. The graph in figure 16 shows 

the results, which are clearly better for the motion based 

solution. The average of the geometry based results is 131.14 

degrees, while the average of the motion-based results is 

133.83, closer to the ground truth. The standard deviation of 

the geometry based estimation is 22.52 degrees, but if we 

remove the outliers it becomes 8.79 degrees. The standard 

deviation of the motion-based estimation is 3.39 degrees. 

 
Fig. 16. Orientation from point cloud geometry (blue) versus the orientation 

estimated from motion (green). Orientation is in degrees, versus frame 

number. 

 

The results show that the motion based object orientation, 

which relies on particle grid results, is clearly superior to the 

geometry-based estimation. Also, the comparison was made 

under conditions which are quite favorable to geometry-based 

estimation, as the object is quite close, and the stereo 

reconstruction quality is ideal. For objects farther away, in real 

traffic scenes, the difference between the methods will be even 

higher, but this scenario was chosen because of the availability 

of ground truth. 

X. CONCLUSION AND FUTURE WORK 

We have presented a grid tracking technique that models 

and tracks the driving environment using a set of particles with 

position and speed. Our solution proves capable of identifying 

occupancy and motion in complex dynamic traffic scenes, 

without the need of feature grouping or obstacle model 

matching or data association. 

The grid based tracking system is used as an intermediate 

method for dynamic parameters extraction, before the 3D 

features in the scene are grouped into cuboidal objects. The 

intermediate level tracking is not the only solution for 

attaching speed information to the primary features, because 

we can also achieve this using optical flow [19], but the use of 

tracking implies a higher stability of the speed estimation, 

robustness against temporary occlusions, and a lighter 

computation load for the same density of speed vectors. 

The dynamic parameters extracted from the particle grid are 

used to augment the stereovision provided 3D points, which 

are then used for object reconstruction as a cuboid shape. This 

approach is able to significantly improve the feature grouping 

results, as the motion information can be used to discriminate 

between static and dynamic objects, and also between objects 

heading in different directions, which could have been grouped 

as a whole on vicinity criteria alone. Also, the orientation of 

the obstacles is more accurately determined using motion 

information, compared to using the shape of the 3D point 

cloud alone. 

Future experiments with the particle grid size, speed and 



  

position uncertainties of prediction, and a refinement of the 

measurement model to include the error of the occupant cell 

extraction besides the uncertainties of the stereo algorithm, 

will allow us to optimize this system’s performance and 

accuracy. 
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