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Abstract 

 
This paper presents a robust lane marking 

detection algorithm suited for a large variety of traffic 
scenarios, under various lighting conditions. The 
algorithm detects dark-light-dark transitions using an 
improved method for horizontal gradient computation, 
which accounts for the expected marking width and for 
the perspective effect by means of a variable size filter. 
The computation of the variable filter-based gradient 
is optimized for real-time operation by reusing the 
intermediate results of the neighboring pixels. 
Stereovision is used for final filtering of the results, by 
selecting only the marking-like features located on the 
road surface. 
 
 
1. Introduction 
 

Lane detection, a problem that has been 
extensively researched for many years, is a crucial 
component of the driving assistance systems and of the 
autonomous robot navigation systems. The research in 
the lane detection field continues, because so far no 
solution is both complete, fast, easy to set up and error 
free. Most researchers have decomposed the problem 
of lane finding in two sub-problems: lane delimiter 
feature extraction and 3D or 2D lane model matching. 
The weight of each of the sub-problems may differ: a 
simple feature extraction algorithm can operate well 
with a complex, elaborate model matching technique, 
or vice versa. Ideally, one must try to extract the best 
of both sides, but compromise must be often made for 
the sake of real-time operation. 

Lane delimiter feature extraction algorithms 
traditionally use the grayscale monocular image as 
input data. The features that are found can be simple 
gradient maxima [1], edges extracted by Canny-
compliant edge detectors [20], [2], edge-like elements 
that have a constrained orientation obtained through 
frequency domain analysis [9], eigenvalues of the 
moment matrices [16] or steerable filters [12]. The 

aforementioned features are mostly edges, which do 
not take into account the particularities of the lane 
markings: light strips of expected width on a darker 
background. This particularity is exploited in [6], 
where it is detected as a pair of gradient values of 
similar magnitude and opposing signs (the dark-light-
dark, DLD, transition) and in [10] where, after a 
segmentation, the lighter image regions that have an 
expected width (conditioned by the perspective effect) 
are taken into account and in [7] through a 
segmentation step followed by a complex classification 
of the lighter segments using their geometrical 
properties and a decision tree framework. An elaborate 
lane marking detection method, presented in [3], uses 
the Inverse Perspective Mapping (IPM) to compensate 
for the variable lane marking width in the image space, 
and then filters the resulted image with a marking 
width-conscious filter, followed by adaptive 
thresholding. 

Other lane delimiting feature extraction methods 
use color images, on which they perform segmentation 
either by using the original RGB color space [5], the 
HSI color space [17] or combinations of color and 
texture [4]. Almost all color –based techniques are, to a 
certain degree, segmentation algorithms. 

Stereovision is another tool for lane delimiter 
feature extraction. The 3D information associated to 
image features (which can be edges, points, blobs, etc) 
helps select the ones located on the road, minimizing 
the effect of obstacle features on the lane detection 
process. The reasoning for road feature selection can 
be performed either on the 3D coordinates, as in [14], 
or on the image coordinates augmented by the stereo 
disparity [19]. 

Lane delimiting information can be extracted also 
by the use of active sensors, such as RADAR and 
LASER. The classical use of such sensors generates a 
polar range map, which is limited from the lane 
detection point of view, but can extract the general 
limits of the road itself (guardrails, pillars, etc). A lane 
detection method based solely on laserscanner is 
presented in [8]. Radar is used to help an image-based 
lane detection process in [11]; in [18] laser is used for 



near curb detection, while providing a starting search 
zone for the forward-looking image-based algorithms. 
Recent laser and radar technologies allow the 
development of active sensors that provide range and 
reflectivity images instead of a simple distance “slice”, 
and these images can be processed like normal images 
[13] or they can be combined with color images to help 
the road segmentation [15]. 

The method described in this paper is centered on 
the classical DLD transition paradigm, but brings 
significant improvements in the way these transitions 
are detected. The gradient is computed using a variable 
size filter, targeted for the desired marking width and 
adjusted with the image’s perspective effect. Real time 
computation of this gradient is achieved through 
“software pipelining”, by reusing the intermediate 
values of the neighboring pixels. Another improvement 
is the use of stereovision to filter out the features that 
are not located in the road plane. The resulted 
algorithm is a robust and real-time lane marking 
extractor suitable for all marked roads (urban and non-
urban). 
 
2. Principle 
 

The lane marking is usually white, or anyway it 
has a lighter color than the rest of the road surface. If 
one scans over the lane marking horizontally, the 
perceived intensity will vary in a specific Dark-Light-
Dark (DLD) pattern. This property is not influenced by 
shadows, unless the shadow ends in the middle of the 
road marking, a highly unlikely event. In [7] this DLD 
transition is detected as a pair of gradient values of 
similar magnitude and opposing sign. 
 

  

 
Figure 1. The horizontal gradient for a lane marking. Dark-

light-dark transition is encoded in the gradient 
 

The problem is that the perspective effect affects 
the perceived level of detail of the road surface. The 
closest visible road part presents a richness of texture, 
even if the road is asphalt only, while for the farthest 
part even the markings are barely visible. A gradient 
computed with a constant size mask, such as the one 

that’s used for a full-image, all-purpose edge detection, 
assumes that at any point in the image the level of 
detail is the same. A small differentiation kernel (i.e., 
the Sobel filter), will extract the edges corresponding 
to the far markings, but it will also extract false edges, 
corresponding to the noisy road texture, for the near 
part of the road. This is not, however, the most 
dangerous side effect of using a fixed size kernel. The 
transition between light and dark (as it is the case for 
lane markings) will not occur in the same number of 
intermediary values for a near marker and for a far 
marker, and therefore the gradient values may be 
smaller for the near markings (transition is smoother). 
If the resulted gradient is too low, the edge may be 
missed completely. 

A general-purpose filter is suitable for obstacle 
detection, as their distance is unknown and there is no 
way of knowing the level of detail a priori. The lane 
case is different: the road is mostly flat, we know the 
position of the camera with respect to the road, and we 
know a minimum acceptable width of the lane 
marking. This way, we can predict the minimum width 
of the marking for each position in the image, using the 
perspective effect.  
 
 
3. Algorithm description 
 
3.1. Computing the horizontal gradient using 
an adaptive size mask 
 

The way in which we establish the width of the 
marking in the image is very simple: by projecting a 
point of coordinates (X=0, Y=0, Z=infinity) in the 
image plane, we establish the vanishing line. This is 
the topmost image line containing road information. 
On this line, the size of the road marking is zero. By 
projection of two points, (-w/2, 0, ZL) and (w/2, 0, ZL), 
ZL being the minimum distance where the road gets 
visible in the image and w being the minimum road 
marking width, we obtain the image width of the lane 
marking for a lower image line. The width of the 
differentiation filter for the other image lines will be 
computed by linear interpolation. The process is 
illustrated in figure 2. 
 



 
Figure 2. Computing the width of the differentiation filter 

 
The smallest filter will be [-1 0 1], at the horizon 

line, and the general filter will have the form [ -1 -1 … 
-1 0 1 1 .. 1]. One may object that the method of 
evaluation of the kernel’s width does not account for 
the possible changes of pitch angle, or of vertical 
curvature. The answer is that this is just estimation, 
and does not have to be exact. It just tries to account 
for the variable level of detail. A small variation of 
pitch or vertical curvature does not change things 
dramatically, especially not for the close road regions, 
which are most affected by the variable width filtering. 

The value of the horizontal gradient of a point of 
coordinates (x, y) is given by equation 1. 
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Applying the above formula directly is 

computationally expensive, as D’s value may even go 
beyond 20, for the lowest image lines. However, we 
can observer that the gradient of a point differs very 
little from the gradient of its previous neighbor. For 
that, we have to defer the division by 2D to the end of 
the computation. Let’s denote the un-normalized 
gradient by GU: 
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Then we have a recurrent equation: 
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This means a fixed computation time for each 
step. Off course, this gain is felt for D>=3, otherwise it 
is faster simply to apply equation (1). Normalization 
takes place at the end of each line. 
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The final step is to average each gradient value 

with the values of its top and bottom neighbors, for 
increased stability. This is equivalent to having a 
3x(2D+1) size filter for horizontal gradient 
computation through convolution. 

The result of applying the adaptive differentiation 
filter is presented in figure 3. The zero value of the 
gradient is represented as image intensity 128, so that 
both negative and positive values can be shown.  
 

 

 
Fig. 3. Original grayscale image (top) and the result of 

applying the adaptive horizontal gradient filter (bottom) 
 
 
 



 
3.2. Non maximum / minimum suppression 
 

We have to identify the lane marking edges, and 
therefore non-extreme suppression is performed on the 
image resulted from the adaptive horizontal gradient 
filtering. As a wider kernel sometimes means a slower 
variation of the gradient as the distance from the edge 
increases, we have made a small modification to the 
non-maximum suppression technique. The classical 
non-maximum suppression conditions are something 
like: 
 
If I(x,y)<I(x-1, y) or I(x,y)<I(x+1,y) then Idest (x,y) = 0 
 

Our non-maximum suppression conditions are a 
little different: 
 
If I(x,y)<I(x-1, y) or I(x,y)<I(x+1,y) then Idest (x,y) = 0 
Else 

If I(x,y)=I(x-1, y) and I(x,y)<I(x-2,y) then I(x,y)=0 
Else 

If I(x,y)=I(x+1, y) and I(x,y)<I(x+2,y) then I(x,y)=0 
 

Basically, we include the neighbors’ neighbor into 
the comparison. The result of this non-extreme 
suppression is shown in figure 4. 
 

 
Figure 4. Results of non-maximum/minimum suppression 
 
3.3. Finding DLD pairs 
 

For each of the resulted maxima, a search for the 
corresponding minimum is performed. The interval of 
the search is given by the minimum and maximum 
possible lane marking widths for the specific image 
line. 
 

 
Figure 5. The interval for pair search 

 
The pair gradients must be similar in magnitude 

and opposed in sign. The similarity is computed by the 
following formula: 
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A pair is found if the similarity measure is lower 

than a threshold T. This threshold can have two values: 
Tlow = 0.3, and Thigh=0.5. The selection between one of 
the two possible threshold values depends on the 
average brightness of the points between the point of 
maximum and its possible pair. If this brightness is 
higher than 200, the selected threshold is Thigh, 
otherwise the selected threshold is Tlow. This follows a 
simple line of thought: if the surface between the two 
possible marker edges is bright, we are more certain 
that this is in fact a marker, and therefore we can relax 
the conditions of gradient similarity. Otherwise, we 
cannot rely on brightness to give us a cue about the 
possible marker existence, and we need to tighten the 
conditions so that we can avoid the false positives. The 
value 200 was chosen rather arbitrarily, and a possible 
automatic selection, based on the average image 
intensity may yield better results. 

The points of very low gradient magnitude are 
eliminated in this step. The result of the dark-light-dark 
pairing process is shown in figure 6. 
 

 
Figure 6. Result of eliminating all the features that do not 

obey a dark-light-dark pattern 



3.4. Selecting only the road features, using the 
3D information 
 

All the processing so far has been 2D processing, 
aided by a little information about perspective. 
Stereovision provides the 3D information for the points 
that remain after step 3, and we can therefore eliminate 
the features that don’t belong to the road surface. A 
method for extracting the parameters of the vertical 
profile of the road surface (pitch and vertical 
curvature) was described in [14]. 

 
Figure 7. The final lane marker detection result 

 
4. Results 
 

The feature extraction algorithm is part of a 
stereovision-based lane and obstacle detection system 
for that can operate in real-time on highways and in the 
urban scenarios. The lane detection algorithm can work 
on simple road edges, in the absence of lane marking 
classification, but lane marking features take priority, 
when present. For this reason, the lane marking 
detector must focus on robustness, not on completeness 
(it is better to have less detected markings, as they are 
also edges, than to have false positives of high 
priority). 

The algorithm was tested in a large variety of 
scenarios, from highway to urban and rural, in multiple 
lighting conditions and with different camera setups 
(different focal lengths, different imaging sensors) and 
it has proven to be robust and scenario independent. 
The markings were detected almost all the time, 
provided they looked like markings (not too dirty or 
too thin), and the only false positives are caused by 
structures that cannot be differentiated from lane 
markings without the help of a larger context. 
 
 
 
 
 

 

 
Figure 8. Detected features in a classical highway 

scenario – clear markings 

 

 

 
Figure 9. Detected features in urban scenario – clear 

markings 

 

 

 
Figure 10. Detected features in rural scenario – saturated 
markings, low contrast, plenty of noise features on the 

ground 

 
 
 
 



 

 
Figure 11. Detected features in urban scenario – worn 

markings, very low contrast  
 
 
5. Conclusion 
 

The use of a variable size filter that accounts for 
the variation of the lane marking width with the 
perspective effect proved to be a powerful tool for 
dealing with the variable level of detail and with near 
range noise texture, without the use of costly and 
damaging low past filters. The implementation of this 
filter came without any significant computation cost 
increase, due to the ingenious use of the partial results 
of the pixel neighbors. In this way we have increased 
the robustness and performance of a classical lane 
marking detection technique, the dark-light-dark 
transition detector, and we have obtained an excellent 
all-purpose lane delimiting feature extractor.  
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