
  

  

Abstract— Accurate and robust lane results are of great 

significance in any driving assistance system. In order to 

achieve robustness and accuracy in difficult scenarios, 

probabilistic estimation techniques are needed to compensate 

for the errors in detection of lane delimiting features. The paper 

presents a solution for lane estimation in difficult scenarios 

based on the particle filtering framework. The solution employs 

a novel technique for pitch detection based on fusion of two 

stereovision-based cues, a novel method for particle 

measurement and weighting using multiple lane delimiting cues 

extracted by grayscale and stereo data processing, and a novel 

method for deciding upon the validity of the lane estimation 

results. Initialization samples are used for uniform handling of 

the road discontinuities, eliminating the need for explicit track 

initialization. The resulted solution has proven to be a reliable 

and fast lane detector for difficult scenarios. 

 
Index terms-Lane detection, tracking, particle filtering, cue 

fusion, stereovision 

I. INTRODUCTION 

ane/road detection has been a fertile research field for 

decades, due to the great significance of accurate and 

robust road description results in any driving assistance 

system. The algorithms have become increasingly complex, 

as the targeted scenarios became increasingly difficult. From 

the highway scenario, the lane detection systems moved to 

city and country roads. With this move, the initial emphasis 

on lane delimiting features such as lane markings was 

replaced by the emphasis on model parameters estimation 

techniques, which use static and dynamic knowledge-based 

probabilistic constraints to counteract possible noisy features 

and smooth the result. These constraints lead to probabilistic 

reasoning in the form of tracking, traditionally achieved by 

the use of the Kalman filter. The use of Kalman filter 

tracking has the advantage of reducing the search space, 

eliminating the detection outliers, and smoothing of the 

result. 

The features that make the Kalman filter solutions smooth 

and efficient are the very features that cause problems when 

the road is not continuous. Sharp turns, lane changes, 

atypical road geometries pose problems to a tracker that 

represents the lane probability density as a Gaussian 
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functions, and the reduction of the search space around the 

past results makes it difficult to handle new hypotheses, and 

causes detection errors to accumulate, if the search regions 

are drawn towards false delimiters. 

Particle filtering is a novel technology for probability-

based tracking, allowing multiple hypotheses tracking, 

simple measurement, and faster handling of road 

discontinuities.  

This paper describes a lane detection system that 

combines the advantage of particle filtering, stereovision and 

grayscale image processing in order to achieve robust lane 

estimation results in difficult scenarios of city, highway and 

country roads. 

II. PROBABILISTIC FOUNDATIONS OF LANE TRACKING 

While there is no universal definition of tracking, we can 

regard it as the process of reasoning about the state of a time 

evolving entity given a sequence of observations. In 

particular, lane tracking can be defined as the process of 

reasoning about the position and geometry of the lane given 

a sequence of image-derived feature sets.  

The goal of tracking as probabilistic inference is to 

evaluate ),...,|( 00 iii yyP == YYX , that is, to compute the 

conditional probability density of the state Xi given the 

sequence of measurements from the past and current frame. 

Due to the fact that the tracking process must deliver 

result at each frame, and to the fact that a tracker should be 

able to function in mostly the same way for an indefinite 

period of time, the process of estimation of 

),...,|( 00 iii yyP == YYX  has to be written in a recursive 

manner, such that the results of the past frames can be reused 

in the estimation for the current frame. In order to achieve 

this, the following concepts are used: 

Dynamic model: )|( 1−iiP XX , the probability of reaching 

some value of the random variable Xi given the past state Xi-

1, under the assumption that only the immediate past matters. 

Prediction: computation of the conditional probability 

density of the current state given the past sequence of 

measurements, ),...,|( 1100 −− == iii yyP YYX . Given the 

simplification assumption that only the immediate past 

matters, the prediction probability values can be computed 

recursively, given the past results and the dynamic model: 

Probabilistic Lane Tracking in Difficult Road Scenarios Using 

Stereovision 

Radu Danescu, Sergiu Nedevschi 

L 



  

∫ −−−−

− =

11011

10

),...,|()|(

),...,|(

iiiii

ii

dyyPP

yyP

XXXX

X
    (1) 

Data association: At each frame i there may be several 

measurements available, and not all of them are equally 

useful. Denoting by yi
r
 the r-th measurement of the frame i, 

the probability of this measurement being useful is expressed 

as ),...|( 10 −= i

r

ii yyyP Y . If each measurement is 

conditionally independent of the others (the measurement 

independence assumption is taken), the usefulness of each 

measurement can be computed as: 
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State update: the state probability density 

),...,|( 00 iii yyP == YYX , the end result of the tracking 

process, is computed using Bayes’ rule. 
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The equations of tracking as probabilistic inference are 

complex to apply in the general case. Even more, the 

probability densities involved impossible to represent 

analytically most of the time, and therefore are 

approximated. Approximating means either coercing them to 

a known probability density function, such as a Gaussian, or 

by maintaining a discrete numerical representation 

throughout the whole process. The Gaussian representation 

leads to the well-known Kalman filter solutions, and the 

representation as discrete samples leads to the particle 

filtering solutions. 

III. PARTICLE FILTERING 

A practical approach to tracking general probability 

density functions, particle filtering is described in [3]. 

Instead of trying to approximate an unknown function 

analytically, their system uses N discrete values called 

“samples” or “particles”. At each given time t, a particle i is 

defined by a value 
i

tx and a weight
i

tπ , the sum of all 

weights being 1.  

  

 
Fig. 1. Analogy between a probability density function and 

a set of weighted samples 

 

The problem of tracking becomes the problem of 

evaluating the values and the weights, given a dynamic 

model and an observation density function.  

For algorithm optimization purposes, a parameter is added 

to the each particle, changing the particle representation to 

}...1,,,{ Nic
i

t

i

t

i

t =πx  . This parameter is defined as the 

sum of the weights of each particle from 1 to i (a cumulative 

histogram). Each iteration of the CONDENSATION 

algorithm has the aim of evaluating a new set of particles, 

given the previous set, the dynamic model and the 

measurements. 

The first step of the algorithm is resampling. A weighted 

sample set is transformed into a new set of samples, of equal 

weight but uneven concentration through the domain of 

values of x. This is achieved by performing N random draws 

from the particle set, using the particle weights as 

probabilities for particle selection. A particle having a larger 

weight will be selected several times, while a particle having 

a low weight may not be selected at all. The new set of 

weightless particles and the weighted set approximate the 

same density function. 

 
Fig. 2. Same probability density function, approximated 

by weighted and weightless particles 

 

Prediction is the next step of the CONDENSATION 

algorithm. In a general form, this is achieved by sampling 

from the dynamic model density function. This function 

describes the likelihood of each possible current state given 

the assumption that the past state is described by the value of 

the weightless particle i. A more pragmatic approach is to 

assume that the new state is derived from the past state partly 

by a deterministic process, described by a function or a 

linear transformation, and partly by a random factor. 

Each weightless particle resulted from the resampling step 

is subjected to a deterministic transformation, which will 

take into account the state transition equations of the system, 

and a stochastic diffusion which will account for the random 

events that may change the state. 

 



  

 
Fig. 3. Deterministic drift using weightless particles 

 
Fig. 4. Stochastic diffusion using weightless particles.  

 

The final step of the algorithm is the measurement/update 

process. In the general formulation of the tracking problem 

as probabilistic inference, updating means applying Bayes’ 

rule to get the posterior probability density given the prior 

and the measurement. The prior state probability density is at 

this point completely encoded in the distribution of the 

weightless particles of value through the domain of possible 

state values. The posterior probability density function is 

obtained by simply weighting the particles using the 

likelihood of observation, )|( i

tttp xxy = . Several cues 

can be combined in this step by multiplication, using the cue 

conditional independence assumption, if applicable. 

 
Fig. 5. Weightless particles are weighted by measurement 

IV. RELATED WORK 

Lane estimation through Kalman filtering was pioneered 

by Dickmanns [1], and since then many researchers have 

devised working solutions, such as [2][7]. The Kalman filter-

based lane tracking relies on the model-based prediction for 

establishing search regions for detection, and uses the 

detection results to update the state. This approach expects a 

continuously varying road situation, and the discontinuities 

are usually handled by reinitializing the tracking process. 

The solution presented in [6] handles some particular case of 

road discontinuities by using two instances of the road 

model, but it is clear that the Kalman filter is not the best 

choice for tracking discontinuous roads. 

A shift towards particle filtering for lane estimation is 

currently taking place.  A particle-based lane solution usually 

starts with particle sampling, followed by drifting and 

measurement. The measurement step is considerably simpler, 

in comparison to the Kalman filter, because it usually 

consists of a comparison between the particle and the image 

data, from which a weight is derived, and therefore no 

complex detection algorithms are required. However, the 

measurement step is executed for each particle, so the 

simplicity is essential for adequate time performance. [10] 

presents a lane detector based on a condensation framework, 

which uses lane marking points as measurement features. 

Each point in the image receives a score based on the 

distance to the nearest lane marking, and these scores are 

used to compute the matching score of each particle. The 

system uses partitioned sampling (two-step sampling and 

measurement using subsets of the state space, achieving a 

multiresolution effect), importance sampling, and 

initialization samples (completely random samples from the 

whole parameter space) which cope faster with lane 

discontinuities. In [4] we find a lane detection system that 

uses the particle filtering framework to fuse multiple image 

cues (color, edges, Laplacian of Gaussian). For each cue a 

comparison method between image data and the particle is 

designed, the likelihood is computed, and then the 

likelihoods are combined by multiplication. This solution 

also uses initialization samples for faster lane relocation, and 

additional sampling around the best weighted particles for 

improvement of accuracy. 

The much simpler way in which a particle filter handles 

the measurement information allows the use of a wider range 

of cues. Such is the case of the lane detector for country 

roads, presented in [5], where the image space is divided into 

road and non-road areas and each pixel in these areas 

contribute to the final weight by its intensity, color, edge and 

texture information. The likelihood of each feature value to 

belong to either road or off-road areas is computed using 

trained histograms, thus allowing a non-Gaussian, 

multimodal probability density not only for the lane state, but 

also for the measurement. The work presented in [11] also 

shows the value of the particle filtering technique for 

heterogeneous cue fusion, when image information is fused 

with GPS and map information for long distance lane 

estimation. In [12], the authors describe a system that uses a 

hybrid approach, combining lane border hypotheses 

generated using a RANSAC type algorithm with hypotheses 

from a particle filter, and then using further probabilistic 



  

reasoning to choose the best border pair to delimit the lane.  

V. SOLUTION OUTLINE 

The system continuously evaluates the state of the lane by 

means of a set of particles. There is no initialization phase 

therefore each cycle is run exactly in the same way, as 

depicted in figure 6. The cycle starts with particle 

resampling, which is done partially from the previous 

particle distribution and partly from a generic distribution 

that covers all lane geometries, in order to cover the possible 

discontinuities that may arise. The deterministic drift is 

applied to all particles, taking into account the ego motion 

parameters such as speed, yaw rate and frame timestamps, 

and then stochastic diffusion will alter each particle in a 

random way. 

Pitch detection is done independently of the particle 

system, using a probabilistic approach. The value of the 

detected pitch is set to each particle. The pitch value is also 

used to select the road features, which are then used to 

weight the particles. 

A validation step ensures that the particles are locked on a 

lane, and if this step succeeds a lane representation is 

estimated. 

 

 
Fig. 6. Lane detection algorithm outline 

VI. ALGORITHM DESCRIPTION 

A. The Lane Particles 

The lane state probability density is described at a given 

time t by a set of N weighted 

particles }...1,,{)( Nip
i

t

i

t =≈ πxx . The particle value x is 

a lane state hypothesis, in the form of a lane description 

vector. 

The coordinate system that is used has the point of origin 

on the ground in front of the ego vehicle, centered relatively 

to the width of the car. The X axis is positive towards the 

right of the vehicle, the Y axis is positive towards the ground, 

and the Z axis is positive along the forward direction. The 

lane is a surface stretching forward, bounded by two 

delimiting curves. The X coordinate of the delimiting curves 

depends on the lane parameters, the chosen distance Z and 

the delimiter type t (left or right). 

),( tZhX =  

We’ll denote the above equation the horizontal profile of 

the lane. The lane parameters that affect the function h will 

be denoted as horizontal profile parameters (such as the 

horizontal curvature). 

In the same way we can describe the variation of the Y 

coordinate of each of the delimiters, with the equation of the 

vertical profile of the lane. 

),( tZvY =  

The lane tracking system was designed in a modular 

fashion, the equations for the vertical and horizontal profile 

being easily configurable. The measurement function is 

independent on the 3D model, as long as sets of 3D points 

for the delimiters are available. We have found that for the 

majority of cases the following set of parameters was 

sufficient: 
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Due to the configurable nature of the system, we have 

been able to experiment with several other models and 

parameter sets. A model that included a width variation 

parameter has been successfully tested in highway scenarios 

(the results section includes the tests done with this model), 

but the simpler model described above has proven to be 

more reliable in urban scenarios. A quite powerful argument 

against the use of a very complex lane representation model 

is that the visibility range is quite limited due to the camera 

focal distance and to the complexity of the city traffic. 

B. Prediction 

Before prediction can be applied, the past state described 

by the particle set   has to be resampled into particles of 

equal weight. A fraction R=0.1 N of the particles will be 

selected from a uniform probability distribution spanning the 

whole range of possible lane parameters. These particles 



  

account for the probability that the currently tracked lane can 

be erroneous, or that a better lane candidate appears, such as 

in the case of lane change, or road forking. 

Each particle is transformed via prediction, achieved by 

applying the following equation: 

ttt

i

tt

i

t wuBxAx ++= −1
ˆ  (4) 































−

−=

100000

0100000

0010000

0010
2

0

0000100

0000010

0000001

2

t

t
t

t

s

s
s

A































=

t

t
t

s

s

0

0
2

0

0

0

2

B tt c=u  

The matrix At is the linear transformation that encodes the 

way the lane evolves in time in the absence of any input from 

the driver, and Bt is the matrix that relates the driver input to 

the lane evolution. The input consists of ct, the curvature of 

the vehicle’s trajectory, derived from the yaw rate. Matrices 

At and Bt depend on the space st traveled by the vehicle 

between measurements. 

The part
tt

i

tt uBxA +−1
ˆ   is the deterministic part of the 

prediction, when motion laws are applied and each possible 

past lane configuration is clearly mapped into a present 

configuration. Besides the deterministic part, each particle’s 

position is altered by a random value wt, drawn from a 

Gaussian distribution of zero mean and covariance matrix Qt. 

The covariance matrix Qt is obtained by scaling a fixed 

matrix Q0, calibrated for a time of 100 ms between frames, 

with the actual elapsed time between measurements (as the 

frame rate is not fixed). This is natural, as a longer time 

between measurements allows the lane to deviate more from 

the predicted configuration. 

C. Pitch detection 

Pitch detection has to be handled somehow differently, 

outside of the particle filtering framework, due to the 

following reasons: pitch does not track well (is not very 

predictable), and pitch selection influences the measurement 

data, selected from the 3D set points knowing the pitch 

angle. 

 

 
Fig. 7. A complex city scene with road, cars and walls, 

and a side view of the reconstructed 3D points. The possible 

domain of pitch variation is highlighted. 

 

Assuming the origin of the center of coordinates is at 

ground level, immediately in the front of the car, it can be 

assumed that for about 10-20 meters, the road seen from one 

side will be a line passing through this origin. This line is 

defined by the pitch angle alone. Similarly to our previous 

version of the stereovision-based lane detection [7], the 

process of pitch detection starts by building a polar 

histogram that counts the points along each line passing 

through the origin in the lateral projection (distance-height 

plane). The lines correspond to discrete values of the pitch 

angle, spaced at 0.1 degrees, ranging from -2 to 2 degrees. 

The algorithm for polar histogram building is the following: 

 

Initialize polar histogram H (index) to 0, for each index  

For each 3D point p 

 If distance (p)> Limit go to next point 

 Find the angle of the line passing through p and the origin 
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)(
tan 1
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pheight
p

−=α             (5) 

 If 
oo 22 −<> pp or αα go to next point 

 Find the index of pα in the polar histogram 
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Increment the polar histogram by a variable amount taking 

into account the variability of the point density with the 

distance 

K

pdistance
indexHindexH pp

2
)(

)()( +=    (6) 

End For 

 

The difference from the previous pitch detection method is 

how we process this polar histogram. Previously, we found 

the maximum of the histogram, and then scan the histogram 

bottom up until a value greater or equal to two thirds of the 

maximum was found. The reasoning behind this approach is 

that the road is the first structure of substantial number of 

points encountered scanning the scene from bottom up, and 

the “substantial” part is relative to the scene. The problem 

with the previous approach is that it is hard to justify its 

correctness, and one can imagine some rare situations when 

it would fail. For the current lane detection algorithm, a 

probabilistic approach is used, which describes better 

relations between the real world and the possible pitch value. 

This means that for each of the pitch candidates indexα  we’ll 

approximate the probability density )( indexp αα =  given 

the available information. 

There are several assumptions that will govern the process 

of probability computation. The first assumption is that pitch 



  

history does not matter, as the pitch variation is due mostly 

to imperfections in the road surface, imperfections that are 

not easily to predict (one can argue that an oscillatory model 

of the pitch variation can be used, but it would introduce a 

constraint that can lead to wrong estimations if not properly 

calibrated). This means that the pitch probability density will 

be derived from current measurements alone. 

)|(),...,,|( 21 tt ypyyyp αα =  (7) 

The second assumption is that there is no prior, and 

therefore the probability density of the pitch variable is 

directly proportional to the measurement likelihood. 

)|()|( αα tt ypyp ∝  (8) 

The measurement is composed of two cues, derived from 

the following assumptions about the road points 3D seen in 

the lateral projection: 

- The road points should be nearly collinear 

- Most of the points in the 3D space are above the road 

surface 

The cue corresponding to the first assumption has the 

likelihood directly proportional to the polar histogram H, and 

the likelihood for the cue of the second assumption is 

directly proportional to a cumulative histogram derived from 

H, CH. 

)()|( indexHyp indexH ∝= αα  (9) 

)()|( indexCHyp indexCH ∝= αα  (10) 

)()()|( indexCHindexHyp tindex ∝= αα  (11) 

 

a)  

b)  

c)  

Fig. 8. Combining the cues for pitch: a) polar histogram, 

b) cumulative histogram, c) combination 

 

The pitch candidate with the highest likelihood, 

corresponding to the highest value of the histogram product, 

is chosen as the pitch estimate. Figure 8 shows the effect of 

pitch cue fusion, leading to a clear maximum even if the 

complex scene leads to multiple strong peaks in the polar 

histogram. Another estimation method that was taken into 

consideration was the weighted sum of the pitch candidates, 

but the maximum lead to better results. 

The value vectors x of the predicted particles are modified 

by setting their pitch field to the estimated pitch value. This 

pitch value is also used for selecting the road points from the 

available 3D point set, in order to perform the next stages of 

the measurement. 

D. Mapping the particles in the image space 

Pitch detection is the only part of the measurement process 

that happens in the 3D space, and for the next stages, the 

particles have to be compared to image space measurement 

data. In order to achieve the comparison, from each particle 

value of the form T

CVH

i

t XCCW ),,,,,,( ψγα=x  a 

measurement space vector is generated, 

),...,,,...,,...( ,1,,1,1 PRRPLLP

i

t uuuuvv=y .  The values v are 

coordinates of image lines and the values u are coordinates 

of image columns. The v values are common to the left and 

right delimiter. P is the number of points chosen to describe 

each lane delimiter in the image space. 

In order to derive 
i

ty from
i

tx , the following steps have to 

be taken: 

a) Generate P points in the 3D space, for each lane 

delimiter. The points will be equally spaced on the distance 

axis Z, and their X and Y coordinates (lateral and height) will 

be given by the horizontal profile and vertical profile of the 

lane. The nearest points will start at the distance ZB, the 

closest distance that allows the road to be visible to our 

system. The points will span a detection distance D. The 

detection distance D is variable, and its adjustment is based 

on the vehicle’s speed. The rationale behind this decision is 

that a longer distance is needed if the vehicle travels at high 

speeds, usually on straight or low curvature roads, but a 

shorter one is needed at slow speeds to handle narrower 

curvatures. The distance D covers a second of vehicle 

movement at the current speed, but no shorter than 5 m and 

no longer than 60 m. 

b) Project the 3D points in the image space, using the 

camera parameters. For each lane delimiter, a chain of 

unevenly spaced points will be obtained. 

c) Intersect the segments obtained by linking the projected 

points, for each side, with a set of evenly spaced horizontal 

lines. The points of intersection are the points that will form 

the particle representation in the image space
i

ty . 

E. The visual cues 

After the pitch angle has been detected from the 3D point 

set, a rough approximation of the road geometry can be made 

based on this angle alone. The rough approximation is used 

for road point selection. The image edges corresponding to 

these 3D points form our first measurement cue. 

The lane marking edge points are detected using an 

algorithm based on the tried and tested dark-light-dark 

transition detection principle [8]. Besides lane markings, 

another high priority lane delimiting feature is the curb, and 



  

the curbs are detected using height variations in a dense 

stereovision map [9], and then converted into image edges. 

Due to the fact that lane markings and curbs are of similar 

priority, they are inserted in a common “special edge” map, 

which represents the second lane measurement cue. 

In order to allow comparison between the particles and the 

measurement, each cue map (road edges or special edges) 

undergoes a Distance Transformation. 

 

a)  

 
b)                  c) 

Fig. 9. Visual information: a) the original grayscale image, 

b) the edges corresponding to 3d points contained in the road 

surface and the associated distance transform image, c) 

markings and curbs, and their associated DT image 

F. Particle Weighting by Measurement 

Given the a priori probability density, encoded in the 

distribution of the particle values throughout the state space, 

it is now time to compute the posterior probability density, 

which will encode all the knowledge about the lane state that 

we are able to extract from the sequence of measurements up 

to the current time t. This is achieved by assigning new 

weights to the predicted particles, weights proportional to the 

measurement likelihood given the state hypothesis. 

)|( i
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t p xxy ==π  (12) 

The measurement likelihood is obtained by multiplying 

the edge likelihood and the marking/curb likelihood, under 

the measurement independence assumption. 
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In order to compute the likelihood of the two measurement 

cues, a distance between the lane state hypothesis and the 

measurement has to be computed. The distance 

transformation of the two edge images becomes now very 

helpful.  

Ideally, lane hypothesis boundaries’ projections in the 

image space have to fit exactly on the edges of the visual 

cues. Also, the area inside the hypothetic lane projection has 

to be as free of edges as possible. In order to test these two 

conditions, two sets of points are used: the positive points, 

which are points belonging to the lane delimiters’ projection 

in the image space, and negative points, which are points 

near the borders, residing inside the projected lane area (fig. 

10). 

 
Fig. 10. Positive and negative points. Positives are lane 

boundary points, and negatives are points inside the lane 

area. 

 

The positive points will generate the positive distance; this 

is obtained by averaging the distance transform pixel values 

at these points’ coordinates. The distance corresponding to 

the negative points is the complement of the distance 

transform image at these points’ coordinates. The two 

distances are combined by weighted averaging (equation 14). 

The value of the weight parameters α and β has been set to 2 

and 1, respectively, through trial and error experiments.  
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Now, for each measurement M the measurement 

likelihood is computed, using a Gaussian distribution to 

relate probability to the distance between the prediction and 

the visual data.  
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Each particle will receive as weight the product of the two 

likelihoods. At this step the particles that show a degenerate 

lane, such as a lane that is too narrow, too wide, or too far 

from the vehicle’s position, will receive a null weight, 

preventing them for spawning new candidates in the next 

cycle. The final step is to normalize the new weights so that 

their sum is 1, and the system is ready to perform a new 

tracking cycle. 

G. Lane Validation 

Unlike a Kalman filter lane tracking solution, the particle 

filtering system does not need initialization or measurement 

validation before track update. The particles will evolve 

freely, eventually clustering around the best lane estimate, if 

the system is properly designed and the measurements are 

relevant. However, the system must know when a valid lane 

is being tracked, if it is to be used for practical purposes. 

The first attempt was to analyze the particle distribution in 

the state space, and validate the situation when the particles 

were reasonably clustered. However, we have observed that 

particles tend to cluster even in the presence of weak 

measurements, and this clustering does not guarantee the 

validity of the final estimate. 

A much more successful solution is to compare the 



  

average weight of the predicted (from sampled) particles 

against the average weight of the completely random 

particles that are added in the sampled set. Recalling that N 

denotes the total number of particles, and R denotes the 

number of totally random particles, and the random particles 

are inserted at the head of the particle list (without altering 

the probability density), a quality factor is defined as: 
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If q is higher than a threshold, the lane track is considered 

valid for output, and a lane state vector will be estimated 

from the particle set. A high quality factor means that the 

visual cues support the predicted lane in a much higher 

degree than some completely random lane parameters, which 

supports the hypothesis that the lane approximated by the 

particles is correct (agrees with the observation). The 

threshold that we found to work best is 10. 

If the quality factor indicates a valid lane, the parameters 

of this lane are estimated by a weighted average of the 

particle values. Only the particles having a higher than 

average weight are considered for estimation. 

VII. TESTS AND RESULTS 

1. Comparison with a Kalman filter solution 

The stereovision-based particle filtering lane detection 

system has been designed mainly to improve the handling of 

difficult situations, when the Kalman filter solution had 

significant problems. Even if the scenarios posing problems 

to a KF solution can be various, they can be summarized by 

a single term, “discontinuous road” (sometimes called road 

singularity). The most common situations that can be 

regarded as road discontinuities are: lane appearance and 

disappearance, lane change maneuvers, lane forking/joining, 

sharp changes of direction, sharp changes of curvature, and 

temporary sensor failure due to internal or external 

conditions (the most often problem is image saturation). 

A Kalman filter solution has problems with road 

discontinuities due to the following characteristics: 

- There is only one possible lane configuration that is 

tracked at one moment in time 

- The current state is used to predict search areas for the 

next detection, a feature which drops all measurements that 

indicate a road discontinuity 

- The system requires time to drop a track and time to 

initialize a new track 

- Initializing a new track means running detection 

algorithms for the whole image, without the benefit of a 

reduced search region 

We have tested the particle filtering solution in scenarios 

containing the specified problems, and the system has shown 

the following behavior: 

1. Lane appearance and disappearance: due to the fact that 

there is no detection in the classical sense, no additional time 

is needed to start or drop a track. The particles will cluster 

around the best lane visual information, and the output is 

validated after 2-3 frames. 

2. In lane changing maneuvers there are two aspects of our 

algorithm that make the transition as smooth as possible: the 

ability to track multiple hypotheses and the use of random 

particles to keep an eye on new tracks. The random particles 

will seed a new cluster, and, due to the motion of the vehicle 

towards the new lane the particles of the new cluster will 

receive increasingly more weight until the old lane is left 

behind. When the lane change maneuver is completed, the 

new lane is already tracked. 

3. The forking/joining situations are handled in the same 

way as the lane change maneuvers. The system is always 

ready to track a lane that has better chances of being the right 

one. 

4. Sharp changes of curvature are either handled by 

generating the right hypothesis fast enough to cope with the 

change, similarly to the way situations 2 and 3 are handled, 

or, if this is not possible due to the severity of conditions, by 

fast recovery once the discontinuity has been passed, in 

either case the situation of false estimation being avoided. 

5. Due to the fact that there is no track reset in the particle 

filter system, sensor failures are treated uniformly by the 

tracker. The particles will begin to spread as long as there is 

no information to cluster them, and when the sensor goes 

back online the particles will begin clustering again. If 

during this time they still describe a valid lane or not the lane 

validation system will decide, independently of the tracking 

process itself. 

A dynamic qualitative comparison between the behavior 

of the method described in this paper and a Kalman filter 

solution is provided in the movie file pf-kf.avi. In the left half 

of the frame the particle filter solution is displayed, and in 

the right half one can see the results of the Kalman filter. 

 

 

 

 
Fig. 11. Samples of side by side comparison. Left – 

particle filter solution, Right – Kalman filter solution. 

 



  

2. Pitch angle evaluation 

In order to evaluate the results of the pitch detection 

method that we proposed in the paper, a sequence of images 

of high pitch variation was selected. The road geometry 

forces the vehicle to change the pitch in the range of -3 to +4 

degrees. Because there is no ground truth for the pitch value, 

we have chosen to compare the pitch results with the pitch 

estimated by simple averaging of the heights of the points 

directly in front of the vehicle, in a narrow 3D window (1 

meter wide, 7 meters long). Due to the fact that we ensured 

the sequence to be obstacle-free in the selected window, the 

3D points located there are (mostly) in the road plane. The 

pitch detection that we wish to evaluate does not benefit 

from the fact that the road is obstacle-free, because the 3D 

points used in the algorithm are not restricted to a narrow 

window, and on the sides of the road there are plenty of 

obstacle features. The graph in figure 12 shows the two pitch 

values (in degrees) against the frame number. The pitch 

detection system results are shown with dotted line, and the 

comparison “ground truth” is shown with continuous line. 

The difference between the two pitch values is also shown. 

From the graph, it is clear that the pitch detection algorithm, 

which works on an unrestricted set of data, follows closely 

the pitch value obtained from the restricted data set. The 

errors are within the uncertainty given by the errors of stereo 

reconstruction, and can affect either our pitch estimation or 

the “ground truth”. 

The behavior of the pitch estimator can be viewed in the 

file pitching.avi, where the side projection of the scene (3D 

points and lane surface) is superimposed on the perspective 

image. The horizontal profile fit is not perfect, as the lane 

delimiters are poor and the width of the lane is higher than 

our acceptance threshold (6 meters). 

 
Fig. 12. Pitch angle comparison. 

 

3. Highway performance evaluation 

The performance of the lane detection system on highways 

is evaluated using a sequence of 2644 frames, acquired at 

about 10 frames per second (the acquisition frame rate is not 

constant, but each frame is timestamped, and the algorithms 

are able to handle the variable frame rate), which means 

about 4.4 minutes of driving. The sequence contains lane 

changes, highway exist and reentry, and impaired visibility 

due to rain and windshield wipers. Figures 13 to 16 show the 

evolution of some of the lane parameters (width, curvature, 

lateral offset and yaw angle – the parameters needed for a 

top view representation of the lane). The validation of the 

lane detection is shown in the graphs as a binary signal, high 

meaning that the lane is valid. The number of “valid” frames 

is 2585, indicating a detection rate of 97.77 %. 

The sequence and the detection results, in perspective 

projection and bird-eye view, can be seen in the file 

highway.avi. The purple points in the bird-eye view are the 

3D points provided by stereovision that are marked as road 

points by filtering against the detected pitch and a Canny 

edge detector. 

 

 
Fig. 13. Highway behavior: width (mm) versus frame 

number. 

 

 
Fig. 14. Highway behavior: horizontal curvature (m

-1
) 

versus frame number. 

 
Fig. 15. Highway behavior: lateral offset (distance of the 

vehicle from lane center, in mm) versus frame number. 



  

 
Fig. 16. Highway behavior: yaw angle (in degrees) versus 

frame number. 

 

4. Urban performance evaluation 

The performance of the lane detection system in the city is 

evaluated using a sequence of 1763 frames, acquired at about 

10 frames per second (variable), which means about 3 

minutes of driving. The sequence contains lane changes, lane 

forking and joining, passing through a tunnel and passing 

through intersections. Figures 17 to 20 show the evolution of 

some of the lane parameters (width, curvature, lateral offset 

and yaw angle). The validation of the lane detection is also 

shown in the graphs. The number of “valid” frames is 1559, 

indicating a detection rate of 88.43 %. The presence of a low 

visibility tunnel in the sequence is the main reason why the 

detection rate is so low. The sequence and the detection 

results, in perspective projection and bird-eye view, can be 

seen in the file urban.avi. 

A crowded urban sequence, with poor quality lane 

delimiters, plenty of obstacles, driving on the lane border 

and so on is available for qualitative analysis only in the file 

crowded.avi. 

 
Fig. 17. Urban behavior: width (mm) versus frame number 

 
Fig. 18. Urban behavior: horizontal curvature (m

-1
) versus 

frame number 

 
Fig. 19. Urban behavior: lateral offset (distance of the 

vehicle from lane center, in mm) versus frame number 

 
Fig. 20. Urban behavior: yaw angle (in degrees) versus frame 

number 

 

5. Experimental testing – linear variable width model 

Due to the high adaptability of the particle filter 

framework, new lane models can be easily tried. Inserting a 

width variation parameter (which describes the 

increase/decrease of width with the longitudinal distance, 

required only to change the function that computes the lateral 

coordinates (X) of the lane delimiters with the distance (Z). 

The resulted experimental system was tested on the highway 

sequence, at the exit/reentry moments, when the width 

variation was more obvious. The results can be shown in the 

file varwidth.avi. A graph comparing the estimated width 

variation with a differentiation of the estimated lane width 

against the traveled space is shown in figure J. The modeled 

width variation is the smoother signal. 

 
Fig. 21. Comparison between width variation estimated by 

lane detection, and the differentiation of estimated width 

against traveled space 

 

6. Time performance 



  

The time performance has been evaluated on an Intel 

Core2 Duo CPU, at 2 GHz, using a single thread. The lane 

detection time has a fixed part, independent on the number of 

particles, amounting to 9.6 ms, and a time per processed 

particle of 0.0075 ms. Our 200 particle solution takes a total 

of 11 ms to complete. 

 

Note: The movie files showing the test results can be also 

downloaded from 

http://users.utcluj.ro/~rdanescu/lane/lane_eval.htm . 

VIII. CONCLUSION AND FUTURE WORK 

We have presented a system that uses the advantages of 

stereovision and grayscale image processing through a 

particle filtering framework, in order to robustly detect the 

lanes in difficult conditions. The system does not use 

detection in the classical sense, there is no track initialization 

or track loss, and thus the processing time is kept constant, 

regardless of scenario. The system shows remarkable 

stability when the conditions are favorable, but great 

capability of adaptation when conditions change. 

Future work will include increasing the accuracy of the 

estimated parameters using more measurement cues (like 

image gradient orientation) or a multiresolution approach, 

and tracking of the side lanes. Tracking the side lanes will 

provide the additional benefit of reducing the detection 

failure time in the case of lane changes.  

Due to the fact that the described method is relatively 

model-independent, experiments with several models will be 

carried out to find the best compromise between generality 

and stability. 
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