
An Efficient Obstacle Awareness Application for

Android Mobile Devices

Razvan Itu, Radu Danescu

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

itu.razvan@gmail.com, radu.danescu@cs.utcluj.ro

Abstract— Recent developments in the mobile devices have

made image processing on the go much more feasible. In this

paper, we propose a monocular approach that can be deployed

on smart phones and tablets and we evaluate its performance and

the potential for further development of driving assistance system

using mobile devices. This monocular approach relies on the

main camera of the mobile device to observe the environment.

Using the camera calibration parameters, an inverse perspective

mapping of the scene is created, and then segmented into obstacle

and free areas. The obstacles are then identified by polar and

radial histogram processing. From real world experiments, we

found that through modern mobile devices we can accurately

detect obstacles in real time using a single camera. Developing

driving assistance software is possible with the aid of such devices
in urban roads, but also on highways.

Keywords— obstacle detection, advanced driving assistance

system, android, smartphone

I. INTRODUCTION

Multiple techniques for obstacle detection in video
sequences (or in real time) have been described in literature,
and demonstrated by experiment in multiple driving scenarios,
including the highway and the urban traffic.

Obstacle detection methods based on computer vision and
image processing follow two main directions: monocular based
detection and binocular (stereo) camera detection. Obstacle
detection using a single camera has always been a challenge,
because not only must the obstacle’s presence be deduced from
the image data, but an estimate of the obstacle’s position with
respect to the host vehicle must be produced. This estimate can
be extracted from monocular images using assumptions, such
as the assumption of a flat road.

Monocular methods can further be separated in two main
categories: appearance based or motion based. Appearance
based techniques rely on color and shape information to detect
regions belonging to obstacles. In [1] Ulrich and Nourbakhsh
propose a color segmentation technique that is based on the
fact that the ground plane has a constant color distribution. A
texture based detection method is presented in [2]. Motion

based methods often rely on the assumption of a flat road
surface and most methods depend on image motion and optical
flow. Many optical flow algorithms have been proposed, such
as [3] or [4] and there are obstacle detection solutions based on
optical flow [1], that compute the displacement between
consecutive frames from a sequence of images.

Developing an affordable and portable advanced driver
assistance system has been a challenge in the past few years. A
simple, single camera-based solution is described in [5], where
the system uses a webcam and a computer for image
processing. However, the constant evolution of both hardware
and software platforms that are used in mobile devices has led
to endless possibilities of new solutions regarding the mobility,
portability and the cost factor of a driving assistant system. The
Android platform has proved to be an affordable and highly
available alternative compared to an integrated, embedded
solution.

There are very few mobile and tablet applications that
perform locally (on the device) the entire processing: starting
from image acquisition, then the image processing and ending
with displaying the results. Current existing approaches mostly
offer lane detection features and very basic, limited obstacle
detection that works mostly in highway scenarios. A
centralized advanced driver assistance system (ADAS) using
mobile devices is described in [6].

This paper presents an obstacle detection method for
driving assistance, which has been implemented as a mobile
application, and thus can be integrated easily in all vehicles
without additional costs.

The method we propose relies on removal of the
perspective effect from the monocular images captured by the
smart mobile device, a transformation useful for both detection
and ranging. Then, using the assumption that the immediate
road patch in front of our vehicle is free of obstacles, the bird-
eye view image is classified at pixel level, into obstacle areas
and free areas. The classified obstacle areas are then processed
by radial and polar histograms, using the method introduced by
Bertozzi and Broggi in [8], a method robust enough to work
reliably even if some areas are incorrectly classified. As the
IPM transformation is highly sensitive to the pitching of the
host vehicle, the built in accelerometer of the mobile device is
used for automatic adaptation to pitching conditions.

This work was supported by a grant of the Romanian National Authority
for Scientific Research, CNCS – UEFISCDI, project number PNII-PCCA
18/2012 (SmartCoDrive).

The remainder of the paper is organized as follows: in
section 2, an overview of the entire monocular system is
presented. Section 3 describes in detail the image processing
algorithm, including the application of inverse perspective
mapping, segmentation, and polar and radial histogram
processing. Experimental results are provided in section 4.
Finally, a discussion of the proposed system’s feasibility and
limitations is presented in section 5.

II. ALGORITHM OVERVIEW

The data flow of the presented solution is shown in Figure
1. When the application is first started, the preliminary
computations required to build the Look-Up Tables are
performed. Then, each frame acquired by the mobile device’s
camera is subjected to the processing steps described in the
figure.

Fig. 1. Algorithm overview

Before the system can be operational, the camera setup has
to be calibrated, in order to obtain the intrinsic and the extrinsic
parameters. These parameters will be used later for removal of
image distortions, and for perspective effect removal through
Inverse Perspective Mapping (IPM). The calibration is
achieved using a set of known patterns and the OpenCV
calibration software.

Due to the real-time requirements of the application, the
computation time has to be reduced as much as possible, and
one technique to achieve this goal is the use of Look Up Tables
(LUTs). The removal of the perspective effect algorithm uses
complex calculations for each pixel in the image, but the end
result is a remapping of its position, and therefore we create
two LUT’s, one for each of the two coordinate axes. The x
LUT will contain the correspondent pixel in the original image
for the remapped image’s x axis, whereas the y LUT will
contain the correspondent pixels for the remapped image’s y
axis. Thus, the step “generate IPM image” of figure 1, which
will be executed for each frame, becomes a simple step of
consulting the LUT’s to get, for each pixel of the remapped
image, the coordinates of the original pixel in the perspective
image.

An operation of distortion removal is also applied on each
of the input images, in order to remove any distortions that may
be introduced by the mobile’s camera lens. The computation of
the necessary parameters used by the distortion removal
operation is performed in the initialization step, and the results
are included in the IPM LUTs, therefore no additional
overhead is added to the processing of the frames.

Due to the fact that the pitching motion of the host vehicle
alters the calibrated relation between the road surface and the
camera, the IPM transformation may sometimes become
incorrect. For this reason, the built in accelerometer of the
mobile device is used to detect the pitching motion, and the
transformation LUTs are updated with the appropriate values
(multiple LUTs are computed, and the most suitable one is
selected based on the accelerometer reading).

After the IPM image is obtained, the pixels of this image
are classified into obstacle areas and road (free) areas, using
their color. An area immediately in front of the host vehicle is
assumed to be free of obstacles, and from this area the average
color of the road surface is computed. The remaining pixels of
the image are compared with this color, and the similar ones
are assumed to be part of the road, and the dissimilar ones are
assumed to be part of obstacles. This classification process is
simple, fast, but far from perfect.

For a robust identification of the obstacles, one should take
into account the following facts: 1. the segmentation process is
imperfect, and 2. due to the removal of the perspective effect
under the assumption that all pixels belong to the road, the
obstacles will be extended in a radial manner towards the far
end of the IPM image. Thus, the true obstacle areas will be
significantly larger than falsely labeled road areas, and they
will have a radial layout in the image. Inspired by [8], we use a
polar histogram to identify the angle of the obstacle with
respect to our traveling distance, and a radial histogram to
identify the distance between the obstacle and the host vehicle.

Once the obstacle is detected, it is displayed, and if the
obstacle is too close to us, and on our trajectory, a warning is
displayed.

III. OBSTACLE DETECTION STEPS

A. Inverse Perspective Mapping

The images acquired from a camera exhibit the perspective
effect. If the image is of a traffic scene, the obstacles on the
road will appear smaller when they are at a higher distance
from the host vehicle, and larger when they are closer. The
road boundaries appear not parallel, but intersecting in a point
at the horizon, the vanishing point (Figure 2, left). In the
perspective image, the variable level of detail creates
difficulties for computer vision tasks such as obstacle
detection, and the 3D information is more difficult to infer.

Under certain assumptions, such as the assumption that the
road is flat and aligned with our coordinate axes such as its
height is always zero, we can transform the perspective image
into a bird eye view of the traffic scene (Figure 2, right).

In the bird eye view image, each pixel coordinate is in a
simple 1 to 1 relation with a coordinate in the road plane XOY
(Figure 3), assuming that the height coordinate Z is zero. Thus,
obstacles detected in the IPM image can be immediately
positioned in the 3D coordinate system.

Fig. 2. Normal image (left), and IPM image (right)

In order to describe the IPM transformation process, we’ll
assume the coordinate systems W={(X,Y,Z)}, the world
coordinate system, and I={(u,v)}, the coordinate system of the
perspective image, as seen in figure 3.

Fig. 3. Coordinate systems and the projection of a point

The algorithm for IPM image computation is the following:

Algorithm IPM Transformation

Input: Source image I

Output: IPM image IT

For each pixel of coordinates (uT, vT) of IT

 XW = k uT+X0

 YW = j vT +Y0

 ZW =0

 (u, v)=Projection(XW, YW, ZW, P)

 IT(uT, vT)=I(u, v)

End For

The constants k, j, X0 and Y0 are chosen in such a way that
the most relevant portion of the road plane is displayed in the
remapped image. The Projection function multiplies the 3D
coordinate vector (XW, YW, ZW, 1)T with the projection matrix P
in order to obtain the original coordinates in the perspective
image for any 3D point. P can be computed using the following
equation:

[|]=P A R T (1)

Where A is the matrix of the intrinsic parameters of the
camera, containing the focal distance and the principal point:

0

0

0 0 1

x x

y y

f c

f c

 
 

=  
  

A (2)

The translation vector T and the rotation matrix R are the
extrinsic parameters of the camera, and they depict the required
rotation and translation from a point in the world coordinate
system to be expressed in the camera’s own 3D coordinate
system. All these parameters are estimated by camera
calibration.

Due to the fact that computing the projection for each IPM
image point takes time, this computation is only done once, at
initialization, and the results stored in a LUT. At running time,
the IPM is performed by consulting the LUT for each (uT, vT)
to get the original (u, v).

B. Automatic Compensation of the Vehicle Pitching

The movement of the vehicle may change the angle
between the camera of the mobile device and the road, such
that the rotation matrix obtained with the camera and car in a
parked position becomes unfit to the real world conditions. The
rotation matrix affects the projection matrix, leading to a false
IPM transformation, as seen in Figure 4.b.

Thus, dynamic adjustment is needed for the camera’s
projection matrix. Fortunately, the smart mobile device is
aware of the pitching motion, due to the fact that most such
devices have a built in 3-axis accelerometer that provides real
time acceleration values to the developers through Android
API’s. In our solution we used these values to correct the
projection matrices that are being used for IPM transformation.

(a) (b) (c)

Fig. 4. Input image (a), without auto-correction (b), with auto-correction (c)

To implement the dynamic adjustment, we use pre-
computed projection matrices for different values of the
acceleration read for the Z axis (the vertical axis). For example,
when the mobile device has a pitch value between 1 and 1.5
degrees with respect to the road surface, we use projection
matrix #1, when the device is pitched even more and the angle
is between 1.5 and 2 we use projection matrix #2, and so on.
Lookup Tables are pre-computed for each pitch angle interval,
so that the IPM process can work in constant time, without the
need for re-initialization.

The raw sensor data returned from the 3-axis accelerometer
found on most Android devices is sometimes erroneous,

containing a lot of noise. To increase the robustness and
accuracy of the proposed solution we used a low pass filter for
the accelerometer data. If the previously estimated
accelerations are in the form of a vector X=(ax, ay, az)

T, and a
new sensor readout is in the form of Z=(rax, ray, raz)

T, the
newly estimated acceleration vector X’ is computed as a
weighted average between the past estimation and the new
measurement:

' (1)w w= − +X X Z (3)

The parameter w, having a value between 0 and 1, is tuned
experimentally for the best compromise between filtering and
faster response to dynamic pitching.

C. IPM Image Segmentation

The IPM transformed image is a bird-eye view of the scene
in front of the camera, including both road pixels and obstacle
pixels. As the purpose of the application is to detect obstacles,
a classification of all pixels in the image must be performed.
This classification is in fact a thresholding process, leading to a
binary image containing either black pixels – obstacles, or
white pixels – the road surface.

Due to the fact that only one image source is used, the
obstacle areas can only be identified by their color with respect
to the road surface. The road surface itself may have different
colors, depending on the nature of the road, the illumination
conditions, etc. However, we’ll assume that at least for the
limited range we are surveying, in a single frame the road is
almost homogeneous in color. The second assumption is that
we are not too close to an obstacle, and the nearest patch of
road surface in front of the vehicle is free.

At each frame, the nearest patch of the road (corresponding
to the bottom part of the IPM image, see figure 5) is used for
computing the color characteristics of the road. The mean value
and the standard deviation are computed for each color
component Red, Green and Blue, of the road pixels belonging
to this region.

After the color characteristics of the road are learned, the
remainder of the IPM image is scanned, and each pixel’s color
components are compared to the RGB components of the road.
If the difference between the color of the pixel and the road
color exceeds the standard deviation, for each color
component, the pixel is labeled as obstacle; otherwise it is
labeled as road. The results of classification are shown in figure
5.

Fig. 5. IPM image (left), and IPM image after pixel classification (right).

The chosen classification method is very fast, but obviously
not perfectly accurate. The road may contain features that are
not of the same color as the training patch, and these features
may be labeled as obstacles. However, the obstacle
identification method described in the next section is able to
overcome this problem.

D. Obstacle Identification

The obstacle pixels of the IPM image must be grouped into
distinct obstacles whose position in the 3D space can be
determined. The main challenge is the presence of many false
positive pixels, as the result of an imperfect classification
method. Thus, in order to recognize the true obstacles, we have
to use additional properties about their shape in the IPM image.

In [8] and [9] Bertozzi and Broggi proposed a very efficient
method for processing binary IPM images in order to identify
the obstacles. Their idea was based on the fact that when the
IPM transformation is performed on an image under the
assumption that all the points belong to the road, the obstacle
points will be mapped differently for different cameras, while
the road features will be mapped in the same spot. They used a
stereo setup, performed two IPM transformation, and
highlighted the differences between them. The obstacle areas
were clearly highlighted, but false positives appeared in their
solution as well. For this reason, they developed a polar
histogram based processing method for determining the
azimuth angle of the obstacle with respect to the host vehicle,
and a radial histogram method for determining the distance
along the azimuth line. The main challenge for their method
was that in the difference IPM image, only the obstacle sides
were highlighted, while the obstacle middle was sometimes
cleared. In the polar histogram, this caused peaks not in the
middle of the object, but on its sides, and therefore a heuristic
for joining peaks had to be developed.

For our situation, only one image source is used, and
therefore no difference between views can be performed.
However, it is clear that the radial disposition of the obstacle
features in the IPM image is preserved. These features
converge into a point corresponding to the position of the
camera in the 3D world, the Focal Point, F.

The use of a monocular approach based on color
classification of the obstacle features leads to an important
difference between this approach and the stereo IPM described
in [8] and [9]: the obstacle is fully highlighted, not only its
sides. The process of polar histogram computation is described
by the following algorithm:

Algorithm Polar Histogram Computation

Input: IPM binary image IB

Output: Polar histogram H

Set H[i]=0, for all i=0..36

For each point (u, v) of IB

 If IB(u, v)==Obstacle

α=angle between the line from (u, v) to F and the

horizontal axis u
 H[α/5]++

 End If

End For

The polar histogram H is then smoothed with a 1D
Gaussian kernel, and its local maxima are identified. Only the
local maxima that pass a certain threshold are kept, the rest are
discarded.

Once the local maxima are found, the polar histogram is
searched, around the local maxima, to find the range of values
higher than half the value of the maximum. This way, the
obstacle’s angular limits are established, as seen in figure 6.

Fig. 6. The focus point and scanning directions (left), and the polar

histogram (right)

Now that the angular limits of the obstacle are established,
the only thing that remains to be determined is the distance. For
each possible distance (radius), a triangle is formed using the
two rays starting from the focal point and encompassing the
object, and a third line whose distance from the focal point is
equal to the selected radius, and who is perpendicular to the
center line passing through the object. For each possible radius,
and therefore for each possible triangle, the ratio between the
number of obstacle points in the triangle and the total area of
the triangle is computed. The minimum radius that has a
significant value for this ratio (meaning the first triangle that
has a significant amount of obstacle points) is kept as the
distance to the obstacle.

Building the polar histogram is computationally
demanding, due to the need of computing an angle for each
obstacle point in the image, which means computing the
inverse of the tangent function. To improve the processing
time, a LUT for the arc tangent function for each position in the
image is computed at initialization time.

IV. EXPERIMENTAL RESULTS

To prove the feasibility of the approach, the application was
deployed on various mobile phones, and tested on multiple
traffic scenarios. The application was tested on multiple mobile
devices, including: HTC Desire, HTC One S, Samsung Galaxy
S3. The first device, the HTC Desire features a 5 megapixel
camera and a single core 1 GHz CPU paired with 576MB ram,
running Android operating system version 2.3 Gingerbread.
The One S features a more powerful dual core 1.5 GHz CPU
with 1GB ram and a 8 megapixel camera running Android 4.1
Ice Cream Sandwich. The last device used for testing is a quad
core 1.4 GHz Samsung Galaxy S3 that features 1GB of ram
and runs Android version 4.1 and that has a 8 megapixel
camera. To drastically improve the performance of the obstacle
detection algorithm, the most part of the code was written in
native code using Android NDK.

In each of the above-mentioned mobile devices we used a
fixed images size at a resolution of 640x480 pixels. The
acquired images are in 24-bit, RGB format.

In order to test the accuracy of the system, we placed
known patterns on the road surface in front of the vehicle to
test the IPM image – figure 7. The patterns were placed at
known distances and also proved to be useful to determine a
correlation between the 2d image pixels and real world linear
length expressed in meters.

Fig. 7. Calibrating the camera with known patterns to produce the IPM

image; the patterns used on the road are highlighted

To test the overall performance we chose three popular
devices featuring single core, dual core and quad core
processing. We then used the same set of input images on all
devices and measured the processing time required for each
image.

The chart in figure 8 represents a comparison chart between
the single core HTC Desire and the dual core HTC One S. The
X axis represents the processing time required for the frame
(expressed in seconds) and the Y axis represents the current
frame rate.

Fig. 8. HTC One S vs HTC Desire performance (dual core vs single core)

The chart in figure 9 represents the performance
comparison between the dual core HTC One S and the quad
core Samsung Galaxy S3. The representation used is the same
as described for figure 8.

Fig. 9. Samsung Galaxy S3 vs HTC One S performance test (quad core vs

dual core)

The effective range of the obstacle detection algorithm is
between 4 and 40 meters. This interval has been chosen to
provide a good accuracy both in urban environments and
highway scenarios. The mobile device camera was calibrated
to offer good accuracy on this region interest that has an
effective width of 13 meters, the width of approximately two
traffic lanes. Figure 10 better illustrates the system’s effective
range and region of interest.

Fig. 10. Region of interest of the proposed system

In order to have a reference of the overall performance of
the proposed solution and to validate the obstacle detection and
distance determination in real world scenarios, we compared
with existing alternatives available. The comparison was made
on a two lane street. The two alternatives used are [10] and
[11], both of which are available on the Android Play Store.

Figure 11.a represents the case where a vehicle is headed
towards the ego-vehicle and it is not detected by the first
application. Figure 11.b shows a case when a vehicle is
departing from the ego-vehicle and is still not detected.

The second competitor was tested in similar conditions,
figure 11.c illustrates the case when a vehicle is approaching
the ego-vehicle and it is not detected. Also, in figure 11.d we
can observe that the vehicle departing from the ego-vehicle
was detected too far, making it irrelevant from the point of
view of driving safety.

(a) (b)

(c) (d)

Fig. 11. iOnRoad test results in (a) and (b), drivea results in (c) and (d)

Our proposed system had better results in the two test
scenarios and these results can be seen in figure 12.a and 12.b.

Fig. 12. DriveAssist test results (a) and (b)

The accuracy and robustness of the obstacle detection
algorithm also refers to correctly identifying the obstacles in
various traffic and weather conditions. The algorithm must be
immune to various illumination conditions such as shadows
that might be on the road surface. Figure 13.a illustrates a
successful detection when building shadows are present on the
road, whereas figure 13.b represents the detection in low light
conditions during night.

Fig. 13. DriveAssist results with variable lighting conditions (a) and during

night time (b)

In regards to the speed performance of the system, we
managed an average of 8-10 frames per second on a dual core
mobile phone. This includes the image acquisition, the
processing of the image and also displaying the results. The
overall performance increases directly proportional with the
number of available cores, this means that on the quad core
mobile phone the average frame rate increased to 13-15 frames
per second. These results may vary depending on the
luminosity of the scene and the number of detected obstacles.

V. CONCLUSIONS

The solution presented in this paper is a robust and fast
obstacle detection system for Android based smartphones,
which can improve the safety on the road and the overall
driving experience for the user.

Further developments for the obstacle detection and
distance determination on mobile devices include improving
the color segmentation algorithm, and developing an obstacle
tracking feature using the currently detected obstacles as input.
Also, the calibration of the camera can be improved to help
generating the IPM image by finding a way to use the mobile
device’s accelerometer to generate the camera parameters from
the roll, yaw and pitch angle. The proposed software solution
will soon be available for public use [12].

REFERENCES

[1] I. Ulrich and I. Nourbakhsh, “Appearance-Based Obstacle Detection

with Monocular Color Vision”, Proc. of the AAAI National Conference
on Artificial Intelligence, Austin, TX, July/August 2000, pp. 866-871

[2] T. Kalinke, C. Tzomakas, and W. von Seelen, “A Texture based Object

Detection and an Adaptive Model-based Classification”, in Procs. IEEE
Intelligent Vehicles Symposium‘98, Stuttgart, Germany, October 1998,

pp. 341–346.

[3] A. Bruhn, J. Weickert, and C. Schnorr, “Lukas/Kanade meets

Horn/Schunck: Combining local and global optic flow methods”,
International Journal of Computer Vision, vol. 62(3), pp. 249-265, 2005.

[4] F. Stein, “Efficient computation of optical flow using the census
transform”, DAGM04, pp. 79–86, 2004.

[5] S. Tuohy, “Distance determination for an automobile environment using

Inverse Perspective Mapping in OpenCV”, Signals and Systems
Conference (ISSC 2010), June 2010, pp. 100-105.

[6] A. Corti, V. Manzoni, S. Savaresi, “A centralized real-time Advanced

Driver Assistance System based on smartphones”, Advanced
Microsystems for Automotive Applications 2012 (AMAA 2012), pp.

221-230.

[7] H.H.Little, J.J. Bohrer S. Mallot, H.A. Bulthoff, “Inverse perspective
mapping simplifies optical flow computations and obstacle detection”,

Biological Cybernetics, vol. 64, pp. 177–185, 1991.

[8] M. Bertozzi, A. Broggi, A. Fascioli, “Stereo inverse perspective
mapping: theory and applications”, Image and Vision Computing, vol.

16, pp. 585-590, 1998.

[9] M. Bertozzi and A. Broggi, “GOLD: a Parallel Real-Time Stereo Vision
System for Generic Obstacle and Lane Detection”, IEEE Trans. on

Image Processing, pp. 62-81, 1998.

[10] iOnRoad, website: www.ionroad.com

[11] Drivea, website: www.drivea.info

[12] DriveAssist, website: www.driveassistapp.com

