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Abstract— Recent developments in the mobile devices have 

made image processing on the go much more feasible. In this 

paper, we propose a monocular approach that can be deployed 

on smart phones and tablets and we evaluate its performance and 

the potential for further development of driving assistance system 

using mobile devices. This monocular approach relies on the 

main camera of the mobile device to observe the environment. 

Using the camera calibration parameters, an inverse perspective 

mapping of the scene is created, and then segmented into obstacle 

and free areas. The obstacles are then identified by polar and 

radial histogram processing. From real world experiments, we 

found that through modern mobile devices we can accurately 

detect obstacles in real time using a single camera. Developing 

driving assistance software is possible with the aid of such devices 
in urban roads, but also on highways. 

Keywords— obstacle detection, advanced driving assistance 

system, android, smartphone 

I.  INTRODUCTION 

Multiple techniques for obstacle detection in video 
sequences (or in real time) have been described in literature, 
and demonstrated by experiment in multiple driving scenarios, 
including the highway and the urban traffic.  

Obstacle detection methods based on computer vision and 
image processing follow two main directions: monocular based 
detection and binocular (stereo) camera detection.  Obstacle 
detection using a single camera has always been a challenge, 
because not only must the obstacle’s presence be deduced from 
the image data, but an estimate of the obstacle’s position with 
respect to the host vehicle must be produced. This estimate can 
be extracted from monocular images using assumptions, such 
as the assumption of a flat road.  

Monocular methods can further be separated in two main 
categories: appearance based or motion based. Appearance 
based techniques rely on color and shape information to detect 
regions belonging to obstacles. In [1] Ulrich and Nourbakhsh 
propose a color segmentation technique that is based on the 
fact that the ground plane has a constant color distribution. A 
texture based detection method is presented in [2]. Motion 

based methods often rely on the assumption of a flat road 
surface and most methods depend on image motion and optical 
flow. Many optical flow algorithms have been proposed, such 
as [3] or [4] and there are obstacle detection solutions based on 
optical flow [1], that compute the displacement between 
consecutive frames from a sequence of images. 

Developing an affordable and portable advanced driver 
assistance system has been a challenge in the past few years. A 
simple, single camera-based solution is described in [5], where 
the system uses a webcam and a computer for image 
processing. However, the constant evolution of both hardware 
and software platforms that are used in mobile devices has led 
to endless possibilities of new solutions regarding the mobility, 
portability and the cost factor of a driving assistant system. The 
Android platform has proved to be an affordable and highly 
available alternative compared to an integrated, embedded 
solution.  

There are very few mobile and tablet applications that 
perform locally (on the device) the entire processing: starting 
from image acquisition, then the image processing and ending 
with displaying the results. Current existing approaches mostly 
offer lane detection features and very basic, limited obstacle 
detection that works mostly in highway scenarios. A 
centralized advanced driver assistance system (ADAS) using 
mobile devices is described in [6]. 

This paper presents an obstacle detection method for 
driving assistance, which has been implemented as a mobile 
application, and thus can be integrated easily in all vehicles 
without additional costs. 

The method we propose relies on removal of the 
perspective effect from the monocular images captured by the 
smart mobile device, a transformation useful for both detection 
and ranging. Then, using the assumption that the immediate 
road patch in front of our vehicle is free of obstacles, the bird-
eye view image is classified at pixel level, into obstacle areas 
and free areas. The classified obstacle areas are then processed 
by radial and polar histograms, using the method introduced by 
Bertozzi and Broggi in [8], a method robust enough to work 
reliably even if some areas are incorrectly classified. As the 
IPM transformation is highly sensitive to the pitching of the 
host vehicle, the built in accelerometer of the mobile device is 
used for automatic adaptation to pitching conditions. 
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The remainder of the paper is organized as follows: in 
section 2, an overview of the entire monocular system is 
presented. Section 3 describes in detail the image processing 
algorithm, including the application of inverse perspective 
mapping, segmentation, and polar and radial histogram 
processing. Experimental results are provided in section 4. 
Finally, a discussion of the proposed system’s feasibility and 
limitations is presented in section 5. 

II. ALGORITHM OVERVIEW 

The data flow of the presented solution is shown in Figure 
1. When the application is first started, the preliminary 
computations required to build the Look-Up Tables are 
performed. Then, each frame acquired by the mobile device’s 
camera is subjected to the processing steps described in the 
figure. 

 

Fig. 1. Algorithm overview 

Before the system can be operational, the camera setup has 
to be calibrated, in order to obtain the intrinsic and the extrinsic 
parameters. These parameters will be used later for removal of 
image distortions, and for perspective effect removal through 
Inverse Perspective Mapping (IPM). The calibration is 
achieved using a set of known patterns and the OpenCV 
calibration software. 

Due to the real-time requirements of the application, the 
computation time has to be reduced as much as possible, and 
one technique to achieve this goal is the use of Look Up Tables 
(LUTs). The removal of the perspective effect algorithm uses 
complex calculations for each pixel in the image, but the end 
result is a remapping of its position, and therefore we create 
two LUT’s, one for each of the two coordinate axes. The x 
LUT will contain the correspondent pixel in the original image 
for the remapped image’s x axis, whereas the y LUT will 
contain the correspondent pixels for the remapped image’s y 
axis. Thus, the step “generate IPM image” of figure 1, which 
will be executed for each frame, becomes a simple step of 
consulting the LUT’s to get, for each pixel of the remapped 
image, the coordinates of the original pixel in the perspective 
image. 

An operation of distortion removal is also applied on each 
of the input images, in order to remove any distortions that may 
be introduced by the mobile’s camera lens. The computation of 
the necessary parameters used by the distortion removal 
operation is performed in the initialization step, and the results 
are included in the IPM LUTs, therefore no additional 
overhead is added to the processing of the frames. 

Due to the fact that the pitching motion of the host vehicle 
alters the calibrated relation between the road surface and the 
camera, the IPM transformation may sometimes become 
incorrect. For this reason, the built in accelerometer of the 
mobile device is used to detect the pitching motion, and the 
transformation LUTs are updated with the appropriate values 
(multiple LUTs are computed, and the most suitable one is 
selected based on the accelerometer reading). 

After the IPM image is obtained, the pixels of this image 
are classified into obstacle areas and road (free) areas, using 
their color. An area immediately in front of the host vehicle is 
assumed to be free of obstacles, and from this area the average 
color of the road surface is computed. The remaining pixels of 
the image are compared with this color, and the similar ones 
are assumed to be part of the road, and the dissimilar ones are 
assumed to be part of obstacles. This classification process is 
simple, fast, but far from perfect. 

For a robust identification of the obstacles, one should take 
into account the following facts: 1. the segmentation process is 
imperfect, and 2. due to the removal of the perspective effect 
under the assumption that all pixels belong to the road, the 
obstacles will be extended in a radial manner towards the far 
end of the IPM image. Thus, the true obstacle areas will be 
significantly larger than falsely labeled road areas, and they 
will have a radial layout in the image. Inspired by [8], we use a 
polar histogram to identify the angle of the obstacle with 
respect to our traveling distance, and a radial histogram to 
identify the distance between the obstacle and the host vehicle. 

Once the obstacle is detected, it is displayed, and if the 
obstacle is too close to us, and on our trajectory, a warning is 
displayed. 

III. OBSTACLE DETECTION STEPS 

A. Inverse Perspective Mapping 

The images acquired from a camera exhibit the perspective 
effect. If the image is of a traffic scene, the obstacles on the 
road will appear smaller when they are at a higher distance 
from the host vehicle, and larger when they are closer. The 
road boundaries appear not parallel, but intersecting in a point 
at the horizon, the vanishing point (Figure 2, left). In the 
perspective image, the variable level of detail creates 
difficulties for computer vision tasks such as obstacle 
detection, and the 3D information is more difficult to infer. 

Under certain assumptions, such as the assumption that the 
road is flat and aligned with our coordinate axes such as its 
height is always zero, we can transform the perspective image 
into a bird eye view of the traffic scene (Figure 2, right). 

In the bird eye view image, each pixel coordinate is in a 
simple 1 to 1 relation with a coordinate in the road plane XOY 
(Figure 3), assuming that the height coordinate Z is zero. Thus, 
obstacles detected in the IPM image can be immediately 
positioned in the 3D coordinate system. 



 

Fig. 2. Normal image (left), and IPM image (right) 

In order to describe the IPM transformation process, we’ll 
assume the coordinate systems W={(X,Y,Z)}, the world 
coordinate system, and I={(u,v)}, the coordinate system of the 
perspective image, as seen in figure 3. 

 

Fig. 3. Coordinate systems and the projection of a point 

The algorithm for IPM image computation is the following: 

Algorithm IPM Transformation 

Input: Source image I 

Output: IPM image IT 

For each pixel of coordinates (uT, vT) of IT 

 XW = k uT+X0 

 YW = j vT +Y0 

 ZW =0 

 (u, v)=Projection(XW, YW, ZW, P) 

 IT(uT, vT)=I(u, v) 

End For 
 

The constants k, j, X0 and Y0 are chosen in such a way that 
the most relevant portion of the road plane is displayed in the 
remapped image. The Projection function multiplies the 3D 
coordinate vector (XW, YW, ZW, 1)T with the projection matrix P 
in order to obtain the original coordinates in the perspective 
image for any 3D point. P can be computed using the following 
equation: 

[ | ]=P A R T     (1) 

 

Where A is the matrix of the intrinsic parameters of the 
camera, containing the focal distance and the principal point: 
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The translation vector T and the rotation matrix R are the 
extrinsic parameters of the camera, and they depict the required 
rotation and translation from a point in the world coordinate 
system to be expressed in the camera’s own 3D coordinate 
system. All these parameters are estimated by camera 
calibration. 

Due to the fact that computing the projection for each IPM 
image point takes time, this computation is only done once, at 
initialization, and the results stored in a LUT. At running time, 
the IPM is performed by consulting the LUT for each (uT, vT) 
to get the original (u, v). 

B. Automatic Compensation of the Vehicle Pitching 

The movement of the vehicle may change the angle 
between the camera of the mobile device and the road, such 
that the rotation matrix obtained with the camera and car in a 
parked position becomes unfit to the real world conditions. The 
rotation matrix affects the projection matrix, leading to a false 
IPM transformation, as seen in Figure 4.b.  

Thus, dynamic adjustment is needed for the camera’s 
projection matrix. Fortunately, the smart mobile device is 
aware of the pitching motion, due to the fact that most such 
devices have a built in 3-axis accelerometer that provides real 
time acceleration values to the developers through Android 
API’s. In our solution we used these values to correct the 
projection matrices that are being used for IPM transformation. 

 

(a)             (b)       (c) 

Fig. 4. Input image (a), without auto-correction (b), with auto-correction (c) 

To implement the dynamic adjustment, we use pre-
computed projection matrices for different values of the 
acceleration read for the Z axis (the vertical axis). For example, 
when the mobile device has a pitch value between 1 and 1.5 
degrees with respect to the road surface, we use projection 
matrix #1, when the device is pitched even more and the angle 
is between 1.5 and 2 we use projection matrix #2, and so on. 
Lookup Tables are pre-computed for each pitch angle interval, 
so that the IPM process can work in constant time, without the 
need for re-initialization. 

The raw sensor data returned from the 3-axis accelerometer 
found on most Android devices is sometimes erroneous, 



containing a lot of noise. To increase the robustness and 
accuracy of the proposed solution we used a low pass filter for 
the accelerometer data. If the previously estimated 
accelerations are in the form of a vector X=(ax, ay, az)

T, and a 
new sensor readout is in the form of Z=(rax, ray, raz)

T, the 
newly estimated acceleration vector X’ is computed as a 
weighted average between the past estimation and the new 
measurement: 

' (1 )w w= − +X X Z     (3) 

 

The parameter w, having a value between 0 and 1, is tuned 
experimentally for the best compromise between filtering and 
faster response to dynamic pitching. 

C. IPM Image Segmentation 

The IPM transformed image is a bird-eye view of the scene 
in front of the camera, including both road pixels and obstacle 
pixels. As the purpose of the application is to detect obstacles, 
a classification of all pixels in the image must be performed. 
This classification is in fact a thresholding process, leading to a 
binary image containing either black pixels – obstacles, or 
white pixels – the road surface. 

Due to the fact that only one image source is used, the 
obstacle areas can only be identified by their color with respect 
to the road surface. The road surface itself may have different 
colors, depending on the nature of the road, the illumination 
conditions, etc. However, we’ll assume that at least for the 
limited range we are surveying, in a single frame the road is 
almost homogeneous in color. The second assumption is that 
we are not too close to an obstacle, and the nearest patch of 
road surface in front of the vehicle is free. 

At each frame, the nearest patch of the road (corresponding 
to the bottom part of the IPM image, see figure 5) is used for 
computing the color characteristics of the road. The mean value 
and the standard deviation are computed for each color 
component Red, Green and Blue, of the road pixels belonging 
to this region. 

After the color characteristics of the road are learned, the 
remainder of the IPM image is scanned, and each pixel’s color 
components are compared to the RGB components of the road. 
If the difference between the color of the pixel and the road 
color exceeds the standard deviation, for each color 
component, the pixel is labeled as obstacle; otherwise it is 
labeled as road. The results of classification are shown in figure 
5. 

 

Fig. 5. IPM image (left), and IPM image after pixel classification (right). 

The chosen classification method is very fast, but obviously 
not perfectly accurate. The road may contain features that are 
not of the same color as the training patch, and these features 
may be labeled as obstacles. However, the obstacle 
identification method described in the next section is able to 
overcome this problem. 

D. Obstacle Identification 

The obstacle pixels of the IPM image must be grouped into 
distinct obstacles whose position in the 3D space can be 
determined. The main challenge is the presence of many false 
positive pixels, as the result of an imperfect classification 
method. Thus, in order to recognize the true obstacles, we have 
to use additional properties about their shape in the IPM image. 

In [8] and [9] Bertozzi and Broggi proposed a very efficient 
method for processing binary IPM images in order to identify 
the obstacles. Their idea was based on the fact that when the 
IPM transformation is performed on an image under the 
assumption that all the points belong to the road, the obstacle 
points will be mapped differently for different cameras, while 
the road features will be mapped in the same spot. They used a 
stereo setup, performed two IPM transformation, and 
highlighted the differences between them. The obstacle areas 
were clearly highlighted, but false positives appeared in their 
solution as well. For this reason, they developed a polar 
histogram based processing method for determining the 
azimuth angle of the obstacle with respect to the host vehicle, 
and a radial histogram method for determining the distance 
along the azimuth line. The main challenge for their method 
was that in the difference IPM image, only the obstacle sides 
were highlighted, while the obstacle middle was sometimes 
cleared. In the polar histogram, this caused peaks not in the 
middle of the object, but on its sides, and therefore a heuristic 
for joining peaks had to be developed. 

For our situation, only one image source is used, and 
therefore no difference between views can be performed. 
However, it is clear that the radial disposition of the obstacle 
features in the IPM image is preserved. These features 
converge into a point corresponding to the position of the 
camera in the 3D world, the Focal Point, F. 

The use of a monocular approach based on color 
classification of the obstacle features leads to an important 
difference between this approach and the stereo IPM described 
in [8] and [9]: the obstacle is fully highlighted, not only its 
sides. The process of polar histogram computation is described 
by the following algorithm: 

Algorithm Polar Histogram Computation 

Input: IPM binary image IB 

Output: Polar histogram H 

Set H[i]=0, for all i=0..36 

For each point (u, v) of IB 

 If IB(u, v)==Obstacle 

α=angle between the line from (u, v) to F and the 

horizontal axis u 
 H[α/5]++ 

 End If 

End For 



The polar histogram H is then smoothed with a 1D 
Gaussian kernel, and its local maxima are identified. Only the 
local maxima that pass a certain threshold are kept, the rest are 
discarded. 

Once the local maxima are found, the polar histogram is 
searched, around the local maxima, to find the range of values 
higher than half the value of the maximum. This way, the 
obstacle’s angular limits are established, as seen in figure 6. 

 

Fig. 6. The focus point and scanning directions (left), and the polar 

histogram (right) 

Now that the angular limits of the obstacle are established, 
the only thing that remains to be determined is the distance. For 
each possible distance (radius), a triangle is formed using the 
two rays starting from the focal point and encompassing the 
object, and a third line whose distance from the focal point is 
equal to the selected radius, and who is perpendicular to the 
center line passing through the object. For each possible radius, 
and therefore for each possible triangle, the ratio between the 
number of obstacle points in the triangle and the total area of 
the triangle is computed. The minimum radius that has a 
significant value for this ratio (meaning the first triangle that 
has a significant amount of obstacle points) is kept as the 
distance to the obstacle. 

Building the polar histogram is computationally 
demanding, due to the need of computing an angle for each 
obstacle point in the image, which means computing the 
inverse of the tangent function. To improve the processing 
time, a LUT for the arc tangent function for each position in the 
image is computed at initialization time. 

IV. EXPERIMENTAL RESULTS 

To prove the feasibility of the approach, the application was 
deployed on various mobile phones, and tested on multiple 
traffic scenarios. The application was tested on multiple mobile 
devices, including: HTC Desire, HTC One S, Samsung Galaxy 
S3. The first device, the HTC Desire features a 5 megapixel 
camera and a single core 1 GHz CPU paired with 576MB ram, 
running Android operating system version 2.3 Gingerbread. 
The One S features a more powerful dual core 1.5 GHz CPU 
with 1GB ram and a 8 megapixel camera running Android 4.1 
Ice Cream Sandwich. The last device used for testing is a quad 
core 1.4 GHz Samsung Galaxy S3 that features 1GB of ram 
and runs Android version 4.1 and that has a 8 megapixel 
camera. To drastically improve the performance of the obstacle 
detection algorithm, the most part of the code was written in 
native code using Android NDK. 

In each of the above-mentioned mobile devices we used a 
fixed images size at a resolution of 640x480 pixels. The 
acquired images are in 24-bit, RGB format. 

In order to test the accuracy of the system, we placed 
known patterns on the road surface in front of the vehicle to 
test the IPM image – figure 7. The patterns were placed at 
known distances and also proved to be useful to determine a 
correlation between the 2d image pixels and real world linear 
length expressed in meters. 

 

Fig. 7. Calibrating the camera with known patterns to produce the IPM 

image; the patterns used on the road are highlighted 

To test the overall performance we chose three popular 
devices featuring single core, dual core and quad core 
processing. We then used the same set of input images on all 
devices and measured the processing time required for each 
image. 

The chart in figure 8 represents a comparison chart between 
the single core HTC Desire and the dual core HTC One S. The 
X axis represents the processing time required for the frame 
(expressed in seconds) and the Y axis represents the current 
frame rate. 

 

Fig. 8. HTC One S vs HTC Desire performance (dual core vs single core) 

The chart in figure 9 represents the performance 
comparison between the dual core HTC One S and the quad 
core Samsung Galaxy S3. The representation used is the same 
as described for figure 8. 



 

Fig. 9. Samsung Galaxy S3 vs HTC One S performance test (quad core vs 

dual core) 

The effective range of the obstacle detection algorithm is 
between 4 and 40 meters. This interval has been chosen to 
provide a good accuracy both in urban environments and 
highway scenarios. The mobile device camera was calibrated 
to offer good accuracy on this region interest that has an 
effective width of 13 meters, the width of approximately two 
traffic lanes. Figure 10 better illustrates the system’s effective 
range and region of interest. 

 

Fig. 10. Region of interest of the proposed system 

In order to have a reference of the overall performance of 
the proposed solution and to validate the obstacle detection and 
distance determination in real world scenarios, we compared 
with existing alternatives available. The comparison was made 
on a two lane street. The two alternatives used are [10] and 
[11], both of which are available on the Android Play Store. 

Figure 11.a represents the case where a vehicle is headed 
towards the ego-vehicle and it is not detected by the first 
application. Figure 11.b shows a case when a vehicle is 
departing from the ego-vehicle and is still not detected. 

The second competitor was tested in similar conditions, 
figure 11.c illustrates the case when a vehicle is approaching 
the ego-vehicle and it is not detected. Also, in figure 11.d we 
can observe that the vehicle departing from the ego-vehicle 
was detected too far, making it irrelevant from the point of 
view of driving safety. 

(a)    (b) 

 

(c)     (d) 

Fig. 11. iOnRoad test results in (a) and (b), drivea results in (c) and (d) 

Our proposed system had better results in the two test 
scenarios and these results can be seen in figure 12.a and 12.b. 

 

Fig. 12. DriveAssist test results (a) and (b) 

The accuracy and robustness of the obstacle detection 
algorithm also refers to correctly identifying the obstacles in 
various traffic and weather conditions. The algorithm must be 
immune to various illumination conditions such as shadows 
that might be on the road surface. Figure 13.a illustrates a 
successful detection when building shadows are present on the 
road, whereas figure 13.b represents the detection in low light 
conditions during night. 

 

Fig. 13. DriveAssist results with variable lighting conditions (a) and during 

night time (b) 

In regards to the speed performance of the system, we 
managed an average of 8-10 frames per second on a dual core 
mobile phone. This includes the image acquisition, the 
processing of the image and also displaying the results. The 
overall performance increases directly proportional with the 
number of available cores, this means that on the quad core 
mobile phone the average frame rate increased to 13-15 frames 
per second. These results may vary depending on the 
luminosity of the scene and the number of detected obstacles. 



V. CONCLUSIONS 

The solution presented in this paper is a robust and fast 
obstacle detection system for Android based smartphones, 
which can improve the safety on the road and the overall 
driving experience for the user. 

Further developments for the obstacle detection and 
distance determination on mobile devices include improving 
the color segmentation algorithm, and developing an obstacle 
tracking feature using the currently detected obstacles as input. 
Also, the calibration of the camera can be improved to help 
generating the IPM image by finding a way to use the mobile 
device’s accelerometer to generate the camera parameters from 
the roll, yaw and pitch angle. The proposed software solution 
will soon be available for public use [12]. 
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