
  

  

Abstract—This paper addresses the problem of finding the 

host vehicle’s lateral position on a multi-lane road, using 

information obtained by processing video sequences. A very 

important cue for lane identification is the class of the 

boundaries of the current lane. This paper presents a reliable 

solution for lane boundary type identification, based on 

frequency analysis of the gray level profile of these boundaries, 

assuming that the current lane is already detected. The lane 

boundary information is combined with the obstacle 

information, through a Bayesian Network which will output, 

frame by frame, the probability of the vehicle to be positioned 

on each lane of the road. The probability result will be 

propagated throughout the sequence by a Particle Filter. 

 

I. INTRODUCTION 

dvanced Driving Assistance Systems can significantly 

improve the driving experience, while also increasing 

the overall traffic safety. An important prerequisite for any 

ADAS action is the proper assessment of the situation of the 

host vehicle and of the surrounding traffic. Part of this 

situation assessment is the knowledge about the host vehicle’s 

position on the road. There are several systems that can help 

us to gain this knowledge: satellite navigation systems can 

provide a rough position estimate, inertial systems can fill in 

the gaps of satellite positioning (and filter the estimates), and 

lane detection systems can tell us the position within a lane. 

With the help of a map, we can infer an approximate position 

on the road, or at least we can tell we are on the side of the 

road corresponding to our direction of driving. Unfortunately, 

when we have multiple lanes for a driving direction, the 

problem is not that simple: the navigation systems are not 

precise enough to tell us on what lane we are, the lane 

detection systems may not detect all lanes, due to occlusions 

from other vehicles, and the direction of our driving does not 

help. In the literature, there exist several approaches for 

accurately positioning the host vehicle on the road, and 

estimating the lane on which the host vehicle is travelling on. 
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Generally, the solutions are based on GPS localization which 

is then enhanced by additional vehicle and/or on-board 

sensors such as inertial navigation systems, odometers, vision 

sensors, inter-vehicle communication systems, digital maps. 

Different vision enhanced lane level positioning systems are 

proposed in [1], [2], [3], [4]; these methods also use detailed 

digital maps of the environment. A method for lane level 

positioning based on inter-vehicle communication is 

presented in [5].  

This paper proposed an original solution for lane level 

positing on a multi-lane road, based on an on-board 

stereovision processing system and an extended digital map 

[6]. The contributions of this paper are a novel method for 

lane boundaries classification and an original method based 

on a Bayesian Network (BN) for lane estimation. The 

network is used for correlating the visual information with the 

map information; additionally, the information about other 

vehicles is used in the network for lane estimation. The frame 

by frame results are tracked using a particle filter in order to 

take into consideration the time evolving nature of the 

problem. In this approach, roads with three to six lanes per 

driving direction are considered. The solution is designed for 

structured roads (roads with marked lane boundaries). Fig. 1 

illustrates the overview of the proposed solution for on-road 

position estimation.  

 
The system contains four functional blocks. The first block 

delivers 3D information through stereo image processing. The 

second block consists of the tracking and classification of the 

obstacles and of the lane boundaries; this block provides the 

evidence for the third block in the architecture. The third 

block is the probabilistic reasoning block; it performs frame 

by frame reasoning using a Bayesian network [7], [8] 

approach. The forth block performs a temporal filtering 

(tracking) of the instantaneous beliefs provided by the static 
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Fig. 1 Solution overview for on-road position estimation 



  

Bayesian Network. This ensures a more stable and reliable 

position estimation, taking into consideration the evolution of 

the driving context over time. 

The rest of the paper is structured as follows: Section II 

describes the novel approach for lane boundary 

classification; Section III presents the original approach of 

on-road position estimation by using the visual cues as 

evidence in the proposed network, while Section IV is 

dedicated to the temporal filtering (tracking) of the frame by 

frame position estimation. The results of the proposed method 

are illustrated and discussed in Section V, and the final 

conclusions are being drawn in Section VI.  

II. LANE BOUNDARY CLASSIFICATION 

Knowledge about the type of boundaries of our current lane 

is a welcome addition to any perception system designed for 

driving assistance. In the context of on-road position 

estimation, the nature of these boundaries is an important clue 

about our position on a multi-lane road. Double or continuous 

line boundaries separate the directions of traffic; 

discontinuous boundaries separate lanes in the same 

direction, and merge-type markings (densely discontinuous 

markings) separate the road from road-side parking area, and 

are also present in intersections as direction guides. 

This section presents a robust lane boundary classification 

technique, which relies on the frequency analysis of the 

intensity profile of the lane limits. Frequency based boundary 

classification solutions are presented in [9] and [10]. Our 

solution is also related to the one presented in [11], the 

similarity being the use of equally spaced scan lines projected 

in the image space, but the difference is in the processing of 

the resulted data – the solution presented in  [11] encodes the 

presence of markings on neighboring scan lines as codes, 

sequence of codes forming regular expressions which are then 

analyzed in a parser-like fashion. 

A. Feature extraction 

The lane border classification process starts with the 

extraction of basic features from the gray level perspective 

image. The lane geometry is already estimated by a particle 

filter-based lane tracker [12]. 

What we are interested in are the grayscale values along 

the lane delimiter, and their relationship with the grayscale 

value of the asphalt in the same region. For this reason, we 

will generate, in the 3D space, a set of equally spaced lines, 

covering a distance of 20 meters (starting from the minimum 

reliably visible distance). The distance between these lines is 

20 cm. Thus, we will cover a length of 20 meters of lane with 

100 equally spaced lines. On each line, we will generate, for 

each lane boundary (left and right), two search regions 

(segments): one which will most likely cover the painted 

markings, and the other that will most likely cover the asphalt 

inside the lane. On each segment, we will select a number of 

10 equally spaced points – the points for the marking region 

will be spaced 2 cm apart, and the points for the asphalt 

region will be spaced 5 cm apart. These points are then 

projected in the image space, using the perspective 

transformations derived from the camera parameters. The 

resulted image space points are seen in Fig. 2– white points 

for the marking search region, and black for the asphalt 

reference region. 

 
The grayscale values of each point generated in this way are 

averaged for each segment of each lane boundary. Thus, for 

each side we have, for each line (corresponding to a 

distance), two average values: the average value of the 

marking area, and the average value of the asphalt reference 

area. Then, for each distance and for each marking we 

compare the two averages. If the marking area average is 

higher than the asphalt area average (by a low, fixed 

threshold), we set a ‘1’ in a binary signal, and otherwise we 

set a zero. Fig. 3 describes the process. 

 
The binary signal encoding the relation between the 

average grayscale values of the markings and the asphalt is 

the primary feature of our boundary classification algorithm. 

B. Temporal integration and filtering 

The binary signal describes the nature of the boundary, as 

the alternation pattern between the 0’s and the 1’s is 

characteristic for the boundary type. However, a signal 

extracted in a single frame can be affected by some problems, 

such as transient errors (due to small errors in lane model 

fitting at the distance, or cars passing on the lane border), or 

errors due to a limited field of view (especially in the case of 

interrupted lane markings, the nature of the marking may not 

be well described by what we see in a single frame). For this 

reason, we use a temporal integration of the single frame 

results. The speed of the host vehicle and the time interval 

between the frames is used to compute an offset, which will 

be used to shift the past results. The results of the current 

frame will be averaged with the results of the past frames. 

(a) 

(b) 

Fig. 3  Processing the search areas, for the left (a) and right (b) lane 

boundaries. Top row: average intensity on each marking search line; middle 

row: average intensity on each asphalt reference search line; bottom row: 

whether the marking intensity is higher than the reference intensity (plus a 

threshold) for each line. The arrow shows the driving direction. 

(a) 

(b) 

Fig. 2 Original grayscale image (top), and the search areas for the 

markings (white dots) and for the asphalt reference (black dots) grayscale 

values. The position of the search areas is given by a lane tracking result. 



  

Also, we will expand the distance interval for our time 

integrated signal, such that it will cover a total distance of 30 

meters (20 in the visible range, and 10 meters behind the 

visible range). This way, we obtain a longer (150 discrete 

values) and more stable signal, which will better describe the 

marking type.  

A final step is an additional smoothing of the time 

integrated signal, using a Gaussian kernel (Fig. 4). 

 

C. Lane boundary classification 

In order to classify the marking type, we will extract 

several features from the filtered binary signal. The most 

obvious feature is the number of 1’s in the signal. As the 

signal is now continuous due to filtering, we will count as 

ones the signal values that exceed the value 0.5. Thus, we 

have our first feature for classification, which we will call 

OneCount. 

Next, we have to analyze the shape of the signal. As the 

signal is periodic, we have to use a frequency-based analysis. 

Instead of Fourier transforms, as used in [9], we will use a 

simpler approach, which compares the signal with itself at 

different time intervals. For each candidate period t we will 

build a sum of the absolute differences of the signal values 

spaced by t. Equation (1) will be applied for t from 0 to 100. 

In this equation, B is the filtered signal, and N is the total 

number of values B. 

0

N t

P( t ) B( k ) B( k t )

k

−

= − +

=

∑           (1) 

The function P (we will call it a Period Histogram) will 

peak for those values of t that correspond to the spacing 

between the middle of the dark intervals and the middle of the 

white intervals of B. Thus, the first peak corresponds to the 

half period of the signal B, the second peak to 1.5 periods of 

signal B, and so on. 

The next step is to find local maxima in the period 

histogram. For classification purposes, we will retain the 

smallest two values of t corresponding to distinct (not 

“touching”) local maxima of P. Let us denote these values by 

tfirst and tsecond. The value of tfirst describes half the period of 

the signal B, and the value of tsecond is used for validation: in a 

periodic signal, tsecond = 3tfirst. 

Thus, for the classification of the signal B we have three 

features, which we will summarize here: 

- The number of ‘ones’ in the filtered signal, OneCount. 

- The half-period of the signal, HalfPeriod = tfirst. 

- The peak position ratio, PeakRatio = tsecond/tfirst. 

These simple numerical features are enough to define the 

nature of the lane boundary: OneCount should be high for a 

continuous line boundary, PeakRatio should be 3 for a 

periodic signal such as an interrupted line or a merge line 

(dense interrupted) line, and the HalfPeriod should have 

definite values for the interrupted or merge lines. The exact 

rules for delimiter classification are extracted using the 

decision tree learning system from Weka [13].  Fig. 5 and Fig. 

6 show several delimiter examples and the signal analysis for 

each of them. 

 

 

D. Detection of double lines 

Once the borders are classified based on their longitudinal 

pattern, we will analyze their lateral shape to detect the 

double lines. For this, we will generate search regions again, 

but this time they will be wider, so that double markings can 

be covered by them. We are interested only in the search lines 

that correspond to marking lines in the original non-filtered 

binary signal (we expect to have doubles only where 

markings were previously located in the narrower search 

region). For these region lines, we classify the pixels as 

markings versus non-markings, based on their intensity: if the 

intensity of one pixel is closer to that of an already classified 

marking (see section A), it is labeled as marking, and if the 

intensity is closer to that of the reference area, it is labeled as 

non-marking. 

The next step is to count the transitions between marking 

and non-marking pixel sequences for each line of the search 

regions, as seen in Fig. 7. A normal delimiter should have 

two transitions, while a double one should have four. We will 

average, for each lane side (left and right) the number of 

transitions, and if the transition average is higher than 3 we 

declare the delimiter to be double.  

(a) 

   

   
(b)            (c) 

 
(d) 

Fig. 6 Signal analysis: merge boundaries on both sides, inside an 

intersection. (a) Original grayscale image, (b) filtered binary signal B, (c) 

period histogram P, (d) first and second local maxima of P. 

(a) 

   

   
(b)            (c) 

 
(d) 

Fig. 5 Signal analysis: left border is interrupted and right border is 

continuous. (a) Original grayscale image, (b) filtered binary signal B, (c) 

period histogram P, (d) first and second local maxima of P. 

(a) 

(b) 

Fig. 4  Time integrated binary signal for the left boundary (a), and the result 

of Gaussian filtering of this signal (b). 



  

 

III. POSITION ESTIMATION 

The lane boundary classification obtained in this way is 

highly relevant information in assessing the lane that the host 

vehicle is travelling on. Other relevant information for 

estimating the host vehicle’s position on the road is provided 

by other visually detected vehicles. Therefore, in the current 

approach we use the visual information as evidence for 

inferring the position of the host vehicle on the road.  

 At each time instance, the stereovision sensor processes 

and records measurements about the driving environment, 

such as: the type of lateral lane boundaries (whose 

classification has been presented in the previous section), the 

type of painted arrows [14], as well as information about the 

detected vehicles (speed and position) [15]. However, this 

data is noisy and furthermore, some quantities cannot be 

directly measured all the time. Therefore the sensorial data 

must be used in a probabilistic manner when trying to infer 

something about the driving context. The proposed Bayesian 

Network (BN) approach is a suitable one due to the following 

considerations: they provide a mean of modeling human-like 

reasoning and are capable of performing inference on 

uncertain and incomplete data, which is our case. 

Furthermore, BNs provide an instantaneous posterior 

probability distribution that can be filtered over time, thus 

taking into account the dynamic nature of the domain. 

The problem of identifying the lane that the host vehicle is 

travelling on has been previously addressed in [6], for the 

purpose of accurate vehicle global localization prior to 

intersection. The current approach extends the previous work 

from [6] by introducing a higher degree of generality of the 

network, by improving the visual measurements used as 

evidence in the network (the improved technique for lane 

boundary classification) and by time filtering of the frame by 

frame results provided by the network.  

The main idea of the reasoning mechanism is that the 

proposed network encodes the relationship between the 

traffic environment elements (road landmarks, other vehicles) 

and uses these relationships, together with the visual 

measurements, in order to perform reasoning about the lane 

that the host vehicle is driven on. There are two types of 

nodes in the network: observable nodes (gray) that encode 

variables that can be measured, and hidden nodes (white) that 

encode variables that cannot be measured, and whose states 

we are interested in. The states of the hidden variables are 

inferred using the network, the evidence of the observable 

nodes, and a inference algorithm [16]. In the proposed 

network (Fig. 8), the observable nodes encode information 

about the static environment (the type of left and right lane 

boundaries, the type of painted arrows) as well as 

information about the dynamic environment (the behavior of 

other detected vehicles – relative longitudinal movement, 

relative lateral position). The hidden nodes of this network 

(including the EgoLaneNo node) encode the possible 

hypotheses for the ego-lane number, i.e. the possible lanes l1, 

l2,…,lMAX, where MAX is the number of lanes per driving 

direction (the lane numbering starts from left to right). The 

task of the network is to infer the posterior probability 

distribution of the EgoLaneNo node over these hypotheses 

using the visual measurements as evidence. The intermediate 

nodes are used to reduce the size of the leaf node, and to 

simplify the computation of its conditional probability table.  

 
The structure of the proposed network is semi-fixed as 

illustrated in Fig. 8. While the variables encoding the static 

environment information have a fixed dependence 

relationship, the variables encoding the dynamic environment 

information are added to the network only when sensorial 

measurements about the other road users become available. In 

Fig. 8, the solid line nodes are permanent nodes of the 

network, while the dashed line nodes are occasional nodes in 

the network, are added only when dynamic environment 

information becomes available. While the structure of the 

network is semi-fixed, the parameters of the network (denoted 

by θ), however, change according to the road’s infrastructure. 

We assume that the information about the road infrastructure 

(number of lanes per way, widths of the lanes, type of lanes’ 

delimiters and painted arrows) is known a priori from an 

extended digital map [6]. Under this assumption, the training 

set D is complete. What we intend to do is to find the network 

that best matches the data in D, i.e. for each node to find the 

initial probability that best matches the data in D.  According 

to [17] this is done using Maximum Likelihood Estimation 

(MLE). Since we have a set of complete data as training set, 

the log-likelihood is given by equation (2): 

l

l

l( | D ) log P( D | )θ θ=∑            (2) 

that is equivalent to equation (3), 

ijkijk
i,k j

l( | D ) m logθ θ=∑∑            (3) 

where m (i, j,k : D )ijk l

l

χ=∑  is the sufficient statistics. 

 

Fig. 8 Structure of the proposed BN. 

  
(a)                                               (b) 

Fig. 7 Detection of double lines: (a) Search regions for counting 

marking/non marking transitions, (b) Transitions on a search line. 



  

The sufficient statistics is a function of data that summarizes 

the relevant information for computing the likelihood. In other 

words mijk is equal to the number of cases when the node Xi 

has the state j and the Xi’s parents’ configuration is k. By 

maximizing the log-likelihood from equation (3) the following 

estimate is obtained:  

* ijk
ijk

ijk

j

m

m
θ =

∑
                 (4) 

For the construction of the network the a priori information 

about the environment is used. Therefore the network is 

rebuilt for each road segment according to the road’s 

infrastructure, and according to the other vehicles 

information. The evidence for the observable nodes, 

however, comes from the visual measurements. At each time 

instance this evidence is used to compute the instantaneous 

belief of the EgoLaneNo hidden node: 

( , ,..., ) { , ,..., }1 2 MAX 1 2 MAXP l l l w w w=        (5) 

where 

1

1

MAX

i

i

w

=

=∑ .  This discrete posterior probability 

distribution over the lane hypotheses of EgoLaneNo node is 

passed on as measurement to the particle filter, which is 

described in the next section. 

IV. POSITION TRACKING 

The lane number probability density is approximated for a 

time instance t by a set of N weighted 

particles ( ) { , , ... }i i
t t tp L L i 1 Nπ≈ = . Each particle will retain 

a hypothesis lk, having a discrete value from l1 to lMAX. The 

particle will also carry a weight
i

tπ , encoding the strength of 

this hypothesis. 

The cycle of this (simplified) particle filter is carried out 

in three main phases: Resample, Diffusion, and 

Measurement. The Resample phase uses the past weighted 

particle population to generate a new population, by making N 

random selections and using the weight of the particles as a 

measure of the probability of it being selected. This way, 

higher weight particles are selected more than once, while 

lower weight particles may be selected less frequently or 

never. During the resample phase, a small fraction fN of the 

particles, f <0.1, will be drawn from the general distribution, 

meaning that they will get a random hypothesis from l1 to lMAX. 

The parameter f controls the reaction of the filter to changing 

conditions, a large value making it faster to adapt to a 

situation change, the cost being a lower stability of the 

estimation. 

After resampling, the Diffusion process alters the state of 

the new population of particles. Each particle will get a 

chance of r to alter its lane hypothesis to its left neighboring 

lane (Lt
i
-1), a change of r to alter its hypothesis to its right 

neighboring lane (Lt
i
+1), and a chance of 1-2r to keep its 

hypothesis unchanged. The parameter r is in the range of 

0.025 to 0.1, a smaller value leading to a behavior when the 

filter is aggressively pursuing the best hypothesis, under the 

penalty of disregarding other possibilities.  

The Measurement step will assign to each particle a new 

weight. Each particle will get as weight the probability of its 

lane hypothesis, computed in Section III, i.e. for 

_, { , ,..., }i
t k k 1 2 MAXL l l l l l= ∈ the corresponding weight will 

be i
t kwπ = . After the measurement step, the weights of the 

particles are normalized, so that their sum equals 1, and the 

cycle can start again. 

The probabilities for each lane hypothesis 

{ , , ..., }k 1 2 MAXl l l l∈ can be estimated by adding the weights 

of the particles holding that particular hypothesis, as in 

equation (6). 

( ) i
t k t

iL lt k

P l π

=

= ∑                 (6) 

V. EXPERIMENTAL RESULTS 

A. Lane boundary classification results 

The lane boundary classification system was tested using a 

sequence of 9830 frames, which record a drive of 8 km 

through the city of Cluj-Napoca, Romania. We have tested the 

classification results for the left lane boundary, against ground 

truth generated by manual labeling of intervals in the frame 

sequence. The reason the left boundary was chosen for 

performance evaluation is that throughout the sequence this 

lane side passes through all the classes we are looking for: 

interrupted line, continuous line, merge line, no line, double 

continuous line and double merge line. Some of the classes 

are forbidden for the right lane side, at least while we obey 

the traffic laws. 

The quality of the markings in the test sequence ranged 

from excellent to poor, and sometimes cars or pedestrians 

were occluding the view. The boundary classification system 

was correct in 7969 cases, which means 81% of all frames. 

Table I describes the results for each lane boundary class. 

Some classes are better represented in the sequence, while 

others, such as the double merge class, are rarer. The table 

shows for each class the true positive (TP) rate (the ratio 

between the number of correctly detected instances of a class 

and the total number of instances of that class), and the false 

positive (FP) rate (the ration between the number of 

incorrectly detected instances of a class versus the number of 

frames that class was not actually present).  

 
TABLE I. CLASSIFICATION RESULTS 

Border class Instances TP rate FP rate 

No marking 3958 0.780 0.080 

Continuous 1049 0.896 0.079 

Interrupted 2413 0.804 0.052 

Merge 144 0.792 0.014 

Double continuous 2207 0.840 0.006 

Double merge 59 0.831 0.002 

We can see that while the true positive rate is not extremely 



  

high, due to the conditions of the markings and some other 

causes of occlusion, the false positive rate is quite low, 

which makes the system a robust solution for boundary 

classification. 

Some qualitative results of the lane boundary classification 

system are shown in Fig. 9. This figure shows in perspective 

view and bird-eye view the current detected lane, along with 

the class of its delimiters. 

 

B. Positioning results 

The proposed position estimation method was tested on the 

same sequence of 8 km drive, during which we have 

encountered segments of road with three to six lane per 

driving direction. The information about the detailed road’s 

infrastructure is available in the extended digital map. Using 

the proposed approach we have identified the lane on which 

the host vehicle was driven: the frame by frame probability 

identified the lane correctly in 76% of the cases, and by 

adding the particle filter the outcome was improved to a 89% 

correct lane position estimation. The following figures 

illustrate the instantaneous lane probabilities versus the 

filtered lane probabilities, together with images from the 

stereovision perception system that provides the visual 

evidence. Fig. 10 illustrates a case with three lanes per 

driving direction, while Fig. 11 illustrates a case with five 

lanes per driving direction. Our lane positioning solution 

produces a sharper probability for the first case, and a more 

dispersed probability for the second case (both instantaneous 

and filtered), due to the fact that more lanes have the same 

lateral lane boundaries and painted arrows, making the 

decision process more difficult. 

 

 

 

 

Finally, Fig. 12 illustrates a case of lane change. The road 

has three lanes per driving direction and the host vehicle is 

passing from the middle lane to the leftmost lane. It can be 

noticed that the type of left lane boundary changes from 

interrupted to double, which considerably influences the 

Bayesian Network to identify the lane as being the leftmost 

one. Furthermore the particle filter emphasizes this result, as 

shown in the graphics of Fig. 12. 

(a) 

 

(b) 

Fig. 11 Five lanes per driving direction (a) Comparative results of the 

instantaneous posterior probabilities provided by the BN against the 

filtered probabilities resulted from the particle filter (b) Example of 

instantaneous visual evidence (left boundary = interrupted, right boundary 

= interrupted, left outgoing vehicles) and resulted instantaneous 

probabilities P(l1,l2,…,lMAX)={0.10, 0.20, 0.25, 0.25, 0.20}  and filtered 

probabilities P(l1,l2,…,lMAX)={0, 0.1, 0.45, 0.42, 0.03}. 

(a) 

(b) 

Fig. 10 Three lanes per driving direction (a) Comparative results of the 

instantaneous posterior probabilities provided by the BN against the 

filtered probabilities resulted from the particle filter (b) Example of 

instantaneous visual evidence (left boundary = interrupted, right boundary 

= interrupted, left and right outgoing vehicles) and resulted instantaneous 

probabilities P(l1,l2,…,lMAX)={0.27, 0.46, 0.27} and filtered probabilities 

P(l1,l2,…,lMAX)={0.05, 0.935, 0.015}. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Fig. 9 Lane boundary classification sample results: (a) discontinuous lines, 

(b) continuous lines, (c) merge lines inside an intersection, (d) continuous 

line on the left, no marking on the right, (e) double continuous line on the 

left, discontinuous line on the right, (f) double merge line on the left, 

discontinuous line on the right, (g) double continuous line on the left, worn 

out marking on the right, not detected,(h) falsely detected merge line on the 

left, due to pillars, and continuous line on the right. 



  

 

 

VI. CONCLUSION 

This paper presents a system that solves the difficult 

problem of lateral positioning on a multi-lane road, using 

simple visual cues produced by a stereovision-based 

sensorial system. Due to the fact that accurate classification of 

the types of lane boundaries is essential for road position 

inference, the first contribution of this paper is a novel and 

robust algorithm for delimiter type identification. The 

delimiter type information, together with other cues extracted 

from stereovision, such as the presence of obstacles, or the 

presence of arrows on the lanes, is fused into a Bayesian 

Network decision system which is able to estimate 

instantaneous probabilities for each lane position hypothesis. 

The results of the single frame Bayesian decision system are 

filtered in time, using a Particle Filter which significantly 

improves the overall results.  

As seen from the testing section, the system provides 

reliably good results, and yet there is room for future work. 

The lane boundary classification system will greatly benefit 

from automatic identification of the marking quality. False 

classification results may be withheld if we knew that the 

markings are worn out, or if they are occluded by dirt or 

snow. Also, we will extend the training of the boundary 

classifier to more scenarios, so that all relevant conditions 

will be covered. The lane position decision system will be 

augmented with the use of a vehicle motion model, integrating 

speed, yaw rate, and possibly visual-based odometry, so that 

changes in lane position may be properly anticipated. 
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Fig. 12 Lane change example. Between frames 85 and 95 the vehicle is 

changing the lane from l2 to l1; this is much clearer from the filtered 

probability than from the instantaneous probability.  


