
  

  

Abstract— The environment representation is one of the 

main challenges of autonomous navigation. In the case of 

complex driving environments such as crowded city traffic 

scenarios, achieving satisfactory results becomes even more 

difficult. In this paper we propose a real-time solution for two 

main issues of advanced driver assistance systems: 

unstructured environment representation and extraction of 

dynamic properties of traffic participants. For the real-time 

environment representation we propose a solution to extract 

object delimiters from the traffic scenes and represent them as 

polygonal models. In order to track dynamic entities, an 

intermediate evidence map named “Stereo Temporal 

Difference Map” is proposed. This difference map is 

computed by comparing the occupancy of a cell between two 

consecutive frames. Based on the Stereo Temporal Difference 

Map information, difference fronts are extracted and are 

subjected to a particle based filtering mechanism. Finally, the 

provided dynamic features are associated to the extracted 

polygonal models. The result is a more compact representation 

of the dynamic environment. 

I. INTRODUCTION 

In the context of Advanced Driver Assistance Systems, 

the perception of dynamic environments is still an open 

problem. In order to represent the knowledge about other 

moving traffic participants, first we have to choose adequate 

models that accurately describe dynamic evolution in time, 

and also their geometrical shapes. In the case of the most 

complex driving environments such as crowded city traffic 

scenarios, acquirement of satisfactory results becomes even 

more difficult. A driver assistance system should be able to 

provide a digital model of the surrounding world in real-

time, and with a high accuracy and robustness. Also, the 

resulted representation should permit fast subsequent 

processing tasks. 

In the case of stereovision systems, which rely on 

passive sensors, the motion information cannot be provided 

directly. A common approach for tracking solutions consists 

in extracting desired features and estimating their motion 

over time.  Current solutions can be classified based on the 

level at which the tracking and representation is performed. 

In a simpler and clearly structured environment, the 

obstacles are usually modeled as 2D bounding boxes or 3D 

cuboids, and are described by their position, size and speed.  
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Model-based tracking may not be the best solution when 

the driving environment is more complex, as in the case of 

an off-road scenario, an intersection, or a crowded urban 

center. Even if parts of this environment can be tracked by 

estimating the parameters of the cuboidal model, many 

essential parts of the environment may not fulfill the 

constraints of the models. An occluded object, or an object 

that changes its size or shape will mislead the model-based 

tracking system, consequently the correct speed estimation 

will be impossible to achieve. For this reason, any 

perception system can be improved by estimating dynamic 

properties of the environment independently from the 

choice of object representation. 

In order to achieve the goal of extracting the speed 

independently from object model, intermediate tracking 

solutions are devised. Such solutions can directly track 3D 

points (the 6D vision technique, presented in [1]), compact 

dynamic obstacle primitives such as the stixels [2], or they 

can use track the occupancy and speed of a cell in the map, 

such as in the case of occupancy grids. 

The occupancy grid is a good option for traffic 

environments, as it is able of concisely describing the 

relevant features from the scene while maintaining a decent 

level of computation complexity. One of the first uses of 

occupancy grids is presented by Elfes in [3], in the context 

of sonar based robot navigation. A probability inference 

mechanism for handling the uncertainty of range sensors in 

computing the occupancy probability of each cell is 

presented in [4]. The initial occupancy grids, such as those 

described in [3] and [4], are simple 2D maps of the 

environment, each cell describing the probability of it being 

occupied or free. By adding the speed component in the 

environment estimation, the complexity increases 

significantly. A 4D occupancy grid, where each cell is 

described by a position and two speed components is 

presented by Coué et al in [5].  Another approach for the 

representation of speeds is described in [6] by Chen et al. 

Instead of having a 4D grid, this solution uses a distribution 

of speeds in the form of a histogram for each cell. 

In order to provide a mean of identifying individual 

dynamic objects, we require a way to extract freeform 

models from the scene. A proper approach towards this goal 

is the extraction of polygonal models. This representation 

solution has the advantage of closely approximating the 

object contour by the polygonal model while having a 

number of vertices as small as possible, and it also includes 

the static and dynamic features from the associated objects.  

The polyline extraction methods differ by the nature of the 
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information as well as by the sensors used for data 

acquisition process. Current systems use laser [7], [8], sonar 

[9], or vision sensors [9]. The polyline representation was 

chosen in [8] for terrain-aided localization of autonomous 

vehicle. The new range data obtained from the sensor are 

integrated into the polyline map by attaching line segments 

to the end of the polyline as the vehicle moves gradually. 

This paper presents a novel approach for real-time 

environment representation and tracking based on a dense 

stereo-vision system. Two main issues of advanced driver 

assistance systems are addressed: unstructured environment 

representation, and extraction of dynamic properties of 

traffic participants. The proposed methods take into 

consideration the 3D information provided by a Digital 

Elevation Map, as well as the ego-car parameters such as 

yaw rate and car speed.  

For a real-time environment representation we 

developed a method that extracts free form object delimiters 

from the traffic scenes by radial scanning of the Elevation 

Map. 

In order to track dynamic entities, an intermediate 

evidence space is generated by computing differences 

between the two consecutive elevation map representations 

at different moments of time. This evidence space will be 

called “Stereo Temporal Difference Map”; for simplicity, in 

the remainder of this paper we’ll refer to it as Difference 

Map. Next, we use a probabilistic approach for modeling 

the extracted difference fronts by using particles that move 

from cell to cell and are created and destroyed based on new 

measurements provided by the Difference Map at each 

frame. Thus, instead of directly tracking all traffic entities, 

we focus only on analyzing and tracking the differences 

between two consecutive scenes without making 

assumptions about object shape or size. Finally, the 

provided dynamic features are associated to the extracted 

polygonal models. The result is a 2.5D compact 

representation of the dynamic environment. 

In the next section, we describe the proposed system 

architecture. Section 3 presents the dynamic environment 

representation solution based on polylines, Difference Map 

representation and particle based modeling of difference 

fronts. The last two sections show the experimental results 

and the conclusion of this contribution. 

II. SYSTEM ARCHITECTURE 

Our method has been conceived and adapted for crowded 

unstructured environments such as urban city traffic scenes. 

The previously developed Dense Stereo-Based Object 

Recognition System (DESBOR) has been improved by 

including additional processing modules for Difference Map 

extraction and Particle Based Difference Fronts modeling. 

An overview about about the DESBOR system is presented 

in [10]. The Dynamic Environment Perception system 

consists in the following main modules (see figure 1): 

Reconstructed 3D Points: the 3D reconstruction is 

performed in real time using a dense stereo algorithm 

implemented on a GPU board [11]. The reconstructed 3D 

points are used as primary information for computing the 

Digital Elevation Map. 

 

Figure 1.  System Architecture.  

Digital Elevation Map: the Elevation Map (see figure 2) 

represents an intermediary description of the scene and is 

computed from the raw dense stereo information. The 

Elevation Map contains three types of cells: road, traffic isle 

and object. More details about the Elevation Map are 

presented in [12]. 

Ego Motion Compensation: the Elevation Map’s 

coordinates from the previous frame are transformed to the 

current frame, assuming that we know the ego car 

parameters. By compensating the ego motion we ensure that 

the two Elevation Map coordinate systems are aligned. 

Stereo Temporal Difference Map: an evidence map is 

computed by comparing the presence or absence of an 

Elevation Map cell at different moments of time. This 

process classifies each Difference Map cell as direction, 

shadow, or core cell. 

Difference Fronts: after the computation of the Difference 

Map, we define three types of areas for the moving objects: 

a direction front (the direction of the moving obstacle), a 

shadow front (usually located behind the moving obstacle), 

and a core area that remains unchanged in the consecutive 

frames. 

 



  

Particle Based Filtering: the extracted difference fronts 

are subjected to the particle based filtering. As the result a 

dynamic grid based on particles is produced. Each particle 

has a position and speed, and can migrate in the grid from 

cell to cell depending on its motion model and motion 

parameters. Grid particles are also created and destroyed 

using a weighting-resampling mechanism. We extend the 

previously developed algorithm [13][14], by using the 

difference fronts as measurement information. 

 

Figure 2.  a) A traffic scene. b) The Elevation Map is projected on the left 

camera image. c) Elevation Map, top view. The Elevation Map cells are 

classified (blue – road, yellow – traffic isle, red – obstacles). d) Polyline Based 

Environment Representation. The object types are inherited from the Elevation 

Map information (green – obstacles, yellow – traffic isles). 

Polygonal Models: the obstacles delimiters are extracted by 

radial scanning of the Elevation Map, and the more 

compact polygonal model is generated. For delimiter 

extraction we use the Border Scanning algorithm presented 

in [15] 

Environment Representation Output: speed vectors, 

computed by the particle filtering step are associated to the 

static polygonal models. A dynamic polyline map is 

generated as the result. Each polyline element is 

characterized by a set of vertices, position, height, type 

(traffic isle, obstacle), orientation and magnitude. 

III. DYNAMIC ENVIRONMENT REPRESENTATION 

In this section we present the main stages of the 

dynamic environment representation process. Most of the 

representation and tracking solutions in the literature rely 

on extracting an object model and subsequently inferring its 

motion over time. In our work we handle the unstructured 

environment representation problem and the motion 

estimation problem by independent modules. Thus, we 

avoid some additional intermediate processing steps for 

both cases. This approach allows us to extract dynamic 

features (speed vectors) regardless of the model chosen to 

represent the surrounding world and vice versa. Next, we 

describe each step of the proposed approach: 

A. Polyline Based Environment Representation 

For the polyline based object representation, we extend 

the Border Scanner algorithm described in [15]. The main 

idea is that we are taking into account only the most 

relevant scene information, by extracting object delimiters 

by radial scanning of the Elevation Map. Our method is 

based on a Ray-Casting approach, which determines the 

first occupied cell that intersects a virtual ray which is cast 

from the ego-car’s reference frame origin. At each step we 

try to find the nearest visible point situated on the scanning 

ray. In this way, all subsequent cells Pi are accumulated into 

a Contour List C, as the scanning ray’s angle changes:  

 ),...,{ 21 nPPPC =  (1) 

For each object Oi described by a contour Ci we apply a 

polygonal approximation of Ci, using a split-and-merge 

technique. The extracted polygon is used to build a compact 

3D model based on the polyline set of vertices as well as on 

the object height. An example of the polyline representation 

is shown in figure 2.d. 

B. Stereo Temporal Difference Map 

We analyze the classified obstacle cells of the Elevation 

Map, in order to detect differences both at cell level, and at 

object level. The outcome of this analysis is the Difference 

Map.  

Before applying any reasoning about objects’ state at 

different frames, the movement of the ego vehicle must also 

be taken into consideration. In order to compensate for the 

ego motion in successive frames, for each given point Pt-

1(Xt-1, Yt-1, Zt-1) in the previous frame the corresponding 

coordinates Pt(Xt, Yt, Zt)  in the current frame are computed 

by applying a rotation and a translation: 
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Where ( )ψyR  is the rotation matrix around the Y axis 

with a given angleψ , and Tz – is the translation on the Z 

axis. We assume that the translations on the X and Y axis 

are zero. 

For each cell in the previous frame we keep an evidence 

of its persistence at the corresponding position in the 

current frame. Thus, based on the presence or absence of 

the cell in the current frame, a Difference Map that stores 

 



  

the point differences between the two frames is built. We 

define three classes of cells (see figure 3): 

Direction cell – if a cell is empty in the previous frame, and 

occupied in the current frame. 

Shadow cell – the cells that are occupied in the previous 

frame and are empty in the current frame. 

Core cell – if the same cell is occupied in both 

frames.

 

Figure 3.  Difference Map Cells are classified: direction – blue, shadow – red, 

core - green.  

C. Difference Fronts 

After computing the Difference Map we define three 

types of areas that describe the moving obstacles (see figure 

4): a direction front (the direction of the moving obstacles), 

a shadow front (usually located behind the moving 

obstacles), and a core area that remains unchanged in the 

consecutive frames. 

 

Figure 4.  Difference Fronts: Direction Front – blue, Shadow Front – red and 

Obstacle Core - Green.  

D. Particle Based Filtering 

In this step we use a particle-based filtering mechanism 

in order to estimate the difference fronts speed components. 

We use a probability model to produce a fully dynamic grid 

based on particles. We consider that each grid cell has a 

population of particles that have a dual nature:  they 

describe occupancy hypotheses, as in the particle filtering 

algorithms such as CONDENSATION [16], but can also be 

regarded as physical building blocks of our modeled world. 

The particles have position and speed, and they can migrate 

from cell to cell depending on their motion model and 

motion parameters, but they are also created and destroyed 

using the same logic as the weighting-resampling 

mechanism  

Considering a coordinate system where the z axis points 

towards the direction of the ego-vehicle, and the x axis 

points to the right, the obstacles in the world model are 

represented by a set of particles: 

 }...1),,,,,(|{ Siiiiiii NiavrvcrcppS ===  (3) 

Each particle i has a position in the grid, described by 

the row ri  and the column ci, and a speed, described by the 

speed components vci and vri. An additional parameter, ai, 

describes the age of the particle, since its creation. The 

purpose of this parameter is to facilitate the validation and 

the speed estimation process, as only particles that survive 

in the field for several frames are taken into consideration. 

The total number of particles in the scene NS dependent on 

the occupancy degree of the scene, that is, the number of 

obstacle cells in the real world. Having the population of 

particles in place, the occupancy probability of a cell C is 

estimated as the ratio between the number of particles 

whose position coincides with the position of the cell C and 

the total number of particles allowed for a single cell, NC. 
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The number of allowed particles per cell NC is a constant 

of the system. In setting its value, a tradeoff between 

accuracy and time performance should be considered. The 

total number of particles in the scene will be directly 

proportional with NC, and therefore the speed of the 

algorithm will be directly affected by its value. 

The speed of a grid cell can be estimated as the average 

speed of its associated particles, if we assume that only one 

obstacle is present in that cell.  
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Multiple speed hypotheses can be maintained 

simultaneously for a single cell, and the occupancy 

uncertainty is represented by the varying number of 

particles associated to the cell. The tracking algorithm can 

now be defined: using the measurement information in the 

form of elevation maps, it will create, update and destroy 

particles such that they accurately represent the real world. 

 
 



  

The first step of the algorithm is the prediction, which is 

applied to each particle in the set. The positions of the 

particles are altered according to their speed, and to the 

motion parameters of the ego vehicle. Also, a random 

amount is added to the position and speed of each particle, 

for the effect of stochastic diffusion. The second step is the 

processing of measurement information. The raw 

measurement data is derived from difference fronts. 

The measurement model information is used to weight 

the particles, and resample them in the same step. By 

weighting and resampling, the particles in a cell can be 

multiplied or reduced. The final step is to estimate the 

occupancy and speeds for each cell. A more detailed 

description of the particle grid tracking algorithm is given 

in [13] and [14]. 

E. Data Association 

This stage consists in assigning the speed vectors derived 

from the particle-based filtering to the polygonal models 

extracted from the Elevation Map. As each polygonal model 

directly inherits the object position and type, the problem is 

reduced to associating the tracked direction fronts to the 

Difference Map measurements. For each direction Front Fj 

in the occupancy grid space and for each entity Li in the 

Difference Map we calculate an overlapping score Cij. The 

results are stored into a score matrix C={Cij}. Candidates 

with the highest score are taken into account in determining 

the associations between the two sets F and L. 

IV. EXPERIMENTAL RESULTS 

The proposed representation and tracking technique has 

been tested in real traffic situations. For a more complete 

evaluation we have compared the obtained results with the 

Kalman filter-based, cuboidal model oriented tracking 

method presented in [17]. Figure 5 describes the dynamic 

environment representation steps, including the 

intermediate results. The Difference Map (figure 5.d) is 

obtained based on the Elevation Map results at different 

times (figure 5.a and b). The Difference Cells are classified 

as direction (blue), shadow (magenta), and core (light 

green). Figure 5.e shows the particle based occupancy grid 

obtained from Difference Map measurements. The extracted 

dynamic polylines and the associated speed vectors (yellow 

color) can be seen on the top view of the Elevation Map 

(figure 5.f). Figure 5.g shows the projection of the static 

(green color) and dynamic obstacles (red color) on the left 

camera image. 

For the numerical evaluation we have included the 

following traffic scenarios: an incoming vehicle and a 

stationary lateral vehicle. The obtained speeds are compared 

to the speeds obtained with the Kalman filter-based tracking 

approach. 

 

 

 

Figure 5.  Dynamic environment representation with the intermediate stages. 

The Difference Map (d) is obtained based on the Elevation Map from previous 

frame (b) and current frame (c). The Difference Cells are classified as 

direction (blue), direction (magenta), and core (light green). The particle based 

occupancy (e) is grid obtained from Difference Map measurements. The 

extracted dynamic polylines and the associated speed vectors (yellow color) 

are   shown on the top view of the Elevation Map (f). The static (green color) 

and dynamic obstacles (red color) are projected on the left camera image (g).  

For the first test we have chosen a scenario with an 

incoming vehicle. The speed estimation values are shown in 

the figure 6. It can be observed that for this case, the values 

obtained by the particle filtering based technique (blue 

color) are close to the one obtained by a model based 

tracking method (magenta color). 

 



  

The second test includes a stationary lateral vehicle 

(figure 7). The target speed of 0 is given as the ground truth 

for the measurements. The difference fronts tracking 

approach (blue color) proves to be more accurate having a 

lower mean absolute error (2.18 Km/h) than the Kalman 

filter cuboid-based tracking solution (7.5 Km/h) drawn with 

magenta color. 

 

Figure 6.  Speed Estimation for an incoming vehicle (green color). The 

particle based filtering of difference front method (blue color) is compared 

with a Kalman filter tracking solution (magenta color).  

 

Figure 7.  Speed Estimation for a stationary lateral vehicle (green color). The 

results are estimated with particle based tracking of difference fronts (blue 

color), Kalman filter tracking (magenta color). The ego car speed is colored 

with green. 

V. CONCLUSIONS 

In this paper a novel approach for stereo-based real-time 

environment representation and tracking is presented. Two 

main issues of advanced driver assistance systems are 

addressed: unstructured environment representation, and 

extraction of dynamic properties of traffic participants. For 

implementing our algorithms we use, as primary 

information, the Digital Elevation Map representation.  

For the real-time environment representation the 

proposed solution extracts object delimiters from the traffic 

scenes, by radial scanning of the Elevation Map. In order to 

track dynamic entities, an intermediate evidence space is 

generated by computing differences between the two 

consecutive Elevation Map representations. We named this 

space the Stereo Temporal Difference Map. Further, we use 

a probabilistic approach for modeling the extracted 

difference fronts by using particles that move from cell to 

cell and are created and destroyed based on new 

measurements provided by the Difference Map at each 

frame. Instead of directly tracking all traffic entities, we 

focus only on the analysis and tracking of the differences 

between two consecutive scenes, without making 

assumptions about object shape or size. Finally, the 

provided dynamic features are associated to the extracted 

polygonal models. The result is a 2.5D compact 

representation of the dynamic environment. According to 

the experimental results the presented method achieves a 

high degree of accuracy. 

As future work we propose to focus our research in 

extending the concept of “Stereo Temporal Difference Map” 

by computing the evidence of the traffic scene over multiple 

frames. 

REFERENCES 

[1] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of 

stereo and motion for robust environment perception,” in proc of 27th 

Annual Meeting of the German Association for Pattern Recognition 

DAGM ’05, Vienna, October, 2005.  

[2] D. Pfeiffer, U. Franke, "Efficient Representation of Traffic Scenes by 

Means of Dynamic Stixels", IEEE Intelligent Vehicles Symposium 

(IEEE-IV), 2010, pp. 217-224. 

[3] A. Elfes, “A Sonar-Based Mapping and Navigation System”, in proc of 

IEEE International Conference on Robotics and Automation, April 

1986, pp. 1151-1156. 

[4] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and 

Navigation”, Computer, vol. 22, No. 6, June 1989, pp. 46-57. 

[5] C. Coue, C.Pradalier, C.Laugier, T.Fraichard, P.Bessiere, “Bayesian 

Occupancy Filtering for Multitarget Tracking: An Automotive 

Application”, The International Journal of Robotics Research, 

25(1):19, 2006. 

[6] C. Chen, C. Tay, K. Mekhnacha, C. Laugier, “Dynamic environment 

modeling with gridmap: a multiple-object tracking application”, in proc 

of International Conference on Automation, Robotics and Computer 

Vision (ICARCV) 2006, pp. 1-6. 

[7] S. Kolski, D. Ferguson, M. Bellino, R. Siegwart, "Autonomous driving 

in structured and unstructured environments", in proc of IEEE 

Intelligent Vehicles Symposium (IEEE-IV), 2006, pp. 558–563. 

[8] R. Madhavan, "Terrain aided localization of autonomous vehicles", in 

proc of Symposium on Automation and Robotics in Construction, 

Gaithersburg, 2002, pp. 511-518. 

[9] A. Goncalves, A. Godinho, J. Sequeira, "Lowcost sensing for 

autonomous car driving in highways", in proc of ICINCO2007 - 4th 

International Conference on Informatics in Control, Automation and 

Robotics, Angers, France, 2007, pp. 370-377. 

[10] S. Nedevschi, R. Danescu, T. Marita, F. Oniga,  C. Pocol, S. Sobol, C. 

Tomiuc, C. Vancea, M. M. Meinecke, T. Graf, T. B. To, M. A. Obojski, 

”A sensor for urban driving assistance systems based on dense 

stereovision”, in proc of IEEE Intelligent Vehicles Symposium (IEEE-

IV) 2007, pp. 278--286, Istanbul. 

[11] I. Haller, C. Pantilie, F. Oniga, S. Nedevschi, “Real-time semi-global 

dense stereo solution with improved sub-pixel accuracy”, in proc of 

IEEE Intelligent Vehicles Symposium 2010, pp. 369-376. 

[12] F. Oniga, S. Nedevschi, “Processing Dense Stereo Data Using Elevation 

Maps: Road Surface, Traffic Isle, and Obstacle Detection”, IEEE 

Transactions on Vehicular Technology, Vol. 59, No. 3, March 2010, 

pp. 1172-1182. 

[13] R. Danescu, F. Oniga, S. Nedevschi, “Particle Grid Tracking System for 

Stereovision Based Environment Perception”, in proc of IEEE 

Intelligent Vehicles Symposium (IEEE-IV), 2010, pp. 987-992. 

[14] R. Danescu, F. Oniga, S. Nedevschi, “Modeling and Tracking the 

Driving Environment with a Particle Based Occupancy Grid”, IEEE 

Transactions on Intelligent Transportation Systems, Vol. 12, No. 4, 

2011, pp. 1331-1342. 

[15] A. Vatavu, Sergiu Nedevschi, Florin Oniga, “Real Time Object 

Delimiters Extraction for Environment Representation in Driving 

Scenarios”, in proc of  6th International Conference on Informatics in 

Control, Automation and Robotics, Vol. Robotics and Automation, 

2009, Milano, Italy, 2009, pp 86-93. 

[16] M. Isard, A. Blake, “CONDENSATION -- conditional density 

propagation for visual tracking”, International Journal of Computer 

Vision, Vol. 29, No. 1, pp.  5-28, (1998). 

[17] R. Danescu, S. Nedevschi, M.M. Meinecke, T. Graf, “Stereovision 

Based Vehicle Tracking in Urban Traffic Environments”, in proc of 

IEEE Intelligent Transportation Systems Conference (ITSC 2007), 

Seattle, USA, 2007, pp. 400-404. 

 


